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Strategy Parser
Technical Reference Manual

W.Pasman

Manual version 20.9.7 for Strategy Parser version 24.7.7

About this Manual
This manual aims at giving a technical explanation of the strategy parser, to enable
maintenance and extension of the parser. It is assumed that the reader knows how to
operate the parser, as described in the Strategy Parser User Manual [Pasman07].
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1. Introduction

Overview
This section discusses the major functional blocks of the strategy parser. Figure 1
shows an overview of the most important data structures and functions in the strategy
parser.
To start with, the strategy parser needs a strategy specification. Strictly speaking this
is not the topic of this manual. However there is not yet a final report on the strategy
specification and in fact this is still under research. Therefore, the strategy
specification will be presented on a technical level here in Chapter 4: Strategy
Specification Objects. It is assumed that the reader is familiar with the grammar
description used in our parser, as described in the user manual [Pasman07].
The core component of the parser is the parse state. The parse state stores the entire
parse situation after the student applied a given sequence of rewrite actions to the
problem term. The parse state can be extended incrementally, using Scanner with the
latest student rewrite action. The current parse situation can be evaluated at all times
using the Status, OnTrack and Finished functions.
Internally the parse state is represented using dotted rules and shift possibilities,
objects derived from the strategy. This manual will refer to them as the strategy parser
objects.
Finally, the complex internal parse state can be converted into a non-ambiguous parse
tree. This tree makes it simpler to determine which feedback is appropriate, by
expliciting the next step(s) the student needs to take within the hierarchy of strategic
steps.

Acknowledgments
This project was made possible by the support of the SURF Foundation, the higher
education and research partnership organisation for Information and Communications
Technology (ICT). For more information about SURF, please visit www.surf.nl
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Figure 1. Overview of main data objects (blue) and functions (red), categorized in two main
clusters "strategy specification" and "strategy parser", with a small third cluster for a tree-
converted/simplified parse. Black arrows from A to B indicate a "A used in B" relation. Red
arrows to a function indicate important input argument, and light blue arrows out of a function
indicate important output arguments.
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2. About Parsing

This chapter give a very short but necessary background for readers new to parsing.
No attributes are used in the first sections, to keep the explanation simple. The
discussion starts with grammars containing only grammar rules, and no rewrite rules.

Context Free Grammar
A context-free grammar G represents a set of strings of symbols. A string of
symbols   1K n  can be in this grammar, also written as   1K n G . What makes
the grammar context-free is the way this set is defined.
The context free grammar G is defined by means of a set of grammar rules, plus a
start symbol. Each grammar rule is an object   N 1K n  where N is a nonterminal
and each of the string of symbols i is either a nonterminal or a terminal.
Nonterminals will be written as upper case characters, and terminals as lower case
characters. The start symbol is the nonterminal of one of the grammar rules.
Now we can repeatedly apply the grammar rules to the start symbol, as if they are
rewrite rules. One such application of a grammar rule on a string, giving another
string of symbols,  is written as   1K n 1K m . For instance, if we have this
grammar

G =

E E + E

E E * E

E a

 

 
 

 
 

and start symbol E, we can write

E E + E E + E * E a + E * E a + E * a a + a* a

It is said that grammar G produces a+a*a, or shortly G * a + a* a.
Now it is clear why nonterminals are called that way: because the left hand side of a
grammar rule is always a nonterminal, only nonterminals in the symbol string can be
rewritten further. The lower case terminals will never be rewritten any more.
This definition of production is used to define when a string of symbols is in the
grammar:   1K n G  if and only if   G

*
1K n .

Basic Chart Parsing
Parsing is a method to answer the question whether a given input string of symbols is
in the grammar: is   1K n G  or not?. For instance, can G produce a*a+a*a?
One procedure to answer such a question, or to parse the string, is with a chart parser.
Instead of the usual Earley chart parser [Earley70] we use a simpler chart parser that
works directly with the grammar [Pasman91]. We will refer to this parser as basic
parser.

Basic Components
The basic parser contains three basic components: the itemsets that in turn contain
dotted rules, and shift possibilities.
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To track the parse state, sets are created containing dotted rules. A dotted rule is a
grammar rule with a dot ('•') somewhere in the string of symbols. So for example if
N a  b  c  is a grammar rule then N a  b  •  c  could be a dotted rule.
Sets of dotted rules, also called item sets, will be placed at every position between
two symbols of the input string, before the first and after the last.
Furthermore, a set of shift possibilities is created between the item sets. A shift
possibility is a triple <symbol,start,end> where symbol is the (non)terminal that was
succesfully parsed, and start and end point to an item set. A shift possibility represents
a parsed symbol.
Finally, to make parsing easier, links are created between dotted rules. Each dotted
rule may have multiple such links. Links point to dotted rules that have the dot more
to the right. An item is chain-linked to another item if one can get from the first to the
second item following the links.

Parsing Procedure
With these three objects the parsing procedure can be described with a a few
procedure rules that should be applied exhaustively to complete the parse (in any
order):

rulename procedure
scaninput if symbol i in the input string 1... n,

then add a shift possibility < i,i,i+1>.
startpoint if S is the start symbol

and S 1... n  is a grammar rule
then add a dotted rule S • 1... n  to item set 1

scanner if there is a dotted rule M 1...• m ... n  in some itemset L
and there is a shift possibility < m,L,R> for some R
then add the dotted rule M 1... m • ... n  to itemset R
and link this the rule in set L to this new dotted rule.

predictor if there is a dotted rule M 1...• m ... n  in some itemset L
and m 1... l  is a grammar rule
then add m • 1... l  to itemset L

completer if there is a dotted rule N 1... n •  in set R
and  dotted rule N • 1... n  in set L is chain-linked to it
then add a shift possibility <N,L,R>

These rules are pretty intuitive. To complete a parse, the dot has to be shifted over
each of the symbols in a dotted rule. This is done by the scanner. Shifting the dot over
a symbol X is possible only if the symbol X could actually be parsed at that point. If
that was possible, a shift possibility was created for X to reflect this.
Initially the parser only searches for the start symbol S, not for other symbols X. It is
the job of the predictor to recognise that a rule needs symbol X to be recognised and
to start a parser for it.
The completer recognises that the dot has reached the right end of a dotted rule and
copies this knowledge into a new shift possibility.
Parsing succeeds, or   1K n G , if and only if the parsing procedure results in a
shift possibility <S,1,n+1>.
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Example, Graphical Representation
This section discusses an example to illustrate the parser and parsing procedure.
Assume we have the grammar

G =
S b

S c  S

 
 
 

and the input string is "c b". We start running the scaninput rule and the startpoint rule
both once. The result is shown in Figure 2. In these parse state figures, itemsets are
denoted with rounded-square blocks with on top the item set number for reference.
Shift possibilities are denoted with a two-sided arrow with a symbol on it below the
itemsets.

S→•b

S→•c S

1 2

c

3

Figure 2. Parser state after running scaninput and startpoint once.

Now, the scanner can be applied, using the shift possibility <c,1,2>, adding the dotted
rule S c • S  to set 2. The link is indicated with an arrow to the new dotted rule
(Figure 3).

S→•b

S→•c S

1 2

S→c•S

c

3

Figure 3. Result after applying the scanner.

Next, it is possible to apply the predictor rule, which adds new dotted rules to set 2,
resulting in the state of Figure 4:

S→•b

S→•c S

S→•b

S→•c S

1 2

S→c•S

c

3

Figure 4. Repeated application of the predictor introduces new items to itemset 2.

Applying the scaninput rule allows the just introduced dotted rule S •b to shift its
dot and proceed to itemset 3. The new item S b • has the dot on the right, and the
completer can kick in, creating a shift possibility for S between set 2 and 3 (Figure 5).
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S→•b

S→•c S

S→•b

S→•c S

1 2

S→c•S

c b

S→b•
3

S

Figure 5. scaninput and completer were applied.

The new shift possibility for S enables the scanner to shift the dot in the item
S c • S . The new item S c  S • in set 3 has the dot on the right, and the
completer now can create a shift possibility <S,1,3> (Figure 6).
At this point, none of the rules is applicable anymore and the parser stops. The parse
succeeded, because the final result contains a shift possibility <S,1,3>.

S→•b

S→•c S

S→•b

S→•c S

1 2

S→c•S

c b

S→b•
3

S→c S•

S

S

Figure 6. Final result of the parsing procedure

Parse State, Incremental Parsing
The parser as described is incremental in the sense that once a parse was done, the
parse can easily be extended to a parse for the same input string extended with one
symbol. We saw this already in the example, where a partial parse was first done for
the 'c' alone, after which the 'b' was handled in the second phase. Extending the parse
after entering a new symbol is then done just by again exhaustively applying the rules.
The result of a parse (that is, exhaustively applying the rules on a given input string)
can be considered as one step of a cycle of parsing, extending the input string by one
symbol, extending the parse, etcetera. The result after one such a cycle is then called a
parse state.

Parallel Parsing
A first extension of the basic parsing algorithm is to introduce the parallel operator.
The parallel operator allows arbitrary permutations of the terminal symbols produced
by a nonterminal. The notation for having two nonterminals N and M in parallel is
N//M.
For example, the grammar

G =

S N //M

N = aa

M = b

 

 
 

 
 

produces any permutation of two 'a' and one 'b' symbols.
To handle this, first the predictor has to be modified for when the dot is in front of the
parallel operator. It introduces a new object called a subparser. A subparser contains
a set of parser pairs. A parser pair is a tuple <N,M,eatpattern> where N and M are
parsers for each of the two nonterminals in the parallel operator. Each of these parser
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pairs has a different eatpattern. An eatpattern is a specific way in which the parser
pair eats the symbols from the input string.
The following example hopefully makes this more concrete. We take the grammar as
above, and try to parse input "aba". After running the startpoint and the predictor
once, the result is as in Figure 7. The subparser object has replaced a would-be rule of
the form N //M ... which is not possible in context free grammars. The single
orange block is a parser pair, containing two full parsers and the empty eat pattern
notated with "-". Both parsers in the parser pair ran the startpoint rule. No more rules
can be applied at this point.

S→•N//M

subparser N//M

1

N→•aa
1

M→•b
1

-

Figure 7. Parser state after running the startpoint and predictor once.

Applying the scaninput rule now becomes interesting. The dotted rule S •N //M
can not do anything with the first input symbol a. But the subparser takes new
scaninput in a special way: it splits each available parser pair in two new parser pairs.
In the first of the two parserpairs (marked with eatpattern "0"), the first parser gets the
new symbol, and in the second of the two parserpairs (marked with eatpattern "1") the
second parser gets the new symbol. The other parser in the parser pair does not do
anything, its state is just copied to a new itemset using a special shift possibility "*".
In the running example, the first parser can do something useful with an 'a' but the
second parser can not. The result is shown in Figure 8.
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S→•N//M

subparser N//M

1

N→•aa
1

M→•b
1

N→•aa
1

M→•b
1

N→a•a
2

M→•b
2

0

a

a

N→•aa
2

2

1

a

*

*

2

Figure 8. Parser state after running scaninput. This results in splitting the parser pairs in the
subparser.

The parser can detect that the second parserpair in the subparser (the lower orange
block) will never complete succesfully anymore, and can further ignore this
parserpair. We delete it from the diagram to save some space.
The next input symbol is a 'b'. As before, the S •N //M  can not do anything. The
subparser again splits the parsers, resulting potentially in four parsers now, but the
second one was dropped as it was dead anyway. This time, the second parser of the
split survives as it can eat the new input 'b', while the first dies.

N→•aa
1

M→•b
1

N→a•a
2

M→•b
2

01

a

*

S→•N//M

subparser N//M

1

N→•aa
1

M→•b
1

N→a•a
2

M→•b
2

00

a

a

*

2

3

M→•b
3

b

*

N→a•a
3

M→b•
3

*

b

3

b

Figure 9. Result after scanning the 'b'.

Again we drop the dead parser from the pictures. The completer for the second parser
notices that a "M" has been parsed, but now this has no immediate effects as the other
half of the parser pair has not yet been completed.
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The next input symbol "a"  results in a state like Figure 10. The subparser with
eatpattern 010 has succeeded parsing with both subparsers. This results in a shift
possibility for N//M in the top level parser. This enables the scanner to finally shift the
S •N //M  to set 4, and then the completer recognises that it is complete and adds a
shift possibility for S completing the parse.

N→•aa
1

M→•b
1

N→a•a
2

M→•b
2

010

a

*

S→•N//M
subparser N//M

1

a

2

N→a•a
3

M→b•
3

*

b

3

b

M

N→•aa
1

M→•b
1

N→a•a
2

M→•b
2

011

a

*

N→a•a
3

M→b•
3

*

b
M

4

N→aa•
4

M→b•
4

a

*

N→a•a
4

4
*

a

a

N

N//M

S→N//M•

S

Figure 10. Result after final input symbol 'a'.

Strategy Parsing
The grammar produces a (potentially infinite) set of strings of terminal symbols
starting from the start symbol. The idea behind strategy parsing is that each of these
terminal symbols refers to a rewrite rule (see Rewrite Rule, p. 24 and [Pasman07])
that can be applied to a problem term that the student is trying to solve. Thus, the
grammar now produces a set of strings of references to rewrite rules, or shortly a set
of rewrite sequences. And this grammar including the rewrite rules and start symbol
is called a strategy specification.
To relax the requirements on a strategy specification, it was decided that a rewrite
sequence produced by a strategy may actually not be applicable to the problem term.
Being not applicable is an issue arising from the rewrite rules: a rewrite rule may be
not applicable, for instance if the rewrite rules is a b but the term a does not
actually apppear in the problem term. In this case, the rewrite rule fails.
On the other hand, the strategy should not produce rewrite sequences that lead to non-
solutions, as the strategy specification is the  currently the only object that determines
whether a solution generated by the student is complete or not.
To give the strategy specification a solid meaning, it is required that
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a rewrite sequence is a solution to the problem term
if and only if

the rewrite sequence is produced by a strategy specification and
the sequence is applicable to the term

Attribute Parsing
I would be very useful if grammar rules (and rewrite rules as well) could contain
variables. For example, a rule to reduce a matrix may look like

Rowreduce($matrix,$rownr) RedOneRow($matrix,$rownr)
Rowreduce($matrix,$rownr+1).

The variables in this rule are matrix and rownr, and are called attributes. To keep
things clear all attributes have to start with a $. The parser now also has to find the
appropriate attribute values. For a rule, being applicable means that there is some
attribute value that makes the rule applicable.
In general, the parser can not just guess the appropriate attribute values. Instead, the
strategy specification has to compute the values where needed. This is typically done
in Code blocks (p.22).

Parse Order and Parse Modes
Attributes may be kept unassigned, they only have to be fixed whenever they are
actually used in a rewrite rule. Of course this works only when a known order of
evaluation exists. This order is left-to-right parsing at all levels.
Normally, the parsing is done on incomplete strings of rewrite rules: the student is not
yet finished and has applied only part of the rewrite actions. In order to determine
how the student is doing, the parser has to answer the question whether and how the
problem can still be completed, starting with what the student already did.
To implement this, the parser operates in two parse modes.
In the tracking mode, the parser is trying to recognise rewrite steps that were actually
done by the student.
in the predicting mode, the parser is trying to invent subsequent actions in order to
complete the problem: it tries to extend the student's rewrite actions with new rewrite
steps, such that the extended sequence is a solution to the problem.

Inherited and Synthesized attributes
An attribute value may be passed downwards, or inherited, from a top level grammar
rule, as for example in this grammar:

G =
S T(3)

T($x) a

 
 
 

where S is the start symbol of the grammar. The parser will determine that the symbol
T(3) can be parsed by setting $x to 3 in the rule T($x). In this case, only the rule for T
has access to the $x.
Alternatively an attribute value may be passed upwards, or synthesized, from a lower
level grammar rule. This is shown in these example grammars:
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G =
S T($x)

T(3) a

 
 
 

G'=
S T($x)

T($y) a  Code[$y = 3]

 
 
 

Here the parser will notice that it can parse the T($x) by setting $x=3 in the rule for S.
In the grammar G, it will discover this requirement already when looking for a fitting
rule, while it follows only in a later stage after the Code block sets $y=3.
To complete these examples, the attribute may also be left unassigned, for instance in

G =
S T($x)

T($x) a

 
 
 

Depending on the parse mode, an attribute value may have to be calculated or not.
This is because attributes occuring in rewrite rules are set unambiguously when the
student applies that rewrite rule and the parser is in tracking mode, but are not set
when the parser is in predicting mode. The plan is to introduce a global attribute
$ParserMode that gets set to either tracking or predicting, but this is not yet
implemented.

