
1

GOAL Architecture Recommendations
W.Pasman, 6 may 2008

Introduction
This document gives recommendations for the GOAL architecture. We start with a review of
previous work: a short review of [Pasman08] and comments by students on the prototype GOAL
architecture (unpublished). A brief overview is given of GUI/IDE tools that were encountered in
[Pasman08]. We will give recommendations already during the overview, based on common
practice and findings. Then we proceed with the GOAL recommendations.

2

1. Lessons from Existing Systems

1.1 Architecture
The platform will have to run on some middleware, supporting launching, moving and killing of
agents, and communication between agents. We want to support various middleware. In order to
abstract from the middleware, I recommend a lightweight middleware abstraction layer as for
instance in Jason.
On most agent platforms there seems only a weak integration with the middleware platform (e.g.
JADE). The JADE debugger is often on conflicting terms with the framework debugger and the
framework may appear to hang if the JADE debugger is used to step an agent. Also de behaviour
introspector of JADE does not show the actual internal steps of the agent. In fact JADE is used only
to pass around messages and spawn/move agents. The JADE tools probably just are a debug feature
for the framework programmers, and should not be used by agent programmers. I recommend to be
very clear of the role of the middleware, and not leave agent programmers in the dark about which
debug buttons should be used and which not. Furthermore I recommend to hide the middleware
tools (sniffer, debugger) from direct access from the agent platform and make them only available
when the user really knows what he is doing.
I recommend that sub-modules come as single .jar files, and using Java interface definitions. Other
modules can then simply attached (e.g. using a preferences pane like in JASON). Eclipse (being
used as central controller in Jason) also has a sophisticated plug-in system that might contain good
ideas for modularization. Automatic Java compilation by runtime core: I recommend to avoid this.
Special compile options, dependencies, security issues, inclusion of special files, all make this auto
compilation troublesome to impossible for more complex agents.
Some platforms launch the environment in a thread that is invisible to the middleware system, or as
a shared object within the Java Virtual Machine (JVM). As in general the environment may run on
a different JVM than the agent, this either implies that some separate remote procedure calls are
used to call the environment, or that the framework will break down when run with multiple JVMs.
I recommend to use the messaging system of the middleware also to contact the environment(s).
This should be not too much work as for instance Jason already has this and we can inspect their
code to see how to do this. The only requirement is that there is some message communication
means with the environment that has to be attached, but that seems required anyway as we want to
run on top of middleware which requires message communication.
The most advanced debugging features are delivered by the JADEX platform. Agent actions can be
inspected at the ProcessEvent level, instead of just the next action of the agent as in most platforms.
On the architecture level, this is at the same level as the JADE behaviour inspector. In fact the
debugger as we have it already in the GOAL system is more advanced than the agent debuggers we
investigated [Pasman08].
None of the available architectures has a global debug framework, all the architectures are limited
to debugging their own code, and stop when the boundaries of the module are reached. As
modularization gets more detailed, these boundaries are reached still sooner, and debugging gets
even more limited. I propose to develop a debugging framework that can cross these boundaries.
This will be discussed in some more detail in the section 1.3 Across-module Debugger below.
In general it was hard to attach another JVM to the discussed frameworks. Maybe we should spend
some more time to test this further.
Moving around agents between JVMs seems an important aspect, e.g. for supporting a mobile user,
load balancing, maintenance, efficiency etc. For various reasons, it may be necessary to not move
an agent or even to fix it to a certain piece of hardware. To my knowledge JADE can move every
Java agent to another platform and is not considering such issues. I propose that we add some
platform requirements and a movability flag to GOAL agents, so that we can at least attempt to
handle this on the GOAL level.

