Related Literature

  • Damiano, L., & Dumouchel, P. (2018). Anthropomorphism in human–robot co-evolution. Frontiers in psychology, 9, 468.
  • Dengel, A., Devillers, L., & Schaal, L. M. (2021). Augmented Human and Human-Machine Co-evolution: Efficiency and Ethics. In Reflections on Artificial Intelligence for Humanity (pp. 203-227). Springer, Cham.
  • De Greeff, J., de Boer, M. H., Hillerström, F. H., Bomhof, F., Jorritsma, W., & Neerincx, M. A. (2021). The FATE System: FAir, Transparent and Explainable Decision Making. In AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering.
  • Lee, E. A. (2020). The Coevolution: The Entwined Futures of Humans and Machines. Mit Press.
  • Neerincx, M. A., Van Vught, W., Blanson Henkemans, O., Oleari, E., Broekens, J., Peters, R., ... & Bierman, B. (2019). Socio-cognitive engineering of a robotic partner for child's diabetes self-management. Frontiers in Robotics and AI, 118. https://doi.org/10.3389/frobt.2019.00118.
  • Van der Waa, J., van Diggelen, J., Cavalcante Siebert, L., Neerincx, M., & Jonker, C. (2020). Allocation of moral decision-making in human-agent teams: a pattern approach. In International Conference on Human-Computer Interaction (pp. 203-220). Springer, Cham.
  • Van Zoelen, E. M., Van Den Bosch, K., & Neerincx, M. (2021). Becoming team members: identifying interaction patterns of mutual adaptation for human-robot co-learning. Frontiers in Robotics and AI, 8.