Parsing Not
As was described in the section Strategy Parsing, a string of symbols produced from
the start symbol may not be applicable to the problem term at hand. Testing for
applicability can also be done starting with other symbols than the start symbol. For
instance, to do an exhaustive repeat of strategy P one has to test whether strategy P is
applicable or not. This is roughly what the "not(P)" grammar item does.
The main differences with applicability of the entire strategy specification is (1) that
with the not(P) the parser already is in a certain state where the student did a number
of rewrites and (2) when P is applicable, not the entire strategy fits but only the
substrategy P.
So to be precise, when the parser encounters a not(P), the problem term has a current
form and the attributes have a certain value. The parser then tests whether P is
applicable to that current form, with that attributes. Note that 'P is applicable' in this
case means: check whether P produces a rewrite sequence that can be applied to the
current form of the problem term. Of course the result of applicability of P does not
imply having found a solution to the entire problem.
The "not" is handled in the predictor. Whenever a rule with the dot right before a
not(P) is encountered in set L, it checks directly for applicability. If the P is not
applicable a shift possibility <not(P),L,L> is created. This will cause the dot to be
shifted over the not by the scanner, as required.

Example
To give an example, consider this grammar:
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G =

S Subs  S

S not(Subs)

Subs SubsA

Subs SubsB

SubsA : a 1

SubsB :b 2

 

 

 
 
 

 

 
 
 

The last two rules are rewrite rules, without attributes to keep it simple. The two rules
for start symbol S say that Subs has to be applied as long as possible (the only way to
stop is via the not(Subs). Now we consider what happens with problem term "a+b=3".
The predictor for the start symbol adds the two rules for S with the dot at the start.
The predictor then finds the dot before the Subs and it adds the two rules for Subs.
The predictor does nothing with the dot before items SubsA and SubsB, because
SubsA and SubsB are rewrite rules and not grammar rules. The state so far looks as in
Figure 11:

S→•Subs S
S→•not(Subs)
Subs→•SubsA
Subs→•SubsB

1

a+b=3

Figure 11. Initial parse state.

The predictor here notices the dot in front of the not(Subs), and at this point it gets
interesting. A completely new parser is launched to check applicability of Subs on the
current term "a+b=3" and no attribute values. This parser is run in predicting mode.
The predictor for this parser again adds a number of new items, just as the main parser
just did. The result is in Figure 12:

Subs→•SubsA
Subs→•SubsB

1

a+b=3

Figure 12. New parser for start symbol Subs, launched to check applicability of Subs.

The parser is in predicting mode, and therefore it does not wait for input symbols but
starts guessing. The guesses are determined by the requirements of the rewrite rules.
At this point, there are two rewrite rules: rule SubsA looking for an 'a', and SubsB
looking for a 'b'. A check with the term at hand shows that both rules can be applied,
as both an a and b are present in "a+b=3". The parser starts with trying the action
SubsA, resulting in Figure 13:
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Subs→•SubsA
Subs→•SubsB

1

a+b=3

Subs→SubsA•

1

1+b=3

SubsA
Subs

Figure 13. Result after guessing SubsA as next action.

At this point the parser notices that there is a shift possibility for the start symbol
Subs, and hence Subs is applicable. SubsB would also have been applicable but that is
not even tested.
Therefore the "not(Subs)" fails in Figure 11, and no further actions are taken at this
point.
Next, assume the student takes actions SubsA and SubsB. After these two steps,
Figure 11 has been transformed into Figure 14:

S→•Subs S
S→•not(Subs)
Subs→•SubsA
Subs→•SubsB

1

a+b=3

S→Subs • S
Subs→SubsA•
S→•Subs S
S→•not(Subs)
Subs→•SubsA
Subs→•SubsB

2

1+b=3

SubsA SubsB

S→•Subs S
S→•not(Subs)
S→•Subs • S
Subs→•SubsA
Subs→•SubsB
Subs→SubsB•

3

1+2=3

Subs Subs

Figure 14. intermediate parser state after student took actions SubsA followed by SubsB.

But the parser is not yet finished at this point, the not still has to be tested. Again a
new parser is launched, trying to parse Subs, now with current term "1+2=3" (Figure
15):

Subs→•SubsA
Subs→•SubsB

1

1+2=3

Figure 15. New parser for start symbol subs, launched to check applicability of Subs on the
term "1+2=3".

The parser tries to apply SubsA on the term, but find that it fails. Next, SubsB also
fails. There are no other rewrite rules that could forward the parser at this point.
All options are exhausted and no shift possibility for Subs was found. Therefore the
conclusion is that Subs is not applicable. Hence the not(Subs) succeeds and a shift
possibility is created for not(Subs) in the main parser resulting in Figure 16:
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S→•Subs S
S→•not(Subs)
Subs→•SubsA
Subs→•SubsB

1

a+b=3

S→Subs • S
Subs→SubsA•
S→•Subs S
S→•not(Subs)
Subs→•SubsA
Subs→•SubsB

2

1+b=3

SubsA SubsB

S→•Subs S
S→•not(Subs)
S→Subs • S
Subs→•SubsA
Subs→•SubsB
Subs→SubsB•

3

1+2=3

Subs Subs

not(Subs)

Figure 16. not(Subs) has been recognised and a shiftpossibility for it was added.

The scanner now recognises an S, and creates a shift possiblity <S,3,3>. This results
in another shift possibility <S,2,3>, resulting in yet another shift possibility <S,1,3>,
completing the parse as in Figure 17:

S→•Subs S
S→•not(Subs)
Subs→•SubsA
Subs→•SubsB

1

a+b=3

S→Subs • S
Subs→SubsA•
S→•Subs S
S→•not(Subs)
Subs→•SubsA
Subs→•SubsB

2

1+b=3

SubsA SubsB

S→•Subs S
S→•not(Subs)
S→Subs • S
Subs→•SubsA
Subs→•SubsB
Subs→SubsB•
S→Subs S•

3

1+2=3

Subs Subs

not(Subs)
S

S
S

Figure 17. S has been parsed succesfully.
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3: Installation

This chapter discusses system requirements and how the parser can be installed.

System Requirements
The parser has been run succesfully on Mathematica 4 to Mathematica 6.
Mathematica 6 currently is supported for a range of operating systems, as shown in
Table 1:

Table 1. Operating systems under which Mathematica 6 can be run (at 27 august 2007).

Operating System 32/64 bit
Windows Vista, Windows XP, Windows Server 2003 32 and 64
Windows Compute Cluster Server 2003 64
Windows 2000, ME 32
Mac OSX 10.3 Intel 32 and 64
Mac OSX 10.3.9, 10.4 PPC 32
Linux 2.4 or later 32 and 64

The parser was developed on Mathematica 6 on Mac OSX 10.4, and was load and run
succesfully in Mathematica 6 on Debian "Edge" on Linux 2.6, and in Mathematica 4
on Mac OSX 10.3.
Mathematica 4, 5 and 6 have minor changes in several system functions. Therefore,
the code in the parser in some cases has to call separate functions depending on the
actual version of Mathematica. This is done via the IfVersion[version4code,
version6code] function. We have not tested the parser on Mathematica 5, but from
tests with other Mathematica applications it is expected that the version 4 code, which
is currently selected also under Mathematica 5, will work.
There is a minor issue when loading the Mathematica 6 modules (.m files) in
Mathematica 4: Mathematica 6 adds a few $CellContext`Code fragments that have to
be deleted manually before Mathematica 4 can open the files.
Parsing more serious grammars can take a lot of memory and CPU power, hence a
fast modern machine is recommended. For example, the row reduce strategy alone
can take 15 seconds just to create a new parser object, using Mathematica 4 on a
1GHz Powerbook G4, while it takes less than a second in Mathematica 6 on a
Macbook Pro 2.33 GHz Intel Core 2 Duo.

Installing the Parser
The current version of the parser consists of three files: parstratparser.m, code.m and
unification.m. These are files automatically compiled by Mathematica from three files
with the same name but with the extension ".nb".
To use the parser, the .m files have to be placed in the proper directory which we will
abbreviate with TDIR. TDIR is dependent on the operating system as shown in Table
2:
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Table 2. Different operating systems and required target directory TDIR for the parser
modules.

OS TDIR
Mac OSX $HOME/Library/Mathematica/Applications

Linux $HOME/.Mathematica/Applications

Windows
98/Me

C:\Windows\Application Data\Mathematica\Applications

Windows NT C:\WINNT\Profiles\username\
Application Data\Mathematica\Applications

Windows
2000/XP

C:\Documents and Settings\username\
  Application Data\Mathematica\Applications

In general the directory is $UserBaseDirectory/Applications, and $UserBaseDirectory
is a Mathematica variable pointing to the system-dependent directory where
Mathematica expects the files.
Just drag all .m files into the TDIR directory, or use a shell command like

cd <directory where package was downloaded>
cp *.m $TDIR

If you want to use symbolic links instead of a copy: only symbolic links (made with
the -s option in ln) work properly. In OSX, it is possible to create another type of links
called 'alias'  using option+apple+drag, but these links will not work for Mathematica.
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4: Strategy Specification Objects

The strategy specification objects are the objects that are used to specify the strategy.
A strategy specification consists of a set of rules. Every rule can be either a grammar
rule or a  rewrite rule.
A rewrite rule can manipulate the problem term, using (Mathematica) code to
compute the term after manipulation if necessary.
A grammar rule does not manipulate the problem term, but it determines the order in
which rewrite rules can be applied. To do this, there are a number of options:

• multiple grammar rules with the same attributed name can be used to indicate
alternative strategies ("OR")

• Each grammar rule contains a sequence of attributed names, referring to other
grammar rules and rewrite rules that further detail on each step in the sequence

• A "not" operator to test whether a rule can be applied anyway (without actually
applying it)

• A "parallel" operator that runs two strategies in parallel.

These objects and their semantics were already discussed in the User Manual
[Pasman07]. The following sections discuss the functions related to these objects in
detail.

Attributes
In the context of parsing and grammar definitions, attributes refer to variables that are
used inside rules. Attribute values can be passed to substrategies via the attributes in
the attributed name of the rule (see next section). Attribute values can be passed both
upwards and downwards. Downwards, also called inherited attributes, is when the
attribute is known in the top level strategy and passed down to a substrategy.
Upwards, also called synthesized attributes, is when the attribute value is calculated in
a bottom level strategy and its value is passed upwards.
The attributes can be any mathematica variable starting with a $ followed by a lower
case character. For example, $x, $someName. As far as mathematica is concerned, these
are just standard variables, just as ones starting not with $. The purpose of the $ is
twofold: (1) avoid any conflicts with usual variable names (that do not start with $)
and (2) make it easy to determine which variables are used.
Standard Mathematica already provides a number of variables starting with $, such as
$RecursionLimit, $SystemID, $MaxNumber, etc. All these have an upper case
character after the $, and will never conflict with the attributes.
The parser introduces a special variable $CurrentTerm. It corresponds to the current
term at hand. Due to lack of time, currently $CurrentTerm only is set within Code
blocks but it would be better if it were set always.
Generally, attribute values are local to a rule, so each rule has its own copy of
attributes. More accurately, every item within the parser has its own copy of the
attribute values. The only exception where attributes are shared is within parallel
constructs.
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Attribute Value List
An attribute value list is a plain Mathematica list of Equal[attribute,mathematica
value] objects and pretty prints as attribute==value. For example,

{$x==5, $y==LZPlus($x,7),$pos=={2}}

is an attribute value list. We use "Equal" (==) instead of "Set" (=) because "Set" will
immediately be evaluated by Mathematica while Equal is not evaluated.

Attributed Name
Attributed names are objects used to refer to rules. They are stored with a gterm
object with the name and a number of attributes as parameters. The first argument is
normally a string: the name of the rule.
In this parser, any string is acceptable for a name, but it is recommended to stick with
standard (upper and lower case) roman characters and numbers to avoid confusion
and issues while pretty printing.
The parser is set up to recognise names starting with a lower case character as rewrite
rules, and names starting with an upper case character as a grammar rule.
Table 3 shows a few examples of attributed names. On the right are the prettyprinted
versions of these attributed names (see section Pretty Printing, p. 27).

Table 3. Few example attributed names. On the right are the prettyprinted versions of these
rules

non pretty printed attributed
name/gterm

pretty printed

gterm["ruleexchrows",1,2] ruleexchrows[1,2]
gterm["Strat25"] Strat25
gterm["ruledeletevariable ",$x] ruledeletevariable[$x]
gterm["RepExh",$s] RepExh[$s]
gterm["aap",gterm["beer",$x],$pos] aap[beer[$x],$pos]

Code Block
A Code block is an object holding a fragment of raw Mathematica code. Table 4
shows a few example Code blocks. Formally, a code block is an object Code with a
Mathematica CompoundExpression as its argument. Code blocks were already
discussed in detail in the User Manual [Pasman07], so what follows is mainly a copy
from there.
The Code block functions are collected in the "Code.nb" module.

Table 4. Some example Code blocks. The third example is showing the RuleAtPos
embedding the Code block, to make clear that the pattern variables "mat" and "vars" used in
the Code block get their values from the term at hand.

Code[If[$start > $end, $Failure, $var = $start]]
Code[Clear[$var]; $startp1 = $start + 1]
RuleAtPos[AugmentedMatrix[mat_LZMatrix,vars_],{},

Code[If[$k === 0 , $Failure,
  $newmat = mat; $newmat[[$row]] = $k  mat[[$row]];
  AugmentedMatrix[$newmat, vars]]]

Only attribute variables should be used as a computational variable inside a code
block. Normal Mathematica variables (e.g. "k", as opposed to $k) should be avoided.
The reason is that any value given to normal Mathematica variables would be stored
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in the global scope, and appear to all other evaluations at once. Proper scope
restriction to the rule at hand is provided only for the attribute variables.
If there is a problem evaluating the code contents by Mathematica, this will be caught.
An error message will be printed and the evaluation continues as if the Code returned
$Failure. For example, evaluating Code[3 = 4] (using CodeEval[{}, Code[3 = 4]])
gives

Set::setraw  : Cannot assign to raw object 3. >>
Problem with strategy. Code block is incorrect. Intercepted

and returning $Failure instead. Code block: Code[3 = 4]

Code blocks have a number of important properties:
• A Code block has attribute HoldAll, so nothing inside a Code block is evaluated

until it is given to the CodeEval function.
• A Code block that returns $Failure causes all associated parser attempts to fail.
• Inside a Code block one can refer to $CurrentTerm, to determine the actual term at

that point.
• An attribute variable can be cleared using Mathematica's Clear[].