3

To work this out in more detail, consider the usage of the (platform-limited) SWI prolog by GOAL
agents. A simple approach would be to create a swi.jar module (this module implements the GOAL
Database object) that is fixed to a single platform. In that case any GOAL agent using the swi.jar
module would be fixed to that platform as well. An advanced approach would be a swi.jar module
that has as requirement that swi prolog has been installed on the machine. In that case, an agent
using the swi.jar module can be moved (even at runtime) to any platform with prolog installed.
Note that to realize this, the Database objects have to be serialized, which will involve for instance
extracting the database contents from SWI Prolog on machine A and loading them into SWI Prolog
on machine B. A third approach could be to change the swi.jar module into a swi engine as a
separate agent (not a GOAL but a JADE agent) and to route all SWI Prolog calls to that engine. In
this case there probably would be severe performance hits to do so, but maybe in other cases it is
desirable to be flexible in the choice whether a module (.jar file) runs as an independent java thread
on a remote object, and to convert function calls automatically to messages. I think it is even
possible (with only a small performance hit per call) to create a .jar module that can be run either
independently, communicating via JADE messages, or to be linked hard against the other code that
used the module. This would give an extremely flexible modularization. If the module is hard
linked, I expect a performance very similar to hard linking.
An important choice is whether the IDE is (1) a platform manager with (a.o.) edit functionality, or
(2) an editor with (a.o.) a run button. Approach (1) will typically launch a new window whenever
an edit action is requested, approach (2) when the application is run. The second one seems the
popular view at this moment and is the usual approach when Eclipse, jEdit and jExt are used as the
basis for an IDE.
Resetting an agent was not properly investigated. I propose that we check this out on the various
platforms in more detail. Resetting and debugging are closely related, for instance resetting a
module high up in a debug chain at least will need unlocking the debug chain. This is complex, for
example a network problem may be the reason to issue the reset in the first place, and debug plugins
may still be functioning but unreachable.
In all, this gives a suggested architecture picture for GOAL as in Figure 1:

Powered by yFiles

Eclipse, jEdit

GOAL PMSimple GOAL parser
Plug-in

interface parts

Full GOAL Parser

Middleware:
JADE, ..?

Database:
SWIProlog, ...?

Environment

JVM

OS (Windows, OSX, Linux)Another OS (Windows, OSX, Linux)

Another JVM

GOAL agent

GOAL Interpreter

Middleware Abstraction Layer

GOAL Tools
(PM GUI, Introsp.)

Java Database..?

Figure 1. GOAL architecture. The blue part is an optional second JVM, the job of the
middleware is to hide these 'hardware' details. Pink parts are parts involving mainly GUI.

For the moment I suggest the PM tool also collects the messages from the agents (maybe we can
also reroute the stdout stream through the middleware abstraction layer?). In large systems this
might become a bottleneck though. Note that in this case users have to start a PM tool to see errors.
Fatal errors have to be reported up front, not somewhere deep down like in Fleeble. For non-fatal
errors this is discussable, but I recommend that reporting all errors centrally is most useful, if there
are many errors there probably is something wrong anyway. I also recommend using the Warning
system as we have it now in GOAL but extending it for multi-agent multi-platform. This will
involve routing all these messages through the middleware layers.
Resetting is poorly supported on most agent platforms. On paper JADE has a feature to restart
agents whenever they crash but strangely it seems not possible to force a restart. The common
practice for IDE-oriented agent platforms is to boot the entire middleware and MAS whenever a

4

run is requested, and to kill the entire middleware when the stop button is pressed. Only Fleeble
allows restarting of individual agents at runtime.
Restarting GOAL agents has shown to be tricky: often agents have certain initial assumptions (for
example, assuming that the initial time is 0) which may prove incorrect at reset time, causing an
agent to malfunction after reset. Nevertheless, for larger systems, keeping the middleware running
and only loading a sub-MAS, environment and/or individual agents seems necessary. I recommend
to be able to keep the middleware running even when a MAS is taken down. The basic component
for this is an architecture that enables resetting individual agents as well as the environment.

