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Abstract

  Mobile augmented reality requires accurate alignment of virtual information with objects visible in the
real world. We describe a system for mobile communications to be developed to meet these strict alignment
criteria using a combination of computer vision, inertial tracking and low-latency rendering techniques. A
prototype low-power and low-latency renderer using an off-the-shelf 3D card is discussed.
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1. Introduction

Mobile augmented reality [1,2] is a relatively
new and intriguing concept. The ability of
augmented reality [3] to present information
superimposed on our view of the world opens up
many interesting opportunities for graphical
interaction with our direct environment.
Combining this with mobility further increases
the potential usage of this technology.

However, the technical problems with mobile
augmented reality are just as great. First, it is
necessary to acquire very accurate viewpoint
measurements, because errors cause virtual objects
to be merged at a wrong position in the real
world, and a mismatch between virtual and real
objects will be directly visible. Second, even more
than other head-mounted display systems,
augmented reality displays require an extremely
low latency to keep the virtual objects at a stable
position. Third, mobile augmented reality
requires a low-power approach, limiting the
amount of hardware that can be used to solve
these problems.

1.1. Estimation of requirements
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An error in the measurement of the viewpoint
of the user causes a deviation of the location of
the displayed virtual objects from their expected
position. The effect of a measurement error
depends on its direction and the distance to the
virtual and real objects. For example, positional
errors will cause big changes in the virtual image
of nearby objects, while it hardly affects objects
that are far away.

Very little research has been done on the
requirements for augmented reality. An accuracy
corresponding to the visual acuity of the human,
which is half an arc-minute and sub-millimeter,
seems to be the ultimate goal. But such an
accuracy is far more than required for most
applications. In general the required accuracy
depends on the consequences of an error, and the
consequences of errors will depend on the task at
hand. For example for medical purposes an
misalignment of a millimeter may already be
fatal [4], while for tourist information an error of
a few meters and a few degrees will be
acceptable.

Although literature [5,6,7,9,10] gives no
conclusive numbers we think that many tasks can
be supported with an AR system having a
positional accuracy of a few millimeters within
about 2 meters from the observer, and a
rotational accuracy of a fraction of a degree. For
comparison, the pixels of a 640x480 display
projected in a 20˚x 35˚ field of view at a distance
of 1 meter have a size of about 0.8 millimeters.
Here we think of applications such as remote
maintenance and repair of complex machines,
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assembly of complex systems, architectural
support, tourist information systems, military
applications and entertainment (see [5,6]). Only
a few, especially medical AR applications,
really require submillimeter accuracy [4].

1.2. Accuracy and latency requirements
An important source of alignment errors is the

time difference between the moment the observer
moves and the moment the image corresponding
to his new position is displayed. This time
difference is called end-to-end latency. End-to-
end latency  is important because head rotations
can be extremely fast and cause significant
changes in the visible scene (Figure 1).

See-through
display

Real objectMisaligned
virtual object

Fig. 1. A virtual object is displayed in overlay with a
real object. When the user rotates his head to the left, the
real object immediately moves to the right of his visual
field. The virtual object, on the contrary, lags behind the
first, and therefore stays in the old position relative to
the display. Only after some time the virtual object is re-
rendered in alignment with the real object.

Padmos and Milders [7] indicate that for
immersive reality (where the observer can not
see the normal world), the end-to-end latency
should be below 40 ms. For augmented reality the
requirements will be even higher. They suggest
that the displacement of objects between two
frames should not exceed 15 arcmin (0.25°),
which would require a maximal latency of 5 ms
even when the observer rotates his head with a
moderate speed of 50°/s. Several other authors
use a similar approach [5,6,8,9,10] and come to
similar maximal latency times. Actually, during
typical head motions speeds of up to 370°/s may
occur [11], and for fighter pilots speeds of up to
2000˚/s have been reported [12]. But it is not

likely that observers rotating their head that
fast will notice slight object displacements.
Many authors suggest that 10 ms will be
acceptable for AR [8,13,14].