Code Evaluation
Evaluation of a Code block is done with CodeEval[attrivalues, Code block].
attrivalues is an Attribute Value List. CodeEval returns a pair {result, new attribute
settings}.
Although a Code block looks pretty straightforward, the technical implementation is
surprisingly tricky and may cause subtile problems.
First, all attribute variables occuring inside the Code block are collected, and shielded
from the general scope by using a Module call. Inside this shielded scope, the attribute
variables are set to their initial values. Then, Mathematica is asked to evaluate the
program inside the Code block. Control is passed directly to Mathematica, and
anything allowed by Mathematica can be done here. Next, the return value as well as
the new values of the attribute variables are collected. The Code block is analysed, to
determine which attribute variables occured on the left side of an equation or inside a
Clear. Only for these variables, the new values are saved, the other values are
discarded. While saving the values, it is checked for each variable if it actually still
has a value (it may have been Cleared), and if it was cleared the variable is removed
from the list of known variables instead of saved.
One known issue with this algorithm becomes clear in the following example with the
start condition $g=f[$x] and $k<0:

Code[If[$k<0,$x=6,$g=3]]

In this code block, $g might be changed (because $g is at the left of an assignment,
and we do no analysis of If-blocks), and therefore the value of $g is re-computed after
evaluation of this code block. In this case $x=6 after evaluation, and therefore $g=f[6]
after evaluation of this code block, even though $g was never modified in the code
block itself. In this case, a Clear[$x] in a subsequent Code block will NOT return
$g=f[$x] but leave us with $g=f[6].
A nice example where Clear is needed is the "For" strategy (Figure 18).
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For[$var,$start,$end,$strategy] := Code[If[$start <= $end, $Failure]]
For[$var,$start,$end,$strategy]:=

Code[If[$start > $end, $Failure, $var = $start]]
$strategy
Code[Clear[$var]; $startp1=$start + 1] For[$var, $startp1, $end,
$strategy]

Figure 18. For strategy, illustrating the need for Clear in some cases. $var needs to be set in
order to evaluate the $strategy. But if $var were not cleared before the next step of the For
loop, and for instance be set to 0, $var=$start would evaluate as 0=$start which would fail.

EstimateAffectedVars
As discussed in Code Block, we need to estimate affected vars in code block, because
for instance if $y = f[$x] we do NOT want to change $y if $x is set but $y is not
touched, (maybe not even mentioned) in the code. EstimateAffectedVars returns a list
of all attributes that may be changed by the Code block. It searches all attributes that
are either in the left hand of an assignment (e.g.,$x in $x=17),  or within a Clear[] call.
Table 5 gives a few examples of EstimateAffectedVars.

Table 5. Three examples of EstimateAffectedVars. First line of each example gives the
Mathematica call, the second line gives the resulting list of estimated affected variables.

EstimateAffectedVars[Code[$x = 3; $y = f[$x] + $w; Clear[$z]; Clear[$a,
$b]]]
result: {$a, $b, $x, $y, $z}

EstimateAffectedVars[Code[$newmat[[2]] = 3]]
result: {$newmat}

EstimateAffectedVars[Code[$y = f[$x]]]
result: {$y}

GetVars
GetVars is a support function to extract from an arbitrary Mathematica term all the
leaf nodes that look like attributes. "look like attribute" here means that, when
converted to String, the leaf starts with $ followed by an arbitrary character.

Rewrite Rule
A rewrite rule is a Mathematica object / data structure that looks as follows:

RewriteRule[attributedname,RuleAtPos[mathpattern, pos,result]

Attributedname is a gterm as discussed in the section Attributed Name. RuleAtPos is
another datastructure. Details about rewrite rules can be found in the user manual
[Pasman07]. In this manual some functions related to rewrite rules are discussed.

RuleAtPos
RuleAtPos is a data structure looking as

RuleAtPos[mathpattern, pos,result]

It holds the actual rewrite rule in the form of a mathpattern that indicates the pattern in
the term before rewriting, a position in the term where to apply the rule, and a result
that is either a mathematica term or a Code block1.

                                                  
1 This is one of the places where we chose to use the Mathematica implementation
straight away. This causes the strategy specification to be system (Mathematica)
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Note that the position only refers to the top level position. The mathpattern may still
contain ambiguities concerning the positions of subterms. Figure 19 uses
Mathematica's ReplaceList to show that Mathematica rewrite rules may be ambiguous
on more places than just the position of the top of the rule.

ReplaceList[aap[1, 2, 3, 4], aap[x__, y__] -> aap[X[x], Y[y]]]
{aap[X[1], Y[2, 3, 4]], aap[X[1, 2], Y[3, 4]], aap[X[1, 2, 3], Y[4]]}

Figure 19. ReplaceList example showing that the rewrite rule aap[x__, y__] -> aap[X[x],
Y[y]] can be applied in many – in this case, three – ways.

Currently, when such an ambiguity is present in the rewrite rule, there is no way to
specify which of the rewrites is needed. Mathematica's Replace function is used,
which uses the first replace that is possible. Citing the manual for Patterns and
Transformation Rules:

"The case that is tried first takes all the  __ and  ___ to stand for sequences of
minimum length, except the last one, which stands for "the rest" of the arguments.
When  x_: v or  x_. are present, the case that is tried first is the one in which
none of them correspond to omitted arguments. Cases in which later arguments are
dropped are tried next. The order in which the different cases are tried can be
changed using  Shortest and  Longest."

ApplyRewriteRule
ApplyRewriteRule[ruleatpos,attrivalues,term] is a function that takes a RuleAtPos
[mathpattern, pos, result], a list of current attributes with their values, and a term to be
rewritten. attrivalues is a attribute value list and term the user's current problem term.
It checks whether the term at the mathpattern actually matches the given subterm of
term at position pos (ignoring the attributes). If not, ApplyRewriteRule returns
$Failure.
If it does, the subterm is replaced with result. Next, it is checked whether the replaced
subterm is a Code block. If so, the Code block is evaluated, using the given attribute
values The values of the attributes after evaluation of the code block are ignored.

AllRewritesForInstRule
AllRewritesForInstRule[RuleAtPos[lhs,pos,rhs],attrivalues,term] is a variant of
ApplyRewriteRule that can handle non-instantiated $pos attribute in the RewriteRule.
attrivalues is an attribute-value list. If the position value in RuleAtPos is an attribute
($var), the lhs of the RuleAtPos is matched against the term, and all matching
positions are collected. The RuleAtPos is then applied on all these positions. If the
given position is already instantiated the rule is applied on that single position.
The results of all possible positions are checked, and only those that were not $Failure
are kept. A list of pairs {new attrivalues, result} is returned, where new attrivalues is a
attribute-value list for that result. In the new attrivalue-list, the $pos attribute will be
set according to the particular choice that was made for that case. Figure 20 shows an
example.

                                                                                                                                                 
dependent. We do not yet have enough experience with rewriting for strategy
specification to make a better choice.
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AllRewritesForInstRule[
RuleAtPos[aap[3], $posi, kat[3]], {$m == achttien},
beer[aap[4], aap[5], aap[3], aap[6], aap[3], aap[4]]]

{{{$m == achttien, $posi == {3}},
beer[aap[4], aap[5], kat[3], aap[6], aap[3], aap[4]]},

{{$m == achttien, $posi == {5}},
  beer[aap[4], aap[5], aap[3], aap[6], kat[3], aap[4]]}}

Figure 20. Input for AllRewritesForInstRule, and result.

AllRewritesForRule
AllRewritesForRule[RewriteRule[lhs,pos,rhs],neededhead,term] is a light variant
of AllRewritesForInstRule. It checks whether the left hand side lhs actually matches
the given attributed name neededhead, by checking if neededhead and lhs can be
matched with UnifyInherit. If it does not match it returns $Failure straight away. If it
matches, it uses the variable assignments according to the UnifyInherit to call
AllRewritesForInstRule. It finally returns a list of pairs, each pair of the form
{instantiated name,newterm} where instantiated name is an attributed name with
$pos instantiated as necessary, and newterm the result of applying the rule at that
$pos. If the rule is not applicable at all, the empty list {} is returned.

AllRewritesForRule[
 RewriteRule[gterm["rulen", $subterm],
RuleAtPos[beer[x__], $pos, kat[x]]],
gterm["rulen", 3], beer[beer[kaas, aap, noot, mies]]]

{{gterm["rulen", {1}], beer[kat[kaas, aap, noot, mies]]},
{gterm["rulen", {}], kat[beer[kaas, aap, noot, mies]]}}

Figure 21. Example of application of AllRewritesForRule and result.

AllRewrites
AllRewrites[rules,neededhead,term] finds the matching rewrite rule from the rules
list. rules is a list of RewriteRule[...] objects. neededhead is an attributed name,
instantiated as needed. it returns the first rule in rules for which AllRewritesForRule
succeeds, or else $Failure.
It returns only the first rule, because currently AllRewrites is only used for rewrite
rules and not for grammar rules.  Figure 22 shows an example.
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AllRewrites[
{RewriteRule[gterm["rulebeer"],
RuleAtPos[beer[x__], $pos, kat[x]]],
RewriteRule[gterm["ruleaap"],
   RuleAtPos[aap[x__], $pos,
    Code[If[Length[$pos] > 2, $Failure, kat[$pos]]]]]},
gterm["ruleaap"],
 aap[beer[kaas, aap[4], noot, aap[aap[2]]]]]

{{gterm["ruleaap"],aap[beer[kaas, kat[{1, 2}], noot, aap[aap[2]]]]},
{gterm["ruleaap"], aap[beer[kaas, aap[4], noot, kat[{1, 4}]]]},
{gterm["ruleaap"], kat[{}]}}

Figure 22. Example of AllRewrites. Note that the rewrite rule fails if Length[$pos] >2, thus if
the beer term is more than two levels below the top. rule "aap" is requested so the rule for
beer is ignored. The aap[2] term is too low hence is not rewritten, but aap at higher level is
rewritten.

Grammar Rules
Grammar rules are represented with the object

GrammarRule[name,listofgrammaritems]

name is the attributed name of the grammar rule, and listofgrammaritems is a
Mathematica list (ordered sequence) of grammar items. The listofgrammaritems
represents the right hand side of a grammar rule.

Grammar Item
A grammar item is an object as it can appear in a grammar rule. It can be a number
of data types:

1. An attributed name, which then refers to the name of a grammar or rewrite
rule

2. not[attributed name], where attributed name again refers to a name of a rule
3. par[name1,name2] where name1 and name2 are attributed names referring to

a rule
4. Code[raw Mathematica code]

Table 6 shows a number of examples and their pretty printed form:
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Table 6. Some example grammar rules and their pretty printed form.

Grammar Rule pretty printed form
GrammarRule[gterm["Strat25"],
{gterm["Strat25d"]}]

Strat25 := Strat25d

GrammarRule[gterm["S"], {par[gterm["A",
$x], gterm["B", $x]]}]

S:=(A[$x]//B[$x])

GrammarRule[gterm["RepExh", $s], {$s,
gterm["RepExh", $s]}]

RepExh[$s] := $s RepExh[$s]

GrammarRule[
gterm["For", $var, $start,
$end,$strategy],
 {Code[If[$start > $end, $Failure, $var
= $start]], $strategy,
  Code[Clear[$var]; $startp1 = $start +
1],
  gterm["For", $var, $startp1, $end,
$strategy]}]

For[$var, $start, $end, $strategy]
:=
 Code[
  If[$start > $end, $Failure,
      $var =$start]]
 $strategy
 Code[
   Clear[$var]; $startp1 = $start +
1]
   For[$var, $startp1, $end,
$strategy]

Pretty Printing
Pretty printing of most objects is pretty straightforward, best consult the Mathematica
code for PToString in the pretty printing code section for the details. Here only a few
interesting details are discussed.

• attributed names, that is gterm["name",attributes] are prettyprinted as
name[attributes]. If there are no attributes, it pretty prints as "name".

• not[X] is pretty printed as ~X
• a list can be pretty printed with an item separator (a string) of choice, using

PToString[list,separator].
• par[X,Y] is pretty printed as X//Y
• the parse state items and their pretty printing are discussed in the next section.
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5. Unification

A basic action during parsing is unification of attributed names – gterms. Every time
the parser shifts the dot and encounters a new item, it has to search through the
grammar rules or rewrite rules to find a grammar rule with an attributed name that
matches the new item. This is more than just matching, because both the grammar
rule and the item may contain attributes.
General unification [Baader01] takes two terms, each with variables, and instantiates
the variables in both terms in a minimal way such that the two terms are identical. The
algorithm of Baader is implemented as Unify1[term1,term2]. In the terms, the
variables have to be indicated explicitly, by wrapping them in an Att function. Unify1
returns a list of pairs {variable, value} pairs.
The Att label around each attribute is to easen further processing. Unification only
looks at names of attributes, it does not know whether a certain attribute occured in
term1 or term2. This poses problems in the parser. Therefore several derived
functions are available for unification, that internally use the Att label to rename/wrap
the actual variables enabling distinction betweel term1 and term2.
General unification can also be done with Unify[term1,term2]. This function
just wraps all $-vars (attributes) in an Att function and calls Unify1. Table 7 shows a
few examples.
In line with Baader's algorithm, there is no unification support for the BlankSequence
(__) and the BlankNullSequence(___), but only plain ($var) attributes.

Table 7. A few unification examples.

unify call result
Unify[f[$x, $x], f[3, 3]] {{Att[$x], 3}}
Unify[f[$x, $x], f[3, 5]] $Failure
Unify[f[3, $y], f[$h, f[3]]] {{Att[$h], 3}, {Att[$y], f[3]}}
Unify[h[6, $y], h[$x, $y]] {{Att[$x], 6}}
Unify[f[$x, f[$x]], f[$x, $z]] {{Att[$z], f[Att[$x]]}}

Unification of Attributed Names
The basic idea is to use Unify1[highlevel,lowerlevel] where  highlevel
and lowerlevel are attributed names. However, unification can not be used straight
away because of two reasons:

1. The parser has completely separate context variables for both attributed
names, while the Unify1 function may return any collection of substitutions
with attributes from both terms mixed up in any way.

2. Unification of two attributed names can not possibly be a one-run process,
because synthesized variables will be available only after the called rule has
been fully applied.

To work around these issues, a two-step unification is done, as follows.
First, a preliminary, potentially too general unification is done with UnifyInherit. This
brings the values from the 'higher level' term1 to the 'lower level' term2. Then, the
rule at lower level is evaluated, potentially changing the attribute values. Finally, the
new attribute values are then re-unified, using UnifySynthesize, with the higher level
term1, bringing the new attribute values back to the high level.
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UnifyInherit
UnifyInherit creates a set of lower-level attribute assignments, using only those lower
level attributes that get explicitly assigned after unification. All assignments involving
more complex patterns to lower level attributes are simply ignored. This results
potentially in a search with under-specified variables, giving too many results. This
might cause problems, especially when testing for not. But so far, there seem to be no
major issues with this approach.
UnifyInherit[highlevel,lowerlevel] determines the variable settings at
lowerlevel tuch that highlevel is matching, or $Failure is such a match is not possible.
Inherit refers to the 'passing down' of attribute values, which corresponds to inherited
attributes in attribute grammar parsing.

UnifySynthesize
UnifySynthesize[highlevel,lowerlevel] is used after a rule completed,
to bring the new attribute values back to the high level. It determines the variable
settings at highlevel tuch that lowerlevel is matching, or $Failure is such a match is
not possible. Synthesize refers to the 'passing up' of attribute values, which
corresponds to synthesized attributes in attribute grammar parsing.
As with UnifyInherit, the Unify1 function is used for the elementary unification of the
two levels. This time, dependencies of higher level on lower level attributes have to
be removed entirely from the final result, which is done with the TryRemoveRHS
function.
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6: Strategy Parser Objects

This chapter discusses the technical details inside the parser, the involved data
structures and functions. A global overview is given to sketch the overall process.
Then the parser state and the three key components – the shift possibility, item set and
subparser – are discussed.