1.2 Student Comments on GOAL
This section reviews the comments of students on a first prototype of the GOAL system.
Many comments were due to the lack of a file menu in the prototype. Obviously this has to be
corrected, with menu items to load a MAS file, agent file, and environment, and to restart it all at
once or separately.
A number of comments were on issues with the reset functionality. The GOAL prototype has a
separate reset for the environment and for the agents, leading to malfunctioning and crashing
agents if this is done out of sync. Resetting is complex and needs discussion, even more than
debugging.
Some students requested a single GUI instead of several as it is now. In that case, functionality
similar to the GOAL Tools would have to be copied inside Eclipse or jEdit. Duplicate work might
be avoided if we can somehow separate the panels from the agent code. I would prefer to keep
things separate though, also to increase awareness of the different components.
One student found it "strange" that the environment appears in a separate window. There apparently
is a misconception that the environment is part of GOAL. Integrating the environment with GOAL
components in a single panel will only reinforce this misconception. I recommend to keep the
environment separate for now.
A few students requested better visibility of changes in the
databases. We could make a "difference" view on the
database, or create a separate "domain knowledge base"
(that would keep growing, maybe not what the students
would like to see?). I suggest determining the difference at
runtime, based on a simple string comparison of the
available list of facts. Some limit would have to be set to
distinguish between what is old and what is new. A
separate domain knowledge base does not sound like a
good idea to me, for instance it does not allow retracting
knowledge from the base set.
Two students requested a build-in editor for agents. That's
exactly what the proposed editors in the architecture
picture are for. I'm not sure whether a remote agent can
always reach the edited source files, this will depend on the
power of the middleware level.
One student asked this editor as part of the introspector.
To me this seems an incorrect understanding of the
introspector, which may be indicative of incorrect GUI
design. This is one of the reasons that I propose separation
of run-time and IDE windows.

Figure 2. Introspector window of
the GOAL prototype system.

One student requests backward stepping of agents at runtime. This will require rewriting the entire
GOAL interpreter and possibly the components that it relies on. One solution is to store the entire
agent structure, including the stack and database contents, at each step that can be reversed. This

5

functionality is called Serializing and we may want it anyway to enable moving an agent. I
recommend leaving this for later.
Linux is urgently requested as supported platform. I propose that we move this up on the priority
list.
Numerous students have problems with the installation. Some tried to install on non-standard
configurations and even non-supported configurations. We need to improve the installation process.

1.3 Across-module Debugger
As discussed, a debug structure is needed that can cross module boundaries. The debugger is an
important of the GOAL interpreter, and for the set-up of the entire architecture. A debugger
interface for a module needs two ports/message streams. The first port informs outsiders about the
latest tracepoint that was reached (I propose a List of Strings) and whether the module is halted at
that point or not. The second port is in the other direction, and allows outsiders to request tracepoint
levels and to change the run mode (run mode being one-step, continuous, halt and maybe something
to handle reset). The List of Strings seems fit both to stack-based architectures (eg Java),
backtracking architectures (eg Prolog) and query systems (eg SQL server). If a call is done to other
modules, the debugger interfaces of the involved modules should be connectable to ensure
continuous debugging, without intervention of the higher modules that are using the debugger
interface. This structure should work with direct function calls crossing modules, but maybe also
for remote calls working via messages (for instance when a remote prolog server is being used).
More research is needed to work this out in detail. The current GOAL system already does across-
module debugging, but in a bit ad-hoc manner.

6

2. GUI / IDE Tools
In [Pasman08] a number of GUI related modules were discussed. This section investigates the
possible use of them. We start with three basic GUI tools and then review a few more advanced
editors / IDEs.

2.1 Basic GUI tools
AWT is the standard GUI toolbox for Java
(http://java.sun.com/developer/onlineTraining/awt/contents.html). It has a few layout managers,
plus the components Button, Canvas, CheckBox, Choice, Label, List, Menu, Scrollbar, TextField,
and TextArea . AWT is good enough for most GUIs but inconvenient when tabs, tables and split
panes, file dialogs etc are needed.

Swing is a more advanced Java toolbox (http://java.sun.com/docs/books/tutorial/uiswing/
components/menu.html) to create GUIs. It comes standard with Java as well and creates extra
functionality over the standard AWT. Some mobile devices may not support Swing. It adds Combo
Boxes, Color Choosers, File Chooser, Editor Panes, Dialogs, Internal Frames (Windows in
Windows), Layered Panes, multi-column Lists, Password fields, Progress Bars, Tool tips (pop-up
text being shown when hovering over a component), Trees (Figure 5), Sliders, Spinners (combo
boxes but for integer values and no pop-up), Split panes (Figure 6), Tabbed Panes (Figure 3), and
Tables (Figure 4). Swing is sufficient for almost all GUI designs.