For indoor tracking, the required positional
and rotational precision are realisable, as
current trackers are capable of a rotational
accuracy in the order of 0.25˚ and a positional
accuracy of 0.25 inch [15]. For outdoors, systems
are still under development [16]. The latency
requirement of 10 ms is extreme: it is an order of
magnitude smaller than the latency of current
systems.

In this paper we describe how the
requirements could be met with a combination of
several levels of position and orientation
tracking with different relative and absolute
accuracies, and several levels of rendering to
reduce the complex 3D data to simple scenes that
can be rendered just-in-time. In section 1 we first
describe the context of our research, the Ubicom
project, a multi-disciplinary project carried out
at Delft University of Technology, which aims
at the development of a system for Ubiquitous
Communication. In section 2 to 4 we focus on the
problem of image stabilisation and discuss
latency issues related to position tracking and
display. We summarize our system set-up in
section 5 and conclude with describing the current
state in section 6.

2. Ubicom system

The Ubicom System [17] is an infrastructure for
mobile multi-media communication. The system
consists of a backbone compute server, several
base stations, and a possibly large number of
mobile units (figure 2).

The base stations maintain a wireless (radio
or infrared) link to the mobile units. The radio
transmission is scheduled in the 17 GHz range
and will account for approximately 10 Mbit/s of
data bandwidth per user, enough to transmit
compressed video with high quality. The cell
size (distance between the base stations) is in the
order of 100 meter: typically the distance
between lampposts to which the base stations
may be attached.
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Fig. 2. Ubicom system setup. The mobile unit contains display, camera, and tracking devices, and is connected through a
mobile link to one of several base stations. Memory and processing resources are limited in the mobile unit in order to
reduce power consumption and extend battery life. Instead, the mobile connection is used to access resources like mass
storage and compute power at the backbone.

The mobile unit consists of a receiver unit and
a head-set. The head-set contains a light-
weight head-mounted display that offers the
user a mix of real and virtual information. This
may be realised either by superimposing the
virtual information on the real world or by
replacing parts of the real world with virtual
information. In the latter case we need partially
visual blocking of the view on the outside world.
In addition to the display facilities, the mobile
unit will also have a light-weight video camera
that is used for position tracking and to record
video data. In order to keep the power
consumption low, the head-set and receiver unit
will only have limited processing and memory
capabilities. Figure 3 shows a functional
blockdiagram of the head-set and receiver unit.
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Fig.3.  Diagram of the mobile unit. The camera at the
mobile unit supports two main functions. First, the
camera produces video, which is compressed and sent to
the backbone for recording or distribution to other
users. Second, the camera images are analysed to find
landmarks that are used for position tracking. The
actual matching of landmarks is computationally
expensive and is done in the backbone. The backbone
also supplies the mobile unit with simplified virtual
scenes, which must be decompressed and processed
before they can be displayed in overlay with the real
world. Fast inertial tracking devices in the mobile unit
measure the head-motion of the user and track the latest
position and orientation of the mobile unit. This
information is used for last-minute adjustments of the
displayed graphics, such that these remain aligned with
the real world.

3. Tracking

Central to the function of the mobile unit is
the exact alignment of virtual information with
the objects in the real world that the user is
seeing. This requires that the exact viewing
position and viewing direction of the user are
known. Position as well as orientation tracking
are therefore needed. Orientation tracking is
much more critical than position tracking as a
small rotation of the head will have a larger
visual impact than a small movement to the left
or right.

Tracking is done in three steps (Figure 4). A
first position estimation is done using GPS or
similar position detecting techniques. A
possibility is to calculate the position relative
to the base stations. A second level of position
tracking is using object and scene recognition.
Given a 3D description of the environment (e.g. a
3D GIS or CAD-model) and an initial
position/orientation estimate, an accurate
position and orientation can be calculated.
However, the model data will only be available
at the backbone and most of the calculations to
derive the viewing position are likely to be
performed at the backbone as well due to the
amount of storage and processing power required
for these calculations. Part of this computation
could be offloaded to the active base station. The
latency caused by first capturing a video image
from the camera on the mobile unit, sending the
image to the backbone, processing the image
data at the backbone, and then transmitting the
obtained viewing parameters back to the mobile
unit will be substantial. This latency will be
much larger than the latency requirement of the
visual display. Therefore, a we have a third
level of position tracking, anticipating on small
position changes directly. In the third level, the
movements are sensed with inertial trackers
(accelerometers and gyros) and directly fed back
to the display system. The high-latency but
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accurate measurements based on the camera
measurements are used to compensate the drift in
the inertial trackers.
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Fig. 4. Circles represent processes, boxes local
memory and arrows the data flow. Position changes are
directly determined with the inertial tracker. To
compensate for drift, more accurate positions are
calculated regularly in the backbone, based on GPS data
and camera images.