Global Overview
This section aims at giving a high-level overview of the internals of the strategy
parser.
The core of the parser is an Earley style chart parser [Earley70] and builds further on
to earlier work [Pasman90]. The actions/rewrite rules are represented by the
'terminals' of the grammar. The strategy specification is represented by the
nonterminals.
Parsing is started by creating an initial parse state. Next, the parse can be extended
with the next student's action leading to a new parse state2. We use the term parse
state to refer to the entire collection of itemsets after a given sequence if actions has
been parsed. As with Earley's parser, we have an itemset representing the parse
situation after each action that was done. An itemset is a set with items: an item is a
grammar rule with a dot somewhere in it and with some links to predecessor and
successor items.
More accurately, there are a number of types of 'items' that can be member of an
itemset:

1. item[tag,unifiedhead,left,right,vars,pred,succ]
2. subparser(tag,par(X,Y),{sharedvars},{parserpair }]
3. pitem(setnr,tag)

Note that one of these items is called 'item', it would better have been called
'dottedrule'.
There are a number of major additions in this parser, compared to [Pasman90].
The first addition is that the student's actions act on a problem term. The problem
term thus changes with each action, so we speak of the current problem term to refer
to problem term for the itemset holding some item under discussion. An action can be
parsed only when both the strategy specification generates that action as the next step
and that particular action is actually possible on the term at hand. The scanner
currently takes both the action and the resulting problem term as input, it does not
check whether the action really gives that result. The only change to the parser for this
modification is that the problem term is added to each itemset.
The second addition is the introduction of a not(Strat) primitive to the context free
grammar. This primitive can be parsed only if the Strat (non)terminal can not be
applied to the current problem term. To implement this, the given strategy is basically
fed with every possible action sequence to see whether one of them fits both strategy
and problem term. If one fits, the not fails, and if none of them fits, the not is
accepted.

                                                  
2 Earley's paper refers to the parser state as 'set of states'. We use 'itemset' to refer to
Earley's 'state set'. Earley also uses 'state' to refer to our items.
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Third, attributes were added to the strategy specification. To do this, all
(non)terminals are replaced by attributed names, and internally all items get a set of
local attribute/value pairs.
Fourth, Code blocks were added, enabling arbitrary computations. These can be used
both in rewrite rules, to calculate the result term of the rewrite, and within strategy
rules, to compute attribute values.
The final addition is the introduction of a parallel(Strat1,Strat2) operator, that creates
all permutations of the actions from strategies Strat1 and Strat2. To handle parallel
operator, a special item called subparser is available. This subparser tries to
distribute the actions over the two strategies, such that all actions can be accounted
for. Because a subparser can account for multiple actions, it would be logical to have
it distributed over itemsets just as other items. But for practical reasons, the subparser
object is kept in the first itemset where it was needed, and subsequent itemsets refer
back to the original with an pitem object.
For efficiency, the parser also keeps track of the shift possibilities that were created
during the parse. Shift possibilities are created when a grammar rule has been
'completed': all its steps have been recognised and its attributed name ('nonterminal')
can be parsed. The shift possibility then enables all items that were waiting for that
name to continue.

Parser State
The parser state is the central object around which parsing revolves. Each parser state
is an object containing all the details about a current parser process. It looks like

PS[Strat,Itemsets,shiftpos,rules,terms,startsym]

• Strat is a set (Mathematica list) of grammar rules, and rules (another Mathematica
list) are the rewrite rules. These two together form the strategy specification.

• Itemsets is a set (Mathematica list) of itemset objects.
• Terms is a set of problem terms,  for each itemset: {term1,term2,...}.
• startsym is the attributed name that the parser used as the start term.
There are a number of objects that are typically part of the Parser State, such as the
shift possibility, item, itemset and subparser, a number of parsing support functions
that further develop the parse state, and a number of functions to evaluate a parser
state. These are the subject of the following three sub-sections. These might have
been subsections of this section, but to avoid too deep section levels and cyclic
dependencies (see Figure 1) they are presented as plain subsections.

Shift Possibility
A shift possibility comes in two varieties: shiftpos and varchange.

ShiftPos
The basic shift possibility looks like

shiftpos[gterm,leftitemset,rightitemset, creators]

It reflects the occurance a chain of linked items from a left-complete to a right-
complete item. gterm is the attributed name of the grammar rule of the chain,
instantiated with the final attribute values of the right-complete item. leftitemset and
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rightitemset are the set numbers holding the left-complete and right-complete item,
and creators is a list of itempointers to right-complete items that created this shift
possibility. The creators list is mostly for convenience and speed when finding a parse
tree from a parse state (see chapter 9. Parse Tree Generation).
When the shiftpos is created by a completed subparser (p.34), the creators list
contains pitemlink objects.

pitemlink
pitemlink[pitem[setnr, tag], eatpattern] is a pointer to a
subparser. It is used in shiftpos, to indicate which pitem created a shift. The pitem
points to a subparser via a standard pitem pointer, and the eatpattern is indicating
which of the subparsers is the actual parser that created the link, and is explained in
the section ParserPair, p.35.
Note that, as parsing continues, the subparser eat pattern may be extended and its
status may have changed from finished into anything. But any subparser having the
same start pattern should have the same results, for instance if the eat pattern is "10",
both parsers 100 and 101 should have the same state after two input symbols.

VarChange
A varchange is a variant of the shift possibility. Its form is

varchange[newvars, left, right,creators]

It represents a special shift where "all items" in the left can move on to the right
itemset without shifting the dot, but with making a few changes to (shared) variables.
This occurs in subparsers, and represents the situation where the other half of a parser
pair did a parse step and changed some global variables in that step.
A varchange pretty-prints as <newvars, left,right,creators>
Actually not "all items" but only the items that  satisfy the CanInterruptHere[item]
criterion can actually perform this varchange shift.

CanInterruptHere
CanInterruptHere[item[tag,name,left,right,vars,pred,suc]]
is a function that determines at which places a parser pair can switch between the left
and right parser. Currently the switch can be made always except when there is a code
block directly right of the dot. So switching is also possible when the dot is entirely
on the right side (right=={}).

Item Set
An itemset is a set (represented with a plain Mathematica list) of parser items. There
is an initial itemset and one after each next rewrite action.

Parser Item
A parser item is an object as it can appear in an item set. It can be a number of
objects:

1. item[...], a DottedRule item
2. subparser[...], a special construct to handle parallel objects par[...] in the

grammar.
3. pitem[...], a pointer to a subparser object
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DottedRule Item
The item object is what maybe should have been named dottedrule. A dotted rule is a
grammar rule with a dot in it. The dot then represents how far the parser proceeded
through that rule. It looks like

item[tag,head,left,right,attris,pred,succ]

where tag is a unique tag 'item$nnn' where nnn is a number, head is the attributed
name of the rule that the item reflect, left and right are the grammar items (see p.27)
before and after the dot, attris is an attribute value list, and pred and succ are lists of
itemptr objects pointing to the direct predecessor and successor of the item. An item
gets an immediate successor if its dot is in front of an attributed name and there is a
shiftpossibility for that. The predecessor list is the inverse relation of successor.
A dottedrule item is called right-complete if it has the dot on the right, i.e. right={}.

Itempointer
An itempointer has the form itemptr[setnr,tag]. setnr is the set number and
tag is the unique item$nnn tag of the item being pointed to. An itempointer always
points to items in the current parser state, not across parsers to for instance an item in
another pair of a parserpair.

getitem
getitem is a support function to retrieve an item given an itempointer. The call is
getitem[PS, it] where PS is the parserstate and it the itempointer. It returns a
copy of the item as it appears in the parserstate.

Subparser
A subparser is a contains a set of parser pairs. Because a subparser is a complex
construct, recursively using parse states, we discuss the subparser in more detail in the
next section.

Subparser
A subparser is an object in an itemset that handles the parsing of two parallel
strategies as specified by the par[...] grammar item (p.27). The object stores a large
number of parserpairs, exhaustively representing all different ways of distributing the
input symbols/actions over the two parallel strategies. The object looks as

subparser(tag,par(X,Y),sharedvarslist,parserpairlist]

where tag is some unique label in the style subp$nnn where n some number, X and Y
are attributed names, sharedvarslist is a list of attributes ($vars) and parserpairlist is a
list of parserpair objects. As was discussed in the user manual, the sharedvars
currently are those un-instantiated $vars that were common to both X and Y in the
par(X,Y) call.
In worst case, the size of a subparser doubles with each action. This means
exponential space (memory/swap space) requirements which can cause serious
parsing problems. In practical grammars with limited ambiguity we hope that this is
not really an issue.
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The tag is to enable easy lookup avoiding unification. Note that the sharedvarslist
contains only the shared variables, and NOT their values. The values are stored with
each item in each parserpair.
The subparser object is always placed in the itemset in which the corresponding
item/dotted rule with the dot just before the par[...] occured. If the subparser is
succesful in eating the next symbol/action, a subparser pointer is placed in the new
itemset, pointing back to the subparser.

Subparser pointer
A Subparser pointer is represented as pitem[setnr,tag]3. This pointer works just as the
itempointer object, except that it points to a subparser and not to an item object.

ParserPair
A parserpair represents the state of two parallel parsers, given a certain distribution
pattern of the input symbols/actions over the two parsers: the eat pattern. The object
looks as

parserpair[firstparser,secondparser,eatpattern,status]

Firstparser and secondparser are complete parser state objects (p.32).
The eatpattern is a string of '0' and '1' characters. Each character indicates which of
the two parsers ate the next input symbol/action: A 0 indicates that the first parser ate
the symbol and a 1 that the second parser ate the symbol.
The status is one of three values depending on the status of the two parsers (see
Statuson p.43).
• finished, if both parsers are finished
• ontrack, if one of the two parsers is ontrack and the other ontrack or finished
• dead, if one of the two parsers or both are dead

Pretty Printing
The entire parser state can be pretty printed as well, with the same PToString
predicate used to pretty print a strategy. PToString is returning a string so it can be
used for other purposes besides pretty printing.
• A parser state pretty prints as Head:S followed by a prettyprint of all itemsets.

Shift possibilities are grouped with the itemset that the shift possibility starts
at.

• An itemset first prints the normal items, then the shift possibilities, then the
varchanges, and finally the subparsers.

• An itempointer is prettyprinted as tag@setnumber where tag is the unique tag
associated with the item.

• A shift possibility is pretty printed as <symbol,L,R,creators>. The symbol is the
instantiated head, L and R are item set numbers, and creators is a list of
itempointers.

• A varchange is printed as <newvars,L,R,creators>, similar to a shift possibility
but recognizable because newvars is an attribute-value list and therefore has
curly brackets (and maybe a number of $x==y pairs)

                                                  
3 The name pitem is confusing. Feel free to coin a better name and modify the code!
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• An item is shown as <tag: dottedrule vars: attrivlist pred: predlist suc:suclist>.
The predlist and suclist are list of itempointers, the attrivlist is an attribute-
value list, but without the curly brackets. The dottedrule prints as
head left•right where head, left and right are also pretty printed.

• A gterm[name,attributes] prints as name[attributes] with all attributes
prettyprinted. If there are no attributes, only name is printed.

• a not[gterm] is shown as ~gterm, where gterm is prettyprinted.
• par[X,Y] is prettyprinted as X//Y, X and Y are both prettyprinted in turn.
• A subparser causes a pretty big mess in the output, as it recursively prints a list

of full parser states. It prints "SUBPARSER for head" where head is the head
that this subparser is looking for, and then it dumps all parser pairs in the
eatlist.

• A parserpair prints as "***Pair with eatpattern xxx. status: yyy" where xxx is
the eatpattern of this parserpair and yyy the status (alive, dead, etc). Then it
shows "Parser 1" followed by a prettyprint of parser 1 of the pair, followed by
"Parser 2" and parser 2 of the pair.

• Grammar rules are shown as discussed before (p.28)
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7. Parse State Manipulation

This section describes the available functions to manipulate the parse state. The
available functions are calling each other in a highly recursive way, but it is possible
to distinguish three groups of functions. The first is the core functions, handling the
basic context free grammar constructs as usual for Earley-style chart parsers. The
second group is the related to checking whether a strategy can be applied: the
applicable functions. The third group is related to handling the parallel construct,
and is called the parallel functions.
All these functions do not change the given parse state, they only return a new,
changed parse state.

The Core Functions

Scanner
Scanner extends a given parse state with an additional symbol/action and returns the
resulting new parse state. It consists of a call to AddItemset followed by calls to
Addshift and then a call to Subscanner for all pitems in the last itemset. The call looks
like

Scanner[PS, rewritename, newterm]

where PS is the parse state to be extended, rewritename is the attributed name of the
rewrite rule being applied, and newterm is the new problem term after the
rewritename was applied to the old problem term. If the parser has access to the given
rewritename, the newterm could be computed instead of passed. However, there may
be situations where the applied rewrite rule as specified by the rewritename is not
available to the parser (so the parse should fail but not crash), and in such a case the
parser can not compute the newterm.

AddItemset
AddItemset[PS,newterm] appends (at the right side) a new, empty itemset to
the list of itemsets in the given parsestate PS. The associated problem term newterm is
added to the terms list of the parsestate. The resulting modified parsestate is returned
as a result.

Predictor
Predictor creates items from the grammar rules. The call is

Predictor[PS, head, setnr]

PS is the old parse state, head the parseritem to be predicted, and setnr the item set
number in which the head occured.
Predictor is called by the other functions whenever a new parseritem was added to an
itemset. Predictor then looks in the parseritem, at the the grammar item immediately
after the dot and takes actions as follows:



38

• if parseritem of the form not[S]:  Test whether S is applicable by calling
Applicable (p.39). If it is applicable, create a shift possibility for not[S] using
Addshift.

• if parseritem of the form par[S,T]: Test if there is already a subparser for S//T in
the last itemset. If not, add a subparser:
subparser[tag,par[S,T],sharedvars,{parserpair[p1,p2,"",ontrack]}]

where tag is a new unique tag "subp$nnn", sharedvars is determined by taking the
intersection of the variables in S and in T (as determined by GetVars) and "" is
the empty eat pattern. Also  a subparser pointer pointing to this new subparser is
added to the itemset.

• if the parseritem is an attributed name N: select all grammar rules that have an
attributed name that unifies with N. For each of these rules, create a new parser
item with the dot on the left of the grammar rule, and add it using Additem.

Additem
Additem tries to add an item to a set. The call is

Additem[PS,item[tag,head,left,right,vars,pred,suc],
setnr]

where PS is the old parsestate, item is a usual parser item, and setnr is the target item
set number. Additem returns a new parserstate in which the item has been added.
Additem first checks whether the same item, but with maybe another tag, is already in
that item set.
If it is already there, the existing item is extended with the pred and suc links from the
new item. Then, it is checked if the updated parser item has links to a right-complete
item using endsets. If so, the Completer is called for each right-complete item.
If it is not yet there, the item is added to the set. Then, it is checked whether the item
is right-complete. If it is, the completer is called for the item. If it is not right-
complete, it is checked which grammar item is immediately after the dot. If it is a
Code block, the code block is evaluated. If the code block does not return $Failure, a
new item is created with the dot shifted over the code block, the vars set according to
the results of the Code block, and Additem is called to add this item to the itemset as
well.

startsets
startsets returns all the left-complete items linked to a given item. The call is

startsets[PS, itemptr]

where PS is the parser state, and itemptr is an item pointer.

endsets
Endsets returns all the right-complete items linked to a given item. The call is

endsets[PS, itemptr]

where PS is the parser state, and itemptr is an item pointer.
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Completer
Completer is called when a parser item is right-complete, indicating that some
attributed name has been recognised succesfully. The call is

Completer[PS, itemptr[set, tag]]

where PS is the old parserstate, and itemptr is a pointer to the right-complete item.
The completer determines the left-complete parser items that are linked to the given
right-complete item using startsets. The attributed name of each left-complete item is
then instantiated with the final attribute settings according to the right-complete item,
and a shift is created for each of these instantiated attributed names using Addshift.

AddShift
Addshift adds a new shift possibility and checks which items can use it. The call is

Addshift[PS,shiftpos[head, left, right, creators]]

where PS is the old parserstate, and shiftpos a shift possibility. It returns a new
parsestate with the shiftpos added and all consequences handled.
Addshift first checks if the shiftpossibility is already available. If so, the creators list
is merged with the creators list of the existing shift possibility.
If the shift possibility is not yet available, it is added. Next, it is checked if any items
in the left itemset have the dot just before a grammar item that can be unified with
head (using UnifySynthesize1). For each of these grammar items, a new item is added
with the dot is shifted one place to the right, using Additem.

UnifySynthesize1
UnifySynthesize1 is a support function that checks whether a parser item can be
unified with the head of a shift possibility. The call is

UnifySynthesize1[item, head]

If the item is a dottedrule item and it has an attributed name, not[...] or par[...] right of
the dot, then UnifySynthesize1 returns the result of unification of the item and head.
In all other cases $Failure is returned.