Figure 3. Tabbed Pane Figure 4. Table.

Figure 5. Example Swing Tree. Figure 6. Split pane example. The split is the
vertical grey dotted bar in the center, that
can be dragged (sideways in this case).

SWT seems mainly an alternative for Swing, and its main use is in Eclipse. It offsers a slightly
different visualization of very similar components and has slightly less functionality than Swing
(e.g. limited Table support). SWT is sometimes reported to be slightly faster, but the difference
seems marginal [Yucel04, Kiewe06]. In the past, Swing seems to have been supported better than
SWT [Ditchendorf06]. Especially as platform independence is relevant, SWT might better be
avoided.

7

2.2 Editors/IDEs
jExt [jExt05] is a syntax-directed editor/IDE developed in 2000 (Figure 7). It had been become
popular since 2003 with the peak in 2005 with nearly 15000 downloads per month. The control
structure, pop-ups, actions, and even Java actions controlling jExt are all placed in xml files. The
latest release is from july 2004 so this seems to get a bit old.

Figure 7. jExt editing a Java file.

jEdit (Figure 8) was created in 1999 and its popularity peaked in 2006 with about 60000 downloads
per month. It also uses xml files to control the editor but it does not include Java in the XML and
DTD files and there are much less xml files than in jExt. There is still project activity, with for
instance about 80 issues closed and 93 new reported in march 2008. It looks pretty similar to jExt,
only the button looks could use some modernization.

Figure 8. jEdit editing a few java files.

Eclipse is another IDE similar to jEdit and jExt. It is way more popular though, with a peak in 2004
with 30 million downloads that year (I have no information after 2005). Again XML and DTD files

8

are used to control the editor. It seems that the plug-in structure is more sophisticated than with jExt
and jEdit, if I remember it right the editor is not an integrated part in Eclipse but a plug-in as well.
For instance in the Jason Eclipse plug-in I can find references to an ASLEditor and a MAS2JEditor,
and at even deeper level I find jEdit. Eclipse by default already comes with many plug-ins as Cvs,
Ant, debugging, refactoring, and this make it a more powerful IDE than jEdit 'out of the box'. For
GOAL though, debugging and refactoring modules would have to be rewritten, the defaults will not
be of much help.

Figure 9. Eclipse as Jason Central Controller

9

3. GOAL GUI Recommendations
This section starts with suggestions for the run-time GUI panels. Then integration into an IDE is
discussed.
There are good standards for GUI design [apple07, UXG, javalf01]. As we write the interfaces in
Java, the interfaces will automatically partially use the look and feel of the actual platform. I
recommend to use the Java look and feel [javalf01] as our application may span multiple OSs.
The Platform controller GUI has to show a list of (GOAL) agents. This has to be a scrollable list,
anticipating large agent sets. A global "run" and "freeze" button seems in place here. The halt
button (the block) kills the entire GOAL platform. If you click on an agent, an introspector window
might pop up for that agent. Furthermore it has to have a number of menus, one to add/kill/move
agents, one to connect to other platforms, and one to load/kill an entire platform. Finally the
platform controller may be the right place to show the general messages, warnings and errors of all
agents. We may want to think about this further, anticipating nested GOAL agents. A proposal is
shown in Figure 10.
The console output shows the "standard output" and all error messages and warnings. No debug
information is shown here. As was recommended, all important messages are shown in a single
output window, to make sure the user does not miss them.
The figure already shows a backward step button, we need to think about backward stepping, for
instance up to 10 steps. To keep the agents consistent, backward stepping probably should not be
applicable to a single agent but only to the entire MAS. We might be able to do backward steps by
storing the entire agent state after every step. To keep some performance it would be nice if we
need to do this only for agents that have an open introspector window but as it is now every step of
every agent would need to be stored, because the back step is placed along with the run and forward
step button in the GOAL PM GUI. We have to decide then also what to do when stepping back and
forward again over a non-deterministic step. Finally we might consider a reference/link to original
source code that causes the current step to be made in order to visualize effects of stepping. But that
would require annotations in the belief base and as this beliefbase is currently only stored in prolog
there seems no easy way to do this.
If you press the run, stop or step button with an agent selected, that action will be applied to that
agent only. If no agent is selected, all agents will run (or one of them or all will make a step, to be
determined).
Introspection and debugging are very closely related. Therefore I suggest to integrate the
introspector and debugger into a single GUI, as in Jason and 2APL. I consider the "query" buttons
in the current GOAL introspector as very useful. Assuming that users mostly will want to see the
beliefs and sometimes the goals, a tab-based approach for these components, like Jadex and what
we have already in the GOAL introspector, seems the best way. This gives the picture of Figure 11.
Clicking on a debug message might show the full "stack trace" to that point. We can also show the
entire stack trace all the time like in Jadex and Eclipse/Java but I think that is not too useful, one
mostly wants to see the bottom steps.