4. Low-latency rendering

Given an accurate viewing position, a new
virtual image has to be generated. Similar to the
position and orientation and orientation
calculation, the choice here is also whether to
calculate each new image at the backbone with a

powerful render engine and to transmit the image
to the mobile unit over the wireless link, or to
render the image directly on the mobile unit,
avoiding the latency of the wireless link. Even
for the second option, direct rendering at the
mobile unit with standard rendering hardware,
there will be a latency in the order of 50-100 ms,
which is unacceptable.

We chose to use a similar mechanism as used
for the tracking: a direct, but imperfect feedback
mechanism within the mobile unit that is kept
up-to-date and corrected with a slower system
running in the backbone. There are three
approaches to approximate the required
feedback:

A first approach is to apply viewport re-
mapping techniques [18,19] to the image data
available in the mobile unit. With viewport
remapping, the available image data is larger
than the actually viewed image, and the new
viewport is translated and/or scaled over this
image to adapt quickly to the new viewing
position and direction. Compensation for position
changes is very limited.
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Fig. 5. The virtual scene is simplified in the backbone into a relatively small number of textures, depending on a recent
viewpoint of the user. The mobile unit compensates for movements by deforming ("warping") and combining the textures.
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A second approach, based on image warping
techniques [20], allows further correction for
parallax changes. It assumes that the available
virtual and real-world data is segmented in
layers of images, or "sprites". The viewed image
can then be calculated by warping (stretching
and shearing) and then merging the sprites
(Figure 5). A problem with this technique is that
there is insufficient info in the sprites to know
exactly how they have to be warped.

A third approach is to have an extremely
simplified 3D scene in the mobile unit. The scene
should be so simple that it can be rendered with
minimal latency. For distant objects the
approach could effectively be the same as the
second approach, but for nearby objects more
geometry need be used. Much effort and
finetuning will be required to avoid all latencies
inherent to the heavy pipelining common to
polygon rendering systems.

Analysis of these three possibilities shows
that the lookup of image pixels uses by far most
processing power. Even in the third case, if the
scene contains a few hundred vertices less than
10% of CPU power is required for projecting the
vertices into screen space, and this number can be
reduced even further with dedicated hardware.
Thus, the third approach requires only slightly
more processing power than the first approach,
but it is far more flexible gives better
approximations of the new view. Therefore we
chose to use the third approach.

5. First result

A first result concerns the low-latency
rendering of a simplified 3D scene in the mobile
unit. To get a low-latency rendering system, we
split the display frame in four partitions and
recalculate the position and orientation of the
camera for each of these parts (Figure 6).

This approach allowed us to use relatively
lightweight  rendering hardware: a
commercially available Voodoo2 3D accelerator
card from Creative Labs [21], driven with MESA
openGL [22] on top of Glide [23]. KURT Realtime
Linux [24] was used to schedule the rendering
process in sync with the displaying of the 3D
card. We need realtime Linux because openGL
calls can be done only from user-space processes
under Linux, and because the Voodoo2 card can
not be programmed to give interrupts at selected
scanlines.

20ms

Displaying 
here

Rendering here

To be cleared and rendered

Fig. 6. Display time for the whole image is 20 ms
(assuming a 50Hz display), excluding rendering.
Dividing the image into partitions, and rendering just
ahead of the partition being displayed, reduces the
latency to 10ms (5 ms rendering and 5 ms display).