Applicable functions
The applicable functions is a small collection of functions that can check whether a
given strategy can be applied to a given problem term. This is needed for instance
when the not is encountered (see Predictor, p. 37) or when the status of a parser state
has to be determined.

Applicable
Applicable returns a shortest complete rewritesequence on term for start if there is
one, and "fail" if not. The call is

Applicable[grammar, rewriterules, problemterm,
startsym]
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where grammar and rewriterules describe the strategy, problemterm is the current
problem term, and startsym is the start symbol (an attributed name) of the strategy.
The real work is done by the Applicable function. Applicable however only accepts
the startsymbol to refer to grammar rules . Therefore, if the startsymbol is referring to
a rewri te  rule,  the grammar is  extended with the rule
U n u s e d G r a m m a r S y m b o l 5 4 : : = s t a r t s y m  and the startsymbol is set to
UnusedGrammarSymbol54 . Note that for this reason, one should not use
UnusedGrammarSymbol54 in a strategy specification.

TryToComplete
TryToComplete determines a sequence of additional actions (extensions) to complete
a parse. Completing the parse means that the start symbol of the parser has been
recognised after doing these additional actions. It returns $Failure if such a sequence
does not exist. The full call is

TryToComplete[PS]

where PS is the parser state to be extended/completed.
In order to find this, TryToComplete first tests if the given parser state is in fact
already finished. If so, it returns immediately.
If not, it does a breath-first search of all possible extensions. To do this, it first calls
AllBlockedItems to determine the candidates that extend the parse with one step.
Each candidate is tested, by applying it to the parser state (using Scanner) and then
recursively calling TryToComplete to see if the resulting state can be completed. The
first sequence that completes the parse is returned as the result.

AllBlockedItems
AllBlockedItems returns a set (Mathematica List) with all parser items that are
waiting for a terminal (a rewrite action). All means: all items in the last itemset plus
all items in the last itemsets of still-alive threads of the subparsers in the last itemset.

Parallel functions
The parallel functions is a small collection of functions to support parsing of two
parallel strategies. The main function is the SubScanner, which is called from the
Scanner function (p.37). It works on the subparser objects.

SubScanner
Subscanner takes care of the scanner job for subparser objects. It extends the parallel
parse state within the subparser object with one symbol/action and returns a new
parser state with this extended subparser. The call is

SubScanner[PS, paritem, rewrite, newterm]

where PS is the parser state, paritem a subparser pointer to the subparser being
updated, rewrite the attributed name of the rewrite being applied, and newterm the
resulting problem term after the rewrite was applied on the current problem term.
First, SubScanner fetches the subparser to be updated (p.34).
Then, each of the parser pairs in the subparser is extended with the new rewrite
action, using ParScan.
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Next, it is checked whether there are finished parser pairs using FinishedShiftsOfPair,
and for each finished pair Addshift is called to add a shift for the paritem.
Finally, it is checked whether there are still alive parser pairs, and if so a pointer to
this subparser is added the next itemset, to indicate that the subparser has to be
checked when the next action comes in.

ParScan
ParScan extends a parserpair with one rewrite action. The call is

ParScan[parserpair[par1, par2, eatpatt, stat],
rewrite, newterm, sharedattri]

where parserpair as on p.35, rewrite the attributed name of the rewrite being applied,
newterm the resulting problem term after the rewrite was applied on the current
problem term, and sharedattri the list of shared attributes between par1 and par2.
ParScan works straightforward: it calls ScanEF to determine the result parserpair1
when par1 eats the rewrite action, and parserpair2' when par2 eats the rewrite action,
and returns a tuple { parserpair1',parserpair2' }.

ScanEF
ScanEF determines what happens when one parser in a parserpair eats a rewrite
action. The non-eating parser may also be affected, because of shared attributes. The
call is:

ScanEF[eatingparser, followingparser,
rewrite, newterm, sharedvars]

First it calls Scanner to extend the eating parser. Then, the shared variables are
extracted from the resulting parse state of the eating parser.
The following parser is extended with a new empty itemset and a varchange shift
possibility is created for the extracted shared variables to extend the following parser
as well.
ScanEF then returns a tuple {neweatingparser,newfollowingparser}.

GetSharedVars
GetSharedVars extracts the shared vars from the last item set of a parser state. Usually
there is not one unique set of shared var, and therefore GetSharedVars returns a set
(List) of objects shared[items,attribute value list]. In each shared object, items is a list
of item pointers that have the same attribute values as given in the attribute value list.
The call is

GetSharedVars[PS,sharedattri]

GetSharedVars checks all parser items, and for items that satisfy CanInterruptHere
(p.33) the shared attributes are extracted and grouped in the 'shared' objects.
There is currently no code to extract shared variables from subparsers within
subparsers. This means that shared variables in nested subparsers are not properly
supported.
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FinishedShiftsOfPair
FinishedShiftsOfPair returns all shift possibilities to the last itemset, made possible by
a finished parserpair. The call is

FinishedShiftsOfPair[parserpair[par1,par2,...]]

where parserpair is a parserpair object.
A list of instantiated par[S,T] objects are returned, with S and T all possible tuples
where S the result of FinishedShifts[par1] and T=FinishedShifts[par2].
Note that FinishedShiftsOfPair can not return startset and endset numbers, as the
parserpair does not know at what point the parse started at a higher level.
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8. Checking the Parse State

In order to determine the status of the result of scanning student actions, a number of
test functions are available. In principle the Status function does it all, but Status can
be very expensive. Therefore, a number of cheaper options are also available, doing a
partial status check.

Finished
Finished[parsestate] checks that the given parsestate contains a shift
possibility for the start symbol from the first to the last itemset in the given parse
state. It returns True if there is at least one, and False if none exists. In fact it just
returns FinishedShifts[..] {}.

FinishedShifts
FinishedShifts[parsestate]returns all the shift possibilities from the first
to the last itemset that can be unified with the start symbol (and {} if no such shift
possibility exists).

OpenEnded
OpenEnded[parserstate] returns True if there is any item in the last itemset.
Note that this is weaker than OnTrack, because the presence of an item in the last
itemset does not guarantee that any of these items is going to succeed.

OnTrack
OnTrack[parserstate] returns True if there is an extension possible to
complete the problem. It is just equivalent to TryToComplete[parserstate]=!=$Failure.
TryToComplete is an expensive operation and therefore OnTrack is also expensive.

Status
Status[parserstate] returns finished if the parserstate is Finished, ontrack if
the parserstate is OnTrack but not finished, and dead otherwise. Status may be
expensive, if the OnTrack test is needed.

PairStatus
PairStatus[par1,par2] determines the status of a parser pair with parserstates
par1 and par2.
• If both parsers are finished, it returns finished
• If both parsers are on track, it returns ontrack.
• Otherwise, it returns dead.

This usually will be an expensive operation.
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9. Parse Tree Generation

Parser states are pretty complex objects, containing all ambiguities, dead ends,  and
potentially many different paths to a solution. In many cases, but particulary when
generating a hint for the student (e.g., how to proceed, determining where he is in the
strategy hierarchy, etc) only one succesful parse would be sufficient. A parse tree is
the representation of choice for one such succesful parse.
This section describes how a parse state can be converted to a parse tree, and how
hints can be extracted from such a tree. It contains two sections: the parse tree
datastructure objects and the parse tree functions.

Tree Datastructure
This section describes the datastructures to build a parse tree: the seqnode and the
parnode. Each can hold a list of these nodes. The tree then is simply  a nested
hierarchy of such nodes. Of the grammar items, only the attributed name and the par
constructors are reflected in the tree, while the not and the Code items are ignored.
If a node has no children, the subnodelist is empty ({}). Not all leaf nodes are rewrite
rules, some grammar rules also have no children.

Sequence Node
node[term,subnodelist] represent a node that has a sequence of children.
This reflects the application of a grammar or rewrite rule where the term is the
attributed name of the rule, and the subnodelist is a list of nodes, each representing
one of the grammar items in the grammar rule (rewrite rules have no children hence
the subnodelist is empty in that case).

Parallel Node
parnode[X//Y,eatpattern,subparsetree1,subparsetree2]
represent a par[...] grammar item. subparsetree1 and subparsetree2 are the subnodes
of the strategies X and Y, and eatpattern indicates in which particular order X and Y
ate the subsequent rewrite actions.

Tree Functions
Tree functions support the conversion and manipulation of parse trees.

GetSuggestionTree
GetSuggestionTree[parsestate] tries to complete the given parse state
using TryToComplete, and to generate a parse tree for the result. It returns a parse
tree. It returns $Failure if the parsestate can not be completed.
GetSuggestionTree first calls TryToComplete to get a completed parse state. Then it
calls FinishedShifts to pick one (the first) instantiation of the start symbol that
succeeded. Finally it calls ParseTreeForShift to compile a parse tree for the chosen
instantiated start symbol.

ParseTreeForShift
ParseTreeforShift takes a shift possibility, and returns a parse tree. The call is
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ParseTreeForShift[PS,
shiftpos[item,left,right,creators]]

A few cases are distinguished
• item is an attributed name:

o  if the creators list is empty: ParseTreeForShift then returns
node[item,{}]

o not empty: ParseTreeForShift calls FindPathBack to determine a path
(a sequence of shift possibilities) from left to right for the first
alternative in the creators list. For each of these shifts,
ParseTreeForShift is called recursively to generate subtrees for that
shift.

• item is a par[...] item. ParseTreeForShift has to dig into the subparsers to find the
details. In this case, the creators list contains pitemlink objects which points into
a subparser. The subparser is fetched, and the first (any will do) subparser with an
eatpattern starting with the pattern specified in the pitemlink is selected.
ParseTreeForShift is called to create a parse tree for the two parsers,

MatchingShift
MatchingShift returns a (just one) matching shift for a given shiftpos. "not" is not
checked, because that has been done already when a link was created, and
MatchingShift assumes that the link is there. The call is

MatchingShift[PS, shiftpos[name, left, right,
creators]]

The requested shift is unified (with Unify) with each of the shift possibilities in the
given parsestate PS. The first shift that unifies is returned. The 'creators' field of the
given shiftpos is ignored in this unification. Internally, the creators list is replaced
with the suppusedly never used attribute $anythingcreators612 before unification is
attempted.

FindPathBack
FindPathBack returns a (one) path from a given item back to the start set. It returns
this in the form of an (ordered) list of shift possibilities, or Null if there is no path
back to the start set. The shift possibilities only concern the grammar items in the
given item, and therefore may need further refinement. The call is

FindPathBack[PS,itemptr, startset]

where PS is the parser state, itemptr is an itempointer, and startset is the number of the
set where the left-complete item should be.
FindPathBack checks if the item is left-complete. If it is, it can return {} straight
away.
If it is not left-complete, each of the predecessors of the item is checked recursively
with FindPathBack. If none of these items has a path back to the startset, Null is
returned.



46

The first of the predecessors that has a path back to the startset is used as a start for
the complete path back.To complete the path, only the last step has to be added. There
are a number of possibilities for this last step:

1. The predecessor has a dottedrule with the dot in the same position. This is
possible if the parser is in a parser pair and the shift possibility was actually a
varchange. In that case, the shift was done by the other parser of the pair, and
the path does not need extension.

2. The dot was shifted over a Code grammar item. There is no associated shift
possibility for such a shift, and the path does not need extension.

3. The dot was shifted over a not[...] item. There is an associated shift possibility
for such a shift but there is no further proof of the 'not' available in the parse
tree. Therefore again the path is not extended.

4. The dot was shifted over a regular attributed name or over a par[..] item. In
this case, the shift possibility that created this shift is recovered using
MatchingShift, using the item instantiated with the values of the attributes as
they were in the direct predecessor that we found.

GetTerminalsFromTree
GetTerminalsFromTree extracts the leaves from a parse tree, to form a rewrite
sequence that matches that tree. The call is

GetTerminalsFromTree[rootnode]

where treenode is the root node of the tree.
We can not just traverse the tree depth first, left to right, because the par[..] blocks
specify the proper traversal order.
If the given root is sequence node, it must contain a gterm referring to a shift
possibility. This gterm is checked. If the name of the gterm refers to a terminal/rewrite
rule, then that attributed name is added as the next terminal in the rewrite sequence.
If treenode is a parallel node, the terminals are extracted from both trees in the
parshift node, and then these terminals  are permutated as specified in the parshift
node4.

VisualizeTree
VisualizeTree shows a 2D tree plot of the parse graph. The call is

VisualizeTree[rootnode]

First, ConvertTree is called to get the root label and a tree description that is ready for
a call to Mathematica's LayeredGraphPlot. Next, LayeredGraphPlot is called with the
LayeredTop packing method.
Using Mathematica's LayeredGraphPlot creates a few problems. First, it will not
always put the root term on top. Second, the order of the children is not respected,
causing mixing up of the children in the graph.

ConvertTree
ConvertTree converts given parse tree into a tree with nodes of the form {nodelabel,
{subnodes}}. The call is
                                                  
4 I'm not sure whether this works properly with trees with nested parshift nodes.
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ConvertTree[treenode]

The process is straightforward. First, prettyprinter is used to create a name given the
node's attributed name. The name is made unique by appending an unique number.
Then,

• for sequence nodes, ConverTree is then called recursively for the children of
the node.

• for parallel nodes, two children are created: one for the first and one for the
second parser of the parallel node. In this case, the first link is labelled "//" and
the second link is labelled with the eating pattern.
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Parallel+Not Strategy Attribute 
Parser
W.Pasman, may 2007.. .july 2007

Needs@"code`"D;
Needs@"unification`"D;
SetAttributes@IfVersion, HoldAllD;
IfVersion@old_, new_D := If@$VersionNumber < 6, old, newD
MyReplacePart@exp_, new_, n_D :=
IfVersion@ReplacePart@exp, new, nD.ReplacePart@exp, n Ø newDD;

Globals and support funcs
GRAMMAR = 1; ITEMSETS = 2; SHIFTPOSS = 3; REWRITERULES = 4; TERMS = 5; STARTSYMBOL = 6;

Get itemset n. 1 is first set.