10

GOAL PM

Console Output
Agent XX started

AgentW
AgentX
AgentY Debug Level: 3

File

load MAS
load Agent
load Env

Run

Run All
Step Env
Step Agent
Step Agt Back
Debug Level...

Restart All
Restart MAS
Restart Agent

Introspector for AgentName

[3] Doing forward
[2] Received percept
[3] Selecting action from [forwar

Beliefs Goals Program ActSpec

Beliefs (prolog code)

Query

Query Result

Figure 10. Proposed GOAL Platform
Controller and its file and run menus.

Figure 11. Proposed GOAL Introspector
panel.

If you doubleclick on an agent, the introspector will be launched for that agent. You can view the
databases and even do queries to the database.
A message sniffer may be a nice extra tool. I propose to keep it separate from the platform
controller, like in JADE. By default it should show only messages from or to GOAL agents, not
internal messages like RMI calls.
All functionality also has to be available through the menus (Figure 12). The middleware is loaded
and started when needed. It is not yet clear whether we want to be able to handle multiple
middleware layers.

Figure 12. File and Selection menus. Load can handle .goal, .mas, .jar (environment) files.

File Selection...
load
Preferences

Run
Step
Step Back
Debug Level...
Reload
Kill

3.1 Integration into an IDE
The introspection button is a sort of properties window, and following the guidelines for property
inspector [uxg08 p.469] or inspector windows [apple07] these should be a separate window. Of
course the panels of Figure 10 and Figure 11 can be integrated into a single larger panel, or even an
IDE e.g. Figure 13 and Figure 14. But I recommend keeping them separate. Separation makes it
easier to resize important introspectors, stacking them etc. Resizing is important for introspectors to
enable good view on the database and query results.

11

GOAL PM

AgentW
AgentX
AgentY

Console Output
Agent XX started

AgentW AgentX

GOAL Panel

Introspector for AgentName

[3] Doing forward
[2] Received percept
[3] Selecting action from [forwar

Beliefs Goals Program ActSpec

Beliefs (prolog code)

Query

Query Result

Edit

Debug Level: 3

AgentW.goal
AgentX.goal
AgentY.goal
Demo.mas
Enviro.java

AgentW.goal

GOAL Panel Edit

Demo.mas Enviro.java

:goals{
 hasgold,
 getoutofthiscave,
 % at/1 and done/2 are dynamic predicates in the goal base
 dynamic(at(_)), dynamic(done(_,_))
}

:program{
 % reactive exploration rules
 if bel(not(atgold), not(hasgold), inFrontOf(Pos), ok(Pos)) then
 if bel(not(atgold), not(hasgold)) then turn(left).
 if bel(not(atgold), not(hasgold)) then turn(right).

 % reactive rule to pick up gold when found
 if bel(atgold, not(hasgold)) then grab.

 % if agent has gold adopt goal to turn around (in order to
 % if bel(hasgold, not(turnedaround)) then turn(left).
 if bel(hasgold, thetime(T), T1 is T+1, T2 is T+2), not(goal(at([0,
 then adopt(done(turn(left),T1), done(turnleft,T2), at([0,0])).

