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Abstract

Ambient intelligence, distributed agent systems,
smart buildings and other emerging architectures
leave the user lost between large amounts of
autonomous entities or agents. With agents in cars,
personal devices and other mobile systems, the set of
agents available to the user can change rapidly,
adding to the problems. We propose a set of agent
relations to organize agents in an ad hoc situation.
There are dynamic task-, location- and user relations,
creating multiple relation hierarchies in agent space.
These hierarchies allow robust, space- and task
limited, context-sensitive search through agent space.
We show how to use this structure to keep user
interfaces near the user, and how it can be used to
support the user in finding the agent he needs in a
context-sensitive way.

1. Introduction

In future ambient intelligence systems, huge amounts
of agents will control services ranging from room
lighting, heating, coffee machines, total building
climate, city touristic routes up to global travel
information. An increasing number of those agents
will be non-stationary, such as agents in cars, personal
devices, and movable furniture. Agents may be
available only temporarily, depending on the user's
position, network availability etc. It would be fairly
impossible to ask the user to locate these agents
manually, or to have him browse through a complex
menu hierarchy to select the appropriate agent.
Preferably the user should be able to express his
wishes in natural language. Natural language enables
the user to accurately describe what he needs, without
the need of a priori knowledge. Next, the user's request
has to be understood by the system. Natural language
understanding is most robust when the context of the
request (type of service targeted, location, etc) is
highly restricted. Therefore, parsing and understanding
the user's command is best done separately for every

service, instead of having a single parser/translator that
would need to know every possible service in the
system.
Further, to simplify selection of the desired agent, it
would help if the system would take into account
context information about the user and about the tasks
the user is performing. For instance, knowing the
position of the user, the question "give me some light"
would then only refer to the 'light' agents in the
particular room the user is in. Knowing the previous
user requests could provide a cue about the new
question. Only if a question can not be addressed by a
recently engaged agent then the system should de-focus
and search in a wider circle.
Once an agent matching the user's request has been
found, the system should automatically connect the
user to the appropriate agent and its command
interface. The selected agent may handle the request
itself, but it may also translate the user's request into
several requests to other agents that all handle a part of
the task.
In this paper we present an architecture to organize
such an ad-hoc agent world robustly and efficiently, in
a way that supports our goal of enabling human-
oriented, context dependent service discovery using
natural language. First we structure the agent world by
relating agents in task sense and location sense, and by
representing relations between the user and the agents.
This knowledge is embedded in the individual agents,
such that the system suits an ad-hoc environment.
Next, we present two essential services running on this
architecture: a Service Matcher that searches for agents
fitting the user's natural language request, and a
'KeepGUIWithUser' service that keeps the user interface
windows with the user as the user moves around in the
world.
The paper is organized as follows. We start with a
discussion of existing techniques for service matching
and their shortcomings. Next, we present our