Assert@True, _D;
Assert@False, message_D := Throw@"Internal Error: Assert failed. " <> messageD;
terminal@not@_DD := False;
terminal@t_D := LowerCaseQ@StringTake@t, 1DD;
ParserLevel = 1; H*For better prettyprinting, counts subparser level.*L
DPPrint@x___D := Print@"Parser:", ParserLevel, ":", xD;
DPLevel@add_D := ParserLevel = ParserLevel + add;
DPError@x___D := Print@"Parser SERIOUS ERROR:", xD;
H*Debug Hint system printer*L
DHPrint@x___D := Print@"Hint gen:", xD;
ExtractX[exp_, {}] := exp; 
ExtractX[exp_, pos_] := Extract[exp, pos]; 
ReplacePartX[exp_, new_, {}] := new; 
ReplacePartX[exp_, new_, pos_] := ReplacePart[exp, new, pos]; 

ü TaggedUnion
TaggedUnion::usage =
"TaggedUnion@list1,list2,..., TagPositionD gives a list with the union of list1,
list2..., in which all duplicated elements have been dropped. The TagPosition
indicates the position of an indicator label within each of the elements in
the lists. TaggedUnion converts each of these tags into a taglist. The tags of
the dropped duplicates are added to the taglists of the remaining element.";

TaggedUnion@union__, TagPosition_D := Module@8result = 8<<,
Hresult = add@Ò, result, TagPositionDL & êü Flatten@8union<, 1D;
result

D



add@el_, list_, tagpos_D := Module@8p, newlist<,
p = Position@list, ReplacePart@el, tagpos -> Blank@DDD;
If@p === 8<,
H*Print@"elem not there yet. adding"D;*L
newel = ReplacePart@el, tagpos -> 8Extract@el, tagposD<D;
H*Print@"newel-=",newelD;*L
newlist = Append@list, newelD,
H*add tag to the existing element*L
p = p@@1DD;
H*Print@"elem already there, at ",pD;*L
newel = Extract@list, pD;
newel =
ReplacePart@newel, tagpos -> Union@Extract@newel, tagposD, 8Extract@el, tagposD<DD;
newlist = ReplacePart@list, p -> newelD

D;
newlist

D

ü StringStartsWith
StringStartsWith::usage = "StringStartsWith@string,startD

returns True if string with start, and False otherwise.";

StringStartsWith@string_, start_D :=
If@StringLength@stringD < StringLength@startD, False,
StringTake@string, StringLength@startDD ã startD

Parser Support Stuff
newparser@G_, R_, Term_, start_gtermD := Module@8ps<,
ps = PS@G, 88<<, 8<, R, 8Term<, startD;
ps = Predictor@ps, start, 1D;
psD

getitem@PS_, itemptr@setnr_, tag_DD :=
If@setnr < 0 »» tag === Null, DPPrint@"Internal error: getitem: setnr<0 or tag=Null"D,
Cases@PS@@ITEMSETS, setnrDD, item@tag, ___DD@@1DD

D;
getpitem@PS_, pitem@setnr_, tag_DD :=
If@setnr < 0 »» tag === Null, DPPrint@"Internal error: getpitem: setnr<0 or tag=Null"D,
Cases@PS@@ITEMSETS, setnrDD, subparser@tag, ___DD@@1DD

D;
IndexOfLink@ps_, p : pitem@setnr_, tag_DD := Module@8<,

pos = Position@ps@@ITEMSETS, setnrDD, subparser@tag, ___D, 81<D;
If@pos === 8<, DPError@"Parser internal err. No item ", PToString@pDD; 8<,
8ITEMSETS, setnr, pos@@1, 1DD<

D
D;

replaceitem@PS_, itemptr@setnr_, tag_D, newitem_itemD := Module@8p<,
If@setnr < 0 »» tag === Null,
DPPrint@"ERRR replaceitem: setnr<0 or tag=Null"D, p = Position@PS, item@tag, ___DD;
H*DPPrint@"replaceitem:",pD;*L
If@Length@pD =!= 1,
DPPrint@"Internal err: no item ", tag, " in set ", setnrD,
ReplacePart@PS, newitem, pD

D
D

D



startsets@PS_, it : itemptr@set_, tag_DD := Module@8theitem<,
theitem = getitem@PS, itD; H*item@tag,N,left,right,vars,pred,succD*L
If@theitem@@6DD === 8<, 8set<,
Union üü Hstartsets@PS, ÒD & êü theitem@@6DDL

D
D
endsets@PS_, it : itemptr@set_, tag_DD := Module@8theitem<,
theitem = getitem@PS, itD; H*item@tag,unifiedhead,left,right,vars,pred,succD*L
If@theitem@@4DD === 8<, 8it<,
Union üü Hendsets@PS, ÒD & êü theitem@@7DDL

D
D
shiftdot@item@tag_, head_, 8l___<, 8s_, r___<, vars_, pred_, suc_D, setnr_D :=
item@Unique@itemD, head, 8l, s<, 8r<, vars, 8itemptr@setnr, tagD<, 8<D;

H*shiftdotback@item@tag_,head_,8l___,s_<,8r___<,vars_,parents_D,setnrD:=
item@tag,head,8l<,8s,r<,moreD;*L

CanInterruptHere@item@tag_, unifiedhead_gterm,
left_List, right_List, vars_List, pred_List, succ_ListDD :=

Hright === 8< »» HHead@right@@1DDD =!= CodeLL

Interpreting parse states
FinishedShifts@PS_D := Module@8rules, n, goodshifts<,

n = Length@PS@@ITEMSETSDDD;
rules = 8Ò, UnifySynthesize@shiftpos@PS@@STARTSYMBOLDD, 1, n, $somecreatorD, ÒD< & êü
PS@@SHIFTPOSSDD;

goodshifts = Select@rules, Ò@@2DD =!= $Failure &D;
H*11.6.7: at this point I can't clearly see whether

we need futher testing on the goodshifts. Can stray items looking
for something similar to the startsymbol be introduced by a tricky
grammar? And would that matter anyway? For now I just get the shifts. *L

Union@Ò@@1DD & êü goodshiftsD
D;

Finished@PS_D := FinishedShifts@PSD =!= 8<
Finished@$FailureD := False;

OnTrack@PS_D := TryToComplete@PSD =!= $Failure

OpenEnded@PS_D := Last@PS@@ITEMSETSDDD =!= 8<
AllTuples@8<, _D := 8<;
AllTuples@8x_, rest___<, list2_ListD := Join@AllTuples@8rest<, list2D, 8x, Ò< & êü list2D
FinishedShiftsOfPair@parserpair@par1_, par2_, eat_, finishedDD :=
Module@8shifts1, shifts2<,
shifts1 = Ò@@1DD & êü FinishedShifts@par1D;
shifts2 = Ò@@1DD & êü FinishedShifts@par2D;
H8par üü Ò, eat<L & êü AllTuples@shifts1, shifts2D

D
Status@PS_D := Which@Finished@PSD, finished, OnTrack@PSD, ontrack, True, deadD;
PairStatus@par1_, par2_D :=
Module@8res<,
DPLevel@1D;
H*DPPrint@"PairStatus checking.\n",par1,"\n EN \n",par2D;*L
res = Which@
Finished@par1D && Finished@par2D, DPPrint@"FINISHED"D; finished,
OnTrack@par1D && OnTrack@par2D, DPPrint@"ONTRACK"D; ontrack,
True, DPPrint@"DEAD"D; deadD;

DPLevel@-1D;
resD;

alive@deadD := False;
alive@_D := True;
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Instantiate@term_, vars_ListD := term êê. HHRule üü ÒL & êü varsL;

"Pretty"Printing the parse items etc
PFullInfo = True;H*Print extended item info*L
Clear@PToStringD
PToString@shiftpos@symbol_, a_, b_, creator_DD := "<" <> PToString@symbolD <>
"," <> ToString@aD <> "," <> ToString@bD <> " by " <> ToString@creatorD <> ">"

PToString@varchange@newvars_, a_, b_, creator_DD := "<" <> PToString@newvarsD <>
"," <> ToString@aD <> "," <> ToString@bD <> ToString@creatorD <> ">"

PToString@
item@tag_, unifiedhead_gterm, left_List, right_List, vars_List, pred_List, suc_ListDD :=
"<" <> ToString@tagD <> ":" <> PToString@unifiedheadD <> "Ø" <> PToString@left, " "D <>
"•" <> PToString@right, " "D <> If@PFullInfo, " vars:" <> PToString@vars, ","D <>
" pred:" <> PToString@predD <> " suc:" <> PToString@sucD, ""D <> ">";

PToString@gterm@sym_StringDD := sym;

PToString@gterm@symbol_String, attributes__DD :=
symbol <> "@" <> PToString@8attributes<, ","D <> "D"
PToString@x_D := ToString@x, InputFormDH*InputForm in order to get 1êk print as 1êk *L
PToString@Equal@var_, value_DD := ToString@varD <> "=" <> ToString@valueD;
PToString@itemptr@setnr_, tag_DD := ToString@tagD <> "ü" <> ToString@setnrD
PToString@s_StringD := s;
PToString@not@s_gtermDD := "~" <> PToString@sD;
PToString@a_ListD := "8" <> PToString@a, ","D <> "<";
PToString@8<, separator_D := 8<;
PToString@8a_<, separator_D := PToString@aD;
PToString@8a_, rest__<, separator_D :=
PToString@aD <> separator <> PToString@8rest<, separatorD;

PToString@par@X_gterm, Y_gtermDD := "H" <> PToString@XD <> "êê" <> PToString@YD <> "L";
PToString@pitem@p_par, setnr_DD := "activesubp" <> PToString@pD <> "ü" <> ToString@setnrD
PToString@GrammarRule@s_gterm, sym_ListDD := PToString@sD <> ":=" <> PToString@sym, " "D;
PToString@subparser@tag_, head_, sharedvars_, eatlist_DD :=
"\nSUBPARSER " <> ToString@tagD <> " for " <>
PToString@headD <> PToString@eatlistD <> "\nEND SUBPARSER " <> ToString@tagD;

H*don't print sharedvars, easy to see from the head.*L
PToString@parserpair@firstparser_PS, secondparser_PS, whoate_, stat_DD :=
"\n***Pair with eatpattern '" <> whoate <> "'. status:" <> ToString@statD <> "\nParser 1" <>
PToString@firstparserD <> "\nParser 2" <> PToString@secondparserD <> "\n***";

PToString@PS@G_List, U_, S_, R_List, T_, N_DD := Module@8setnumber<,
StringJoin@H*leave out grammar, rules: takes much space*L
"\nHead:", PToString@ND,
Table@"\n<SET " <> ToString@setnumberD <> "---\n" <> "term:" <> ToString@T@@setnumberDDD <>
"\nitems:" <> PToString@Select@U@@setnumberDD, Head@ÒD =!= subparser &D, "\n"D <>
"\nshiftpos:" <> PToString@Cases@S, shiftpos@_, setnumber, __DD, ","D <>
PToString@Cases@S, varchange@_, setnumber, __DD, ","D <> "\n" <>
PToString@Cases@U@@setnumberDD, _subparserD, " "D, 8setnumber, 1, Length@UD<D, "\n>"D

D
PToString@RuleAtPos@lhs_, pos_, rhs_DD :=
ToString@lhsD <> " ü" <> PToString@posD <> "-> " <> ToString@rhsD;



PToString@RuleAtPos@lhs_, rhs_DD := ToString@lhsD <> "->" <> ToString@rhsD;

Rule rewriting
ü ApplyRewriteRule

ApplyRewriteRule@rule_RuleAtPos, vars_List, term_D :=
ApplyInstRewriteRule@Instantiate@rule, varsD, vars, termD;

ApplyInstRewriteRule@RuleAtPos@lhs_, pos_, rhs_D, vars_, term_D :=
Module@8subterm, res, newvars<,
subterm = ExtractX@term, posD;
H*Print@"MatchQ@",subterm,",",lhs,"D=",MatchQ@subterm,lhsDD;*L
If@! MatchQ@subterm, lhsD,
$Failure, H*Fail if rule does not fit*L
res = Replace@subterm, Rule@lhs, rhsDD;
If@Head@resD === Code,
$CurrentTerm = term;
8res, newvars< = CodeEval@vars, resDD;
If@res === $Failure, res, ReplacePartX@term, res, posDD

D
D

Rewrite testing
AllRewritesForRule@RewriteRule@rulehead_gterm, rule_RuleAtPosD,
neededhead_gterm, term_D := Module@8vars, res<,
vars = UnifyInherit@neededhead, ruleheadD;
If@vars === $Failure, $Failure,
H*Print@"AllRewritesForRule: vars=",varsD;*L
res = AllRewritesForInstRule@Instantiate@rule, varsD, vars, termD;
H*Instantiate the head*L
8Instantiate@rulehead, Ò@@1DDD, Ò@@2DD< & êü res

D
D
AllRewritesForInstRule@rule : RuleAtPos@lhs_, pos_, rhs_D, vars_, term_D :=
Module@8positions, unsetvars, res<,
If@Is$Var@posD, H*then we need to find out possible $pos ourselves*L
positions = Position@term, lhsD;
res = 8Append@vars, Equal@pos, ÒDD,

ApplyInstRewriteRule@rule ê. pos Ø Ò, vars, termD< & êü positions
,
res = 88vars, ApplyInstRewriteRule@rule, vars, termD<<

D;
H*Print@"candidates:",resD;*L
Select@res, Ò@@2DD =!= $Failure &D

D

ü AllRewrites
AllRewrites@rules_List, neededhead_gterm, term_D := Module@8res = $Failure, n = 1<,
While@n § Length@rulesD && res === $Failure,
res = AllRewritesForRule@rules@@nDD, neededhead, termD;
H*Print@"AllRewrites next. res=",resD;*L
n = n + 1;

D;
res

D
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Modified CFG parser
AddItemset@PS_, newterm_D := Module@8newps = PS<,

newps@@ITEMSETSDD = Append@newps@@ITEMSETSDD, 8<D;
newps@@TERMSDD = Append@newps@@TERMSDD, newtermD;
newpsD;

Scanner@PS_, rewrite_gterm, newterm_D := Module@8newps = PS, n, subparsers, oldlast<,
DPPrint@"scan ", PToString@rewriteDD;
oldlast = Last@newps@@ITEMSETSDDD;
newps = AddItemset@newps, newtermD;
n = Length@newps@@ITEMSETSDDD;
newps = Addshift@newps, shiftpos@rewrite, n - 1, n, 8<DD;
Hnewps = SubScanner@newps, Ò, rewrite, newtermDL & êü Cases@oldlast, pitem@___DD;
newps

D

ü GetSharedVars
GetSharedVars@it : item@tag_, unifiedhead_gterm, left_List, right_List, vars_List,

pred_List, succ_ListD, sharedvars_, setnr_D := If@CanInterruptHere@itD,
8shared@itemptr@setnr, tagD, Select@vars, MemberQ@sharedvars, Ò@@1DDD &DD<,
8<

D;
GetSharedVars@PS@Gram_, 8old___, lastitemset_<, shiftpos_, rules_, terms_, startsym_D,

sharedvars_D := Module@8shared<,
shared = GetSharedVars@Ò, sharedvars, Length@8old<D + 1D & êü lastitemset;
If@shared === 8<, 8<,
TaggedUnion@Sequence üü shared, 81<DD

D;

ü ParScan
ScanEF@eatingparser_, followingparser_, t_, newterm_, sharedvars_D :=
Module@8neweatp, eatpsharedvars, newfollowp, n<,
H*vars change at the eating parser*L
neweatp = Scanner@eatingparser, t, newtermD;
DPPrint@"ScanEF: Scanner complete."D;
H*determine new var values*L
eatpsharedvars = GetSharedVars@neweatp, sharedvarsD;
H*this gives a list like 8shared@8item$625,item$634<,8$xã"1"<,..<*L
H*now, add shift for each shared var-list*L
DPPrint@"shared vars: ", eatpsharedvarsD;
newfollowp = AddItemset@followingparser, newtermD;
n = Length@newfollowp@@ITEMSETSDDD;
Hnewfollowp = Addshift@newfollowp, varchange@Ò@@2DD, n - 1, n, Ò@@1DDDDL & êü
eatpsharedvars;

H*TO DO: subparsers WITHIN subparsers have to be checked, just as in the Scanner.*L
8neweatp, newfollowp<

D;
ParScan@parserpair@par1_, par2_, whoate_, deadD, t_, newterm_, sharedvars_D :=
parserpair@par1, par2, whoate, deadD;

ParScan@parserpair@par1_, par2_, whoate_, stat_D, t_, newterm_, sharedvars_D :=
Module@8par1eats, par2eats<,
DPPrint@"ParScan eating parser 1"D;
par1eats = ScanEF@par1, par2, t, newterm, sharedvarsD;
DPPrint@"ParScan eating parser 2"D;
par2eats = ScanEF@par2, par1, t, newterm, sharedvarsD;
DPPrint@"ParScan complete."D;
8parserpair@par1eats@@1DD, par1eats@@2DD, whoate <> "0",
PairStatus@par1eats@@1DD, par1eats@@2DDDD, parserpair@par2eats@@2DD,
par2eats@@1DD, whoate <> "1", PairStatus@par2eats@@1DD, par2eats@@2DDDD<D



SubScanner@PS_, paritem_pitem, t_, newterm_D :=
Module@8newps = PS, newsubp, newsubparsers, S, subp, subparsers, neweatlist,
startset, endset, shiftposs, finishedparsers, sharedvars, parindex<,
DPPrint@"Subscanner called for ", PToString@paritemDD;
startset = paritem@@1DD;
H*pitem should point to last
itemset. This is normal for the parsing process we use now. *L
endset = Length@PS@@ITEMSETSDDD; parindex = IndexOfLink@PS, paritemD;
H*ptr to the parserpair list of the subparser in question:
subparser@tag,parHX,YL,8sharedvars<,***8parserpair<***D*L

subp = Extract@PS, parindexD;
sharedvars = subp@@3DD;
subparsers = subp@@4DD;
H*DPPrint@"subparser state:",PToString@subpDD;*L
newsubparsers = Flatten@ParScan@Ò, t, newterm, sharedvarsD & êü subparsersD;
H*DPPrint@"new subparsers:",newsubparsersD;*L
newps = ReplacePart@newps, newsubparsers, Append@parindex, 4DD;
H*Check result of these parsers *L