 % turn around and return to initial position if you want
 if goal(done(turn(left),T)) then turn(left).
 if goal(at([0,0])), not(goal(done(turn(left),T))), bel(stepOnPath
 if goal(at([0,0])), not(goal(done(turn(left),T))), bel(stepOnPath

 % if the agent is at its initial position with the gold, it should
 if bel(hasgold, at([0,0])), goal(getoutofthiscave) then climb.

Figure 13. Possible integration of run-time
windows in a larger GOAL panel in an IDE.

Figure 14. The Edit window of the IDE.

A second step could be integration of this run-time panel into the IDE. In spite of the similarity in
layout with many editor windows (Figure 7, Figure 8, Figure 9) this GOAL panel has very different
meaning. We are not editing files here in some file directory but looking at agents a multi-platform
middleware system. It is my impression that file editors (jExt, jEdit) will not be able to make such a
change in meaning.
Eclipse can make such drastic changes, for instance when using Java, if you switch to debugger
mode your eclipse window layout will change from Figure 16 to Figure 17. Nevertheless the
similarity in layout and contents hides this mode change, which is confusing. They seem even to
have made this similarity to a design goal. For instance, the editor window is still there but now it is
used as a tracer indicator. The Debug and Console tabs stay open all the time, as if the run time
environment is still running. I recommend a clear visual distinction between the IDE that is for file
editing, and a runtime GUI that is for managing an agent platform.

Figure 16. Eclipse Java editing layout Figure 17. Eclipse Java debugging layout

For an IDE we can opt with either jEdit or Eclipse. I have no specific recommendation here, I
suggest we first investigate which one will be easiest to adopt to our needs.
I recommend to launch a run time interface in a separate window at the moment a run button is
pressed in the editor. This is also the best way to keep things modular and manageable. Finally I
recommend a clear visual difference between the IDE and the GOAL runtime interface.

12

4. Choices for GOAL platform
Choices were made for the GOAL platform together with Koen Hindriks. Table 1 presents the
choices that were made for the GOAL platform, based on the recommendations of the previous
chapters. Also, implementation priorities were determined.

Table 1. Choices and priorities. Higher numbers indicate higher priority.

Recommendation (from page) Choice priority
Middleware continues running at MAS/Agent takedown As recommended -1
No ambiguities about status of middleware (1) As recommended -1
Hide middleware from direct access (1) As recommended -1
Error & Warning reporting via single console (1) As recommended -1
Use Java LAF (1) As recommended -1
Integration of debugger and introspector window (9) As recommended -1
Separate windows for GOAL runtime tools and IDE (4, 10) Ignore

recommendation
Separate environment window (4) As recommended
Where possible use Swing, not SWT (6) As recommended
Clear visual distinction between runtime and edit environments
(10)

Ignore
recommendation

Increase priority level for Linux support (4) As recommended -2
Improve installation process (4) As recommended -3
Provide message sniffer tool (9) As recommended -4
Investigate how hard it is to adapt jEdit and Eclipse (10) As recommended -4
GOAL runs on top of middleware (1) As recommended -5
Across-module debugging framework (1) As recommended -5
Errors & Warnings routing via middleware (1) As recommended -5
Environment control via middleware (1) As recommended -5
Use middleware abstraction layer (1) As recommended -5
Platform requirements and movability flag for GOAL agents
(1)

As recommended -6

Provide backward step button (4) As recommended -7

As indicated, the recommendations for the IDE are ignored. Koen chooses an alternative layout for
the IDE as in Figure 18, Figure 19. The Files and Processes panel on the left shows an overview of
the available files and processes. Processes that are shown under a .goal file are filtered out in the
JADE thread info. Presumably the .mas file specifies the names of its instantiations; processes
started with the run button The run-time GOAL Panel will have to stay empty and could even be
unavailable until the run button is pressed. The console at the bottom is also part of the "Files,
Processes" window, showing the status of the various processes.
Single clicking on a .mas, .goal or thread will select that item for control with the run buttons.
Pressing run with a .goal or .mas file launches a new agent. Pressing run with a thread selected will
resume that thread. The stop and step buttons work similar. Maybe it should not be possible to
change the run status of unknown agents in the JADE thread.
Double clicking a .goal or .mas file opens the file an editor. Editing a agent.goal file does not affect
agents already running. Double clicking a thread associated with a .goal file opens the introspector
for that thread.

13

AgentW.goal

GOAL Panel Edit

Demo.mas Enviro.java

:goals{
 hasgold,
 getoutofthiscave,
 % at/1 and done/2 are dynamic predicates in the goal base
 dynamic(at(_)), dynamic(done(_,_))
}

:program{
 % reactive exploration rules
 if bel(not(atgold), not(hasgold), inFrontOf(Pos), ok(Pos)) then
 if bel(not(atgold), not(hasgold)) then turn(left).
 if bel(not(atgold), not(hasgold)) then turn(right).

 % reactive rule to pick up gold when found
 if bel(atgold, not(hasgold)) then grab.

 % if agent has gold adopt goal to turn around (in order to
 % if bel(hasgold, not(turnedaround)) then turn(left).
 if bel(hasgold, thetime(T), T1 is T+1, T2 is T+2), not(goal(at([0,
 then adopt(done(turn(left),T1), done(turnleft,T2), at([0,0])).

 % turn around and return to initial position if you want
 if goal(done(turn(left),T)) then turn(left).
 if goal(at([0,0])), not(goal(done(turn(left),T))), bel(stepOnPath
 if goal(at([0,0])), not(goal(done(turn(left),T))), bel(stepOnPath

Console Output
Agent XX started

Console

Debug Level: 3

Demo.mas
 AgentW.goal
Demo2.mas
 AgentW.goal
 AgentW1
 AgentW2
 AgentX.goal
 AgentY.goal
 Enviro.jar
JADE middleware
 JADE thread
 UnkAgent1
 UnkAgent2

Files, Processes
GOAL Panel Edit

Demo.mas
 AgentW.goal
Demo2.mas
 AgentW.goal
 AgentW1
 AgentW2
 AgentX.goal
 AgentY.goal
 Enviro.jar
JADE middleware
 JADE thread
 UnkAgent1
 UnkAgent2

Console Output
Agent XX started

Console

Debug Level: 3

AgentW1 AgentX

Introspector for AgentW1

[3] Doing forward
[2] Received percept
[3] Selecting action from [forwar

Beliefs Goals Program ActSpec

Beliefs (prolog code)

Query

Query Result

Files, Processes

Figure 18. Editor of IDE. Figure 19. GOAL Runtime GUI. Running
agents are green, halted agents red.

14

References

[apple07] Apple Human Interface Guidelines (2007).
http://developer.apple.com/documentation/UserExperience/Conceptual/
OSXHIGuidelines/XHIGIntro/chapter_1_section_1.html

[Ditchendorf06] Ditchendorf, T. (2006). Why bother with SWT over Swing?
http://www.damnhandy.com/2006/02/12/why-bother-with-swt-over-swing.

[javalf01] Java Look and Feel Design Guidelines. http://java.sun.com/products/jlf.

[jEdit] jEdit Programmer's Text editor. http://www.jedit.org

[jExt05] Jext Free source code editor. http://www.jext.org/

[Kiewe06] Kiewe, H. (2006). SWT vs. Swing & Eclipse vs. NetBeans. Available Internet:
http://www.javalobby.org/java/forums/t63186.html.

[Pasman08] Pasman, W. (2008). Architecture of Java-based Agent Frameworks. Available
Internet: http://mmi.tudelft.nl/~wouter/publications/publ.html

[SWT] SWT: The Standard Widget Toolkit. http://www.eclipse.org/swt/.

[UXG] Windows Vista User Experience Guidelines. http://msdn2.microsoft.com/en-
us/library/aa511258.aspx

[Yucel04] Yucel, S. (2004). What does "Swing is Slow" mean? Available Internet:
http://www.javalobby.org/articles/swing_slow/index.jsp.