Currently we start rendering a new part at the
moment the 3D card starts displaying the just-
rendered part, but of course we could start later if
we were able to predict how much time it will
take to render the new part. This would allow
for even lower latencies.

We currently have a frame rate of 60Hz, thus
we have approximately 1/(4*60) = 4.1 ms to
render the next frame part. The hardware we
used is fast enough to clear the new part and
draw a few hundred texture-mapped polygons in
about 3 ms (depending on the size of the projected
polygons), leaving some time for the other
components of the system.

Our current setup implies that the latency is
not constant for all displayed pixels. Instead,
the first pixels in a part will have just over 4.1
ms latency, while the last pixels in the part will
have just over 8.2 ms latency. The topmost frame
part will have additional latency, because the
vertical sync takes some extra time between
displaying the bottom and top part. An artefact
of the varying latency is that there will occur
visual tearing at the boundary of two parts. This
tearing is usually not disturbing, as the latency
difference is small and only visible with objects
moving extremely fast and in a horizontal
direction relative to the display.

For actual latency measurements on our
prototype, we used an oscilloscope (similar to
[25]) to check the time between readout of the
tracker and the actual output of the
corresponding pixels to the VGA output of the 3D
card. These measurements showed that the
maximum latency is 8.8 ms and the average
latency is about 6.35 ms, which matches our
expectations.
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This rendering method can be used in our
wireless mobile unit. The mobile unit will have
small batteries and therefore the power-hungry
Voodoo2 cards may be not the best choice, but our
low-latency rendering method can be
implemented on virtually any 3D acceleration
hardware. For example, 3D labs [26] sells the
Permedia II 3D hardware using only 1.5W, and
ATI [27] has similar hardware.

6. System overview

If we analyze the latency of the inertial
tracking and corresponding image rendering, we
come to the system shown in Figure 7.

In global, we have three paths to refresh the
image in the head-set with increasing latency
times and increasing accuracy: a path local to
the mobile unit, a path from head-set to base
station and back, and a path from mobile unit
via base station to the backbone and back.
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scene (100ms)simplified

scene

Virtual 
scene
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Position
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Fig. 7. Both the rendering and the tracking are
distributed over mobile unit, compute station and
backbone, giving different latencies for these parts of the
rendering process.

  In the mobile unit we minimise latency by
using an inertial tracker (2 ms latency) and
image rendering (at most 8 ms latency). The
rendering is done just ahead of the display
scanning, to avoid latency that might be caused
by the refresh rate of the display.

  In the base station, the virtual world
information is simplified to get a scene that can
be used in the mobile unit. Either the mobile unit
itself requests for these images or the base
station anticipates the need for new images and
polygons from recent movement data passing
through the base station. These new images and
polygons will have a lag of about 200 ms when
arriving at the mobile unit.

  In the backbone there are two processes. The
first calculates the viewpoint of the observer
given camera images from the mobile unit and a
GIS database. This process may be supported by
GPS data acquired in the mobile unit, and may

take up to 500 ms including all transmissions back
to the mobile unit. The second process is the
generation of a new simplified virtual world.
Images and polygons generated from the new
simplified virtual world model rendered at the
base station will arrive at the mobile unit with
a latency of about 1000 ms, one second.

7. Conclusions

We have proposed a multi-phase position and
rendering approach to meet the severe alignment
constraints associated with augmented reality.
The current state of the research is that a
hardware prototype system has been built from
off-the-shelf components. We use a standard see-
through head-mounted display and a standard
inertial tracker. The system is not yet portable
and wireless - we still need a power cable and a
wire to a ceiling-mounted position tracker.

  A low-latency rendering system has been
implemented and is operational. The system is
potentially lightweight and low-power. The
average latency has been measured at about 6.35
ms, and we expect that this is low enough to
reach our goal of 10 ms end-to-end latency.

  We will use the prototype system to
investigate the performance and whether the
latency goals have been met, to do
psychophysical measurements concerning
latency, and to check where bottlenecks occur and
whether the cpu load is acceptable. Thereafter
we will continue to work on the scene
simplification research and implementation,
and on the vision-based position tracking.
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