H*For each finished parserpair, add a shiftpos.*L
H*Do this for each parserpair,
as they all may have different settings for the variables *L
finishedparsers = Cases@newsubparsers, parserpair@_, _, _, finishedDD;
H*parserpair@firstp,secondp,whoate,statD*L
H* Get the Finished Shifts and the eat pattern for each finished parser.*L
DPPrint@"finishedparsers=", finishedparsersD;
shiftposs = Union üü HFinishedShiftsOfPairêü finishedparsersL;
H*Union removes duplicates Hand makes a set of the set of setsL*L
H*shiftpos is a list of pairs 8par@..D,eatpattern< *L
DPPrint@"tagged shiftpos found:", shiftpossD;
H* We use pitemlink@pitem,eatpatternD to refer to the 'creator' of this shift. *L
Hnewps = Addshift@newps,

shiftpos@Ò@@1DD, startset, endset, 8pitemlink@paritem, Ò@@2DDD<DDL & êü shiftposs;

H* Add pointer to subparser to last set if at least one parser alive,
so that subparser keeps running next round. *L
If@MemberQ@newsubparsers, parserpair@_, _, _, _?aliveDD,
newps@@ITEMSETS, endsetDD = Append@newps@@ITEMSETS, endsetDD, paritemD

D;
DPPrint@"Subscanner complete"D;
H*DPPrint@"res=",newpsêêPToStringD;*L
newps

D;
UnifySynthesize1@item@_, _, _, 8<, __D, head_D := $Failure;
UnifySynthesize1@item@_, _, _, 8_Code, ___<, ___D, head_D := $Failure;
UnifySynthesize1@item@_, _, _, 8term1_, ___<, vars_, _, _D, head_D :=
UnifySynthesize@Instantiate@term1, varsD, headD;

UnifySynthesize1@item@_, _, _, 8not@term1_D, ___<, vars_, _, _D, head_D :=
UnifySynthesize@Instantiate@not@term1D, varsD, headD;

UnifySynthesize1@_subparser, head_D := $Failure;
UnifySynthesize1@_pitem, head_D := $Failure;H*pitems handled by Subscanner*L
UnifySynthesize1@item@_, _, _, 8par@terms__D, ___<, vars_, _, _D, head_D :=
UnifySynthesize@Instantiate@par@termsD, varsD, headD;
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Addshift@PS_, shift : shiftpos@head_, left_, right_, creator_ListDD :=
Module@8newps = PS, checkitems, oldshift<,
DPPrint@"addshift ", PToString@shiftDH*,"to ",newps*LD;
oldshift = Position@newps@@SHIFTPOSSDD, shiftpos@head, left, right, _DD;
If@oldshift ≠ 8<,
DPPrint@"Shift is already there. Just merging creatorlists."D;
If@Length@oldshiftD ≠ 1, DPError@
"Internal inconsistency: multiple shifts for ", PToString@shiftD, "exist."DD;

oldshift = Sequence üü oldshift@@1DD;
newps@@SHIFTPOSS, oldshift, 4DD = Union@newps@@SHIFTPOSS, oldshift, 4DD, creatorD;
,
newps@@SHIFTPOSSDD = Append@newps@@SHIFTPOSSDD, shiftD;
H*DPPrint@"newps=",newpsêêPToStringD;*L
checkitems = 8Ò, UnifySynthesize1@Ò, headD< & êü newps@@ITEMSETS, leftDD;
H*checkitems is now a list of pairs 8item,newvars< where newvars is
$Failure if item can not use shift, or some var settings if it fits*L

H*DPPrint@"check results ",checkitemsD;*L
checkitems = Select@checkitems, Ò@@2DD =!= $Failure &D;
DPPrint@"items that can shift", checkitemsD;
H*item@tag,gterm,left,right,vars,pred,succD*L
H*Incorporate the required variable requirements for each possible shift*L
H*for each succesful shift, create shifted item and add it.*L
H*Additem copes with cases when item already there.*L
Hnewitem = shiftdot@Ò@@1DD, leftD;

newitem@@5DD = Join@newitem@@5DD, Ò@@2DDD;
newps = Additem@newps, newitem, rightDL & êü checkitems

D;
newps

D
Addshift@PS_, shift : varchange@newvars_, left_, right_, creator_ListDD :=
Module@8newps = PS, checkitems, newitem, oldshift<,
DPPrint@"addshift varchange ", PToString@shiftDH*,"to ",newps*LD;
oldshift = Position@newps@@SHIFTPOSSDD, varchange@head, left, right, _DD;
If@oldshift ≠ 8<,
DPPrint@"Shift is already there. Just merging the creatorlists."D;
If@Length@oldshiftD ≠ 1, DPError@
"Internal inconsistency: multiple shifts for ", PToString@shiftD, "exist."DD;

oldshift = Sequence üü oldshift@@1DD;
newps@@SHIFTPOSS, oldshift, 4DD = Union@newps@@SHIFTPOSS, oldshift, 4DD, creatorD;
,
newps@@SHIFTPOSSDD = Append@newps@@SHIFTPOSSDD, shiftD;
H*DPPrint@"itemset=",newps@@ITEMSETS,leftDDD;*L
checkitems = Select@newps@@ITEMSETS, leftDD, CanInterruptHereD;
DPPrint@"items that can shift varchange", checkitemsD;
H*Incorporate the required variable requirements for each possible shift*L
H*for each succesful shift, create shifted item and add it.*L
H*Additem copes with cases when item already there.*L
Hnewitem = ÒH*create copy*L; newitem@@1DD = Unique@itemD;

newitem@@6DD = 8itemptr@left, Ò@@1DDD<; H*set predecessor*L
newitem@@5DD = SetVars@newitem@@5DD, newvarsD;
newps = Additem@newps, newitem, rightDL & êü checkitems

D;
DPPrint@"completed addshift varchange:", newps êê PToStringD;
newps

D



Predictor
Predictor@PS_, head_, setnr_D :=
Module@8newitems, n, newps = PS, term, res, newparser1, newparser2, tag, sharedvars<,
DPPrint@"predictor called for ", headD;
Which@
Head@headD === not,
DPPrint@"*******Testing notH", PToString@headD, "L*******"D;
If@! Applicable@PS@@GRAMMARDD, PS@@REWRITERULESDD, Last@PS@@TERMSDDD, head@@1DDD,
DPPrint@"******NOTHL IS TRUE******"D;
newps = Addshift@PS, shiftpos@head, setnr, setnr, 8<DD,
DPPrint@"******NOTHL IS FALSE******"D;

D
,
Head@headD === par,
H*check if paritem not there yet. Just to avoid troubles.*L
H*cheap check. Really should do Unification...*L
H*This MAY cause problems at some point and may need correction*L
If@MemberQ@newps@@ITEMSETS, setnrDD, subparser@_, head, _DD,
DPPrint@"Predictor warning: double occurance of " <>
PToString@ND <> "in setnr" <> ToString@setnrDD,

newparser1 =
newparser@PS@@GRAMMARDD, PS@@REWRITERULESDD, Last@PS@@TERMSDDD, head@@1DDD;
newparser2 = newparser@PS@@GRAMMARDD, PS@@REWRITERULESDD,
Last@PS@@TERMSDDD, head@@2DDD;

tag = Unique@subpD;
H*determine the shared vars*L
H*sharedvars do not have a value anyway*L
sharedvars = Intersection@GetVars@head@@1DDD, GetVars@head@@2DDD D;
newitems = 8pitem@setnr, tagD, subparser@tag, head,

sharedvars, 8parserpair@newparser1, newparser2, "", ontrackD<D<;
DPPrint@"subparser added!!!"D;
H*TODO: Check if head has been recognised right away. *L
newps@@ITEMSETS, setnrDD = Join@newps@@ITEMSETS, setnrDD, newitemsD;

D
,
True, H*default case: predict nonterminal*L
H*DPPrint@"Searching for ",head," in ",newps@@GRAMMARDDD;*L
newitems =
Select@8Ò, UnifyInherit@head, Ò@@1DDD< & êü newps@@GRAMMARDD, Ò@@2DD =!= $Failure &D;

H*newitems is list of pairs 8grammarrule,unificationvars<*L
DPPrint@"new predictor items:", newitemsD;
Hnewps = Additem@newps, item@Unique@itemD, Instantiate@Ò@@1, 1DD, Ò@@2DDD,

8<, Ò@@1, 2DD, Ò@@2DD, 8<, 8<D, setnrDL & êü newitems;
D;
newps

D

Additem
addsuctoitem@ps_, item_itemptr, new_itemptrD := Module@8replacement<,

H*DPPrint@"addsuctoitem",ps,item,newD;*L
replacement = getitem@ps, itemD;
H*DPPrint@"addsuctoitem replacing ",replacementD;*L
replacement@@7DD = Union@replacement@@7DD, 8new<D;
replaceitem@ps, item, replacementD

D;
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addpredtoitem@ps_, item_itemptr, new_itemptrD := Module@8replacement<,
H*DPPrint@"addsuctoitem",ps,item,newD;*L
replacement = getitem@ps, itemD;
H*DPPrint@"addsuctoitem replacing ",replacementD;*L
replacement@@6DD = Union@replacement@@6DD, 8new<D;
replaceitem@ps, item, replacementD

D;
Additem@PS_,
it : item@tag_, head_gterm, left_, right_, vars_List, pred_List, suc_ListD, setnr_D :=
Module@8newps = PS, sitem, p, existingitem, existingitemptr, rightends<,
DPPrint@"Additem ", PToString@itD, " to ", setnrD;
H*instantiatedhead=Instantiate@head,varsD;
instantitem=it;instantitem@@2DD=instantiatedhead;*L
p = Position@newps@@ITEMSETS, setnrDD, item@_, head, left, right, vars, __DD;
If@p === 8< H*Item is NOT yet there*L,
newps@@ITEMSETS, setnrDD = Append@newps@@ITEMSETS, setnrDD, itD;
If@right === 8<,
DPPrint@"Call Completer"D;
newps = Completer@newps, itemptr@setnr, tagDD
,
H*DPPrint@"head =",Head@right@@1DDDD;*L
If@Head@right@@1DDD === Code,
DPPrint@"code blok found"D;
sitem = shiftdot@it, setnrD;
$CurrentTerm = PS@@TERMS, setnrDD;
8res, sitem@@5DD< = CodeEval@vars, right@@1DDD;
H*DPPrint@"result:",sitem@@5DDD;*L
If@res =!= $Failure, newps = Additem@newps, sitem, setnrDD
,
DPPrint@right@@1DD, " instantiated gives ", Instantiate@right@@1DD, varsDD;
newps = Predictor@newps, Instantiate@right@@1DD, varsD, setnrD

D
D;
H*DPPrint@"add finished. set now ",PToString@newpsDD;*L
H*Update suc links in the predecessors. *L
H*this update only OK if item was added in first place!!*L
Hnewps = addsuctoitem@newps, Ò, itemptr@setnr, tagDDL & êü pred;
H*DPPrint@"updated suc finished. set now ",PToString@newpsDD;*L
,
H*Item already there. This can happen in various ways
and pred, suc both may be wrong in the item already there.
Strictly we need to check only new combinations of
endsets of already existing item with the startsets of this item.
Here we are lazy: add the link and HreLcheck ALL endpoints.*L

existingitem = Extract@newps@@ITEMSETS, setnrDD, p@@1DDD;
DPPrint@"ALREADY THERE. existing:", existingitemD;
existingitemptr = itemptr@setnr, existingitem@@1DDD;
H*create links between existing and all pred of new item.*L
Hnewps = addsuctoitem@newps, Ò, existingitemptrD;

newps = addpredtoitem@newps, existingitemptr, ÒD L & êü pred;
DPPrint@"newps after addpredtoitem and addsuctoitem:", newps êê PToStringD;
H*and re-run completer on all right-complete ends*L
rightends = endsets@newps, existingitemptrD;
DPPrint@"right ends:", rightendsD;
Hnewps = Completer@newps, ÒDL & êü rightends;

D;
newps

D



Completer@PS_, it : itemptr@set_, tag_DD := Module@8newps = PS, theitem, start, head<,
DPPrint@"item is complete. Checking"D;
theitem = getitem@newps, itD; H*item@tag,head,left,right,vars,pred,sucD*L
start = startsets@newps, itD;
DPPrint@"start items =", startD;
head = theitem@@2DD êê. HHRule üü ÒL & êü theitem@@5DDL;
H*DPPrint@"instantiated head:",headD;*L
Hnewps = Addshift@newps, shiftpos@head, Ò, set, 8it<DDL & êü start;
newps

D

The ApplicableParser
Applicable@grammar_, rewriterules_, startterm_, startsym_gtermD :=
Module@8grammar1, startsym1, newps, rule, newterms,
res = $Failure, checkitems, pickedrule, pickedvars<,
If@terminal@startsym@@1DDD,
H*If terminal, we can't use grammar because we need start symbol*L
H*Then we tweak the grammar with a new start symbol.*L
startsym1 = gterm@"UnusedGrammarSymbol54"D;
grammar1 = Append@grammar, GrammarRule@startsym1, 8startsym<DD;
,
grammar1 = grammar; startsym1 = startsym;

D;
newps = newparser@grammar1, rewriterules, startterm, startsym1D;
DPPrint@"start parser:\n", PToString@newpsDD;
res = TryToComplete@newpsD;
DPPrint@"****TryToComplete returned:", PToString@resDD;
Finished@resD

D

TryToComplete

ü AllBlockedItems
AllBlockedItems@ps_PSD := Module@8directitems, subitems, lastitemset<,
lastitemset = Last@ps@@ITEMSETSDDD;
directitems = Cases@lastitemset,
item@tag_, head_, lhs_, 8gterm@_?terminal, ___D, ___<, vars_, prev_, next_DD;

subitems = Union üü HAllBlockedItems@ps, ÒD & êü Cases@lastitemset, _pitemDL;
Union@directitems, subitemsD

D
AllBlockedItems@ps_PS, ptr_pitemD := AllBlockedItems@getpitem@ps, ptrDD;
AllBlockedItems@subparser@tag_, par_, sharedvars_, ppairs_ListDD :=
Module@8aliveparsers, blockeditems<,
aliveparsers = Cases@ppairs, parserpair@_, _, _, _?aliveDD;
blockeditems =
Union@AllBlockedItems@Ò@@1DDD, AllBlockedItems@Ò@@2DDDD & êü aliveparsers;
Union üü blockeditems

D
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ü TryToComplete
TryToComplete@PS_D :=
Module@8blocked, terminals, m, n, newterms, res = $Failure, ps2, rewriterule<,
DPPrint@"TryToComplete trying next level on", PS êê PToStringD;
H*DPPrint@"PS=",PSD;*L
If@Finished@PSD,
res = PS H*we are already finished.Return parse state*L
,
H*Try all possible next rewrites. Before we tried ALL rules here,
but since we use attributes we need to generate our tries from the state at hand,
as we need to get the attribute values.*L
blocked = AllBlockedItems@PSD;
DPPrint@"TryToScan... trying to unblock ", blockedD;
terminals = Instantiate@Ò@@4, 1DD, Ò@@5DDD & êü blocked;
DPPrint@"terminals that may be applicable=", terminalsD;
H*terminals= 8gterm< List referring to terminals Hrewrite actionsL that
may proceed the parse. Now check if we can apply one of these rewrite
actions to the term at hand. Just finding a rule with matching name
is insufficient: we have to apply the rule and see if it succeeds. *L

For@m = 1, m § Length@terminalsD && res === $Failure, m++,
t = terminals@@mDD;
allrewrites = AllRewrites@PS@@REWRITERULESDD, t, Last@PS@@TERMSDDDD;
DPPrint@"possible rewrites with rule ", t êê FullForm, ":", allrewritesD;
H*allrewrites=List of pairs 8newhead,newterm<. Try each possibility*L
For@n = 1, n § Length@allrewritesD && res === $Failure, n++,
DPPrint@"trying rewrite ", n, ":", allrewrites@@nDDD;
ps2 = Scanner@PS, allrewrites@@n, 1DD, allrewrites@@n, 2DDD;
DPPrint@"scanner gives\n", PToString@ps2DD;
res = TryToComplete@ps2D;

D
D;

D;
DPPrint@"TrytoComplete returning "D;
res

D;



Generating hints

ü FindPathBack
FindPathBack@PS_, it : itemptr@set_, tag_D, startset_D :=
Module@8theitem, preds, previousitem, previoussymbol, ms, n, res<,
theitem = getitem@PS, itD;
H*item@tag,N,left,right,vars,pred,succD*L
DHPrint@"findpath back from ", tag, ":", theitem êê PToStringD;
preds = theitem@@6DD;
If@preds === 8<,
H*We arrived at the start of a path *L
If@set ã startset, 8<, NullD,
H*Not yet at start, check if there is solution for one of back steps*L
res = Null; n = 0;
While@ n < Length@predsD && res === Null,
n = n + 1;
res = FindPathBack@PS, preds@@nDD, startsetD;
DHPrint@"findpathback returned for " tag, ":", resD;

D;
If@res =!= Null, previousitem = getitem@PS, preds@@nDDDD;
DHPrint@"cheching which case"D;
Which@
H*Check if we actually found something. *L
res === Null, Null, H*no, then return immediately*L
H*Check dot position. If not changed, then *L
H* this must have been a varchange, no shift*L
H*We ignore the details of varshift, *L
H*the eatpattern seems enough to reconstruct the parse*L
Length@theitem@@3DDD ã Length@previousitem@@3DDD, res,

H*else this was a regular shift.*L
H*If it was a Code block, there is no related shiftpos, *L
H*and we are ready*L
Head@previousitem@@4, 1DDD === Code, res,

H*If it was a not, there is no regular shift either*L
Head@previousitem@@4, 1DDD === not, res,

H* All cases checked, must be regular shift*L
True,
H*Instantiate the previous symbol with the vars at that time*L
DHPrint@"regular shift."D;
previoussymbol = Instantiate@previousitem@@4, 1DD, previousitem@@5DDD;
DHPrint@"MatchingSfhit called from FindPathBack"D;
Append@res, MatchingShift@PS, shiftpos@previoussymbol, preds@@nDD@@1DD, set, NullDDD

D
D

D;
MatchingShift@PS_, s : shiftpos@not@t_D, __DD := s;

MatchingShift@PS_, sp : shiftpos@t_, left_, right_, _DD := Module@8matches, shift<,
shift = ReplacePart@sp, 4 -> $anythingcreators612D;
DHPrint@"Getting shift ", shiftD; matches = 8Ò, Unify@shift, ÒD< & êü PS@@SHIFTPOSSDD ;
matches = Select@matches, Ò@@2DD =!= $Failure &D;
DHPrint@"matches found:", matchesD; Assert@matches =!= 8<,
"MatchingShifts failed. There seems no shift like " <> PToString@shift êê PToStringDD;
matches@@1, 1DD

D;
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ü ParseTreeForShift
ParseTreeForShift@ps_PS, shiftpos@term_gterm, left_, right_, 8<DD := node@term, 8<D;
ParseTreeForShift@ps_PS,
shiftpos@term_gterm, left_, right_, 8alternative1_, ___<DD := node@term,
GenerateParseTree@ps, FindPathBack@ps, alternative1, leftDDD

GenerateParseTree@PS_, shiftpos_ListD := ParseTreeForShift@PS, ÒD & êü shiftpos;

ParseTreeForShift@ps_PS,
shiftpos@par@head1_, head2_D, left_, right_, 8pitemlink@pitem_, eatpattern_D, ___<DD :=
Module@8thesubparser, parserpairs, shiftpat, thepair<,
thesubparser = getpitem@ps, pitemD;
parserpairs = thesubparser@@4DD;
H*Ò@@3DD of each parserpair is the eatpattern*L
thepair = Select@parserpairs, StringStartsWith@Ò@@3DD, eatpatternD &D;
Assert@thepair =!= 8<, "Subparser does not have requested eat pattern."D;
thepair = thepair@@1DD;
shiftpat = thesubparser@@2DD;
DHPrint@"shiftpat=", shiftpatD;
parshift@shiftpat, eatpattern,
ParseTreeForShift@thepair@@1DD,
MatchingShift@thepair@@1DD, shiftpos@head1, left, right, 8<DDD,

ParseTreeForShift@thepair@@2DD, MatchingShift@thepair@@2DD,
shiftpos@head2, left, right, 8<DDD

D
D

ü GetSuggestionTree
GetSuggestionTree@ps_PSD := Module@8suggestion, tree<,

suggestion = TryToComplete@psD;
DPPrint@"returned to GetSuggestionTree."D;
If@suggestion === $Failure, $Failure,
DHPrint@"hint found, Building tree. suggestino=", suggestionD;
tree = ParseTreeForShift@suggestion, FinishedShifts@suggestionD@@1DDD;
H*tree is a parse tree, now only get the suggestion out. NYI*L
tree

D
D;

ü GetTerminalsFromTree
GetTerminalsFromTree@node@gterm@name_, para___D, 8<DD :=
If@terminal@nameD, 8gterm@name, paraD<, 8<D;

GetTerminalsFromTree@node@gterm@name_, para___D, children_DD :=
Join üü HGetTerminalsFromTree êü childrenL;

GetTerminalsFromTree@parshift@par@X_, Y_D, eatpattern_, P1_, P2_DD := Module@8t1, t2<,
t1 = GetTerminalsFromTree@P1D;
t2 = GetTerminalsFromTree@P2D;
MakePermutation@t1, t2, eatpatternD

D
MakePermutation@l1_List, l2_List, perm_StringD :=
MakePermutation@l1, l2, Characters@permDD;

MakePermutation@8x_, l1___<, l2_List, 8"0", perm___<D :=
Join@8x<, MakePermutation@8l1<, l2, 8perm<DD;

MakePermutation@l1_List, 8x_, l2___<, 8"1", perm___<D :=
Join@8x<, MakePermutation@l1, 8l2<, 8perm<DD;

MakePermutation@8<, 8<, 8<D := 8<;



ü VisualizeTree makes a 2 D tree plot of the parse graph
VisualizeTree@tree_D := Module@8rootlabel, treeterms<,

8rootlabel, treeterms< = ConvertTree@treeD;
LayeredGraphPlot@treeterms, VertexLabeling Ø True,
DirectedEdges Ø True, PackingMethod Ø "LayeredTop", AspectRatio Ø 0.5D

D;
ConvertTree@node@N_, items_ListDD :=
Module@8node, subtreesplusroot, roots, subtrees<,
node = PToString@ND <> " " <> ToString@Unique@DD;
If@items === 8<, 8node, 8<<
,
subtreesplusroot = Transpose@ConvertTree êü itemsD;
roots = subtreesplusroot@@1DD;
subtrees = Join üü subtreesplusroot@@2DD;
8node, Join@Hnode Ø ÒL & êü roots, subtreesD<

D
D;

ConvertTree@parshift@paritem_, eatpat_, P1_, P2_DD := Module@8node, r1, t1, r2, t2<,
node = PToString@paritemD <> " " <> ToString@Unique@DD;
8r1, t1< = ConvertTree@P1D; 8r2, t2< = ConvertTree@P2D;
8node, 88node Ø r1, "êê"<, 8node Ø r2, eatpat<, Sequence üü t1, Sequence üü t2<<

D;
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Appendix B : Code Module
SetAttributes@Code, HoldAllD

Protect@$FailureD

8$Failure<

VarSet handling (SetVars used by AddShift)
ClearVar@varset_List, x_D := DeleteCases@varset, Equal@x, _DD;

SetVar@varset_List, v : Equal@x_, $VarWasClearedDD := ClearVar@varset, xD;
SetVar@varset_List, v : Equal@x_, val_DD := Append@ClearVar@varset, xD, vD;

SetVars@varset_List, newvalues_ListD := Module@8newvarset = varset<,
Hnewvarset = SetVar@newvarset, ÒDL & êü newvalues;
newvarset

D;

SetEnv@varset_D := HSet üü ÒL & êü varset;

SetAttributes@ClearEnv, HoldAllD

ClearEnv@varlist_D := Clear@varlistD;

SetAttributes@GetEnv, HoldAllD

GetEnv@varlist_D := Module@8values<,
values = varlist; Clear üü varlist; res = 8varlist, values<

D;

GetVars
GetVars@snippet_D := Module@8leaves, vars<,
leaves = Cases@snippet, _, 8-1<D;
H*Union filters out duplicates*L
H*Union@Select@leaves,StringMatchQ@ToString@ÒD,"$ü"D&DD*L
vars = Union@Select@leaves, StringMatchQ@ToString@ÒD, "$*"D &DD;
Complement@vars, 8$Failure<D

D

CodeEval
EstimateAffectedVars@c_CodeD := Module@8c1<,

H*DPPrint@"estimating affected vars of ",cD;*L
H*We remove rhs of Set elements,
as Mathematica will try to evaluate it after the repeatreplace...*L
c1 = c êê. 8Set Ø AssignOpera, AssignOpera@x766_, y_D Ø ChangedVar@x766D,

CompoundExpression Ø blabla, Clear Ø ChangedVar,
ChangedVar@x766__D Ø Changed@Hold@x766DD<;

GetVars@Cases@c1, Changed@__D, InfinityDD
D



ü CodeEval

CodeEval@startvars_List, snippet_CodeD :=
CodeEval@startvars, snippet, EstimateAffectedVars@snippetDD

CodeEval@startvars_List, snippet_Code, affectedvars_ListD :=
Module@8allvars, newvars, res<,
allvars = GetVars@8startvars, snippet<D;
DPPrint@CodeEvalLocal1@allvars, startvars, snippet, affectedvarsDD;
DPPrint@"$CurrentTerm=", $CurrentTermD;
8res, newvars< = Check@CodeEvalLocal@allvars, startvars, snippet, affectedvarsD,
Print@"Problem with strategy. Code block is incorrect. Intercepted and

returning $Failure instead. Code block:", snippetD; 8$Failure, 8<<D;
8res, SetVars@startvars, MapThread@Equal, 8affectedvars, newvars<DD<

D

SetAttributes@checkvalue, HoldAllD

checkvalue@x_D := If@ValueQ@xD, x, $VarWasClearedD

CodeEvalLocal@allvars_, startvars_List, snippet_Code, affectedvars_D := Module@allvars,
HSet üü ÒL & êü startvars; H*set vars to init value*L
H*run snippet and return var values*L
H*Note, we rely here on strict leftright eval order
of Mathematica to get this job done without using new local vars*L

8Evaluate üü snippet, ReleaseHold@Map@checkvalue, Hold@affectedvarsD, 8-1<DD<
D
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Appendix C: Unification
H*DUPrint@x__D:=Print@xD;*LH*Debug printer for unify*L
Is$Var@t_D := StringMatchQ@ToString@tD, "$ü"D

Unify
Unify@s_, t_D :=
Catch@Unify1@s ê. x733_?Is$Var Ø Att@x733D, t ê. x733_?Is$Var Ø Att@x733D, 8<DD;

Unify1@s1_, t1_, s_D := Module@8s1, s, t, n<,
DUPrint@"s1=", s1, " t1=", t1, " s=", sD;
s1 = Rule üü Ò & êü s;
DUPrint@"s1=", s1D;
s = s1 êê. s1; t = t1 êê. s1;
DUPrint@"After substi: s=", s, ",t=", tD;
Which@
H*case1: s=var & sãt*L
Head@sD === Att && s === t, s,
H*case2: s,t both not a variable, so atom or function*L
H*We check atoms separately, otherwise 3 and 5 will match*L
AtomQ@sD && AtomQ@tD, If@s === t, s, Throw@$FailureDD,
Head@sD =!= Att && Head@tD =!= Att,
If@Head@sD === Head@tD && Length@sD ã Length@tD,
s1 = s;
For@n = 1, n § Length@sD, n++, s1 = Unify1@s@@nDD, t@@nDD, s1DD; s1,
Throw@$FailureD

D,
H*case 3: s not a var Ht might beL*L
Head@sD =!= Att, Unify1@t, s, sD,
H*case 4: s occurs in t*L
Position@t, sD =!= 8<, Throw@$FailureD,
H*Case 5: s is var, unify with t*L
True,
Append@s, 8s, t<D

D
D;

UnifyInherit
RvarOnLeft@8Pat@R, rest__D, more_<D := True;



UnifyInherit@s_, t_D := Module@8s1, s2, res, relevant, ass<,
DUPrint@"UnifyInherit:", s, " with ", tD;
s1 = s ê. x77_?Is$Var Ø Att@L, x77D;
t1 = t ê. x77_?Is$Var Ø Att@R, x77D;
DUPrint@"match ", s1, " ", t1D;
res = Catch@Unify1@s1, t1, 8<DD;
DUPrint@"unify gave ", resD;
If@res === $Failure, res,
H*Check that all *L
H*filter relevant but in wrong form and bring them in right form*L
relevant = Union@Cases@res, 8_, Att@R, __D<D, Cases@res, 8Att@R, __D,

_<DD;
H*Swap a rule if left hand is not the assignment to the Pat@RD variable*L
relevant = HIf@MatchQ@Ò, 8Att@R, __D, __<D, Ò, 8Ò@@2DD, Ò@@1DD<D & êü relevantL;
H*Drop cases where RHS still contains LHS variable.*L
H*Dropping restrictions means we search too much *L
relevant = Select@relevant, Position@Ò@@2DD, Att@L, __DD ã 8< &D;
H*Print@"relevant=",relevantD;*L
ass = Hrelevant ê. Att@R, bla__D Ø blaL;
Equal üü Ò & êü ass

D
D;

UnifySynthesize
TryRemoveRHS@8a___, 8Att@R, v1__D, Att@L, v2__D<, b___<D :=
TryRemoveRHS@8a, 8Att@L, v2D, Att@R, v1D<, b<D;

TryRemoveRHS@8a___, 8Att@R, v1__D, anything_<, b___<D :=
TryRemoveRHS@8a, b< êê. Att@R, v1D -> anythingD;

TryRemoveRHS@8a___, 8Att@L, v1__D, Att@R, v2__D<, b___<D :=
TryRemoveRHS@8a, b< ê. Att@R, v2D Ø Att@L, v1DD;

TryRemoveRHS@finish_D :=
If@Position@finish, Att@R, __DD =!= 8<, $Failure, finishD

UnifySynthesize
UnifySynthesize@s_, t_D := Module@8s1, s2, res, relevant, ass<,

s1 = s ê. x77_?Is$Var Ø Att@L, x77D;
t1 = t ê. x77_?Is$Var Ø Att@R, x77D;
res = Catch@Unify1@s1, t1, 8<DD;
DUPrint@"res=", resD;
If@res === $Failure, res,
H*filter relevant but in wrong form and bring them in right form*L
H*relevant=Union@Cases@res,8_,Att@L,__D<D, Cases@res,8Att@L,__D,

_<DD;*L
relevant = res;
H*Swap an assignment if left hand is not the assignment to the Pat@LD variable*L
H*relevant=HIf@MatchQ@Ò,8Att@L,__D,__<D,Ò,8Ò@@2DD,Ò@@1DD<D& êü relevantL;*L
relevant = TryRemoveRHS@relevantD;
DUPrint@"after tryremoveRHS we have ", relevantD;
H*relevant may be $Failure, but subsequent will not change that*L
ass = relevant ê. Att@L, bla__D Ø bla;
Equal üü Ò & êü ass

D
D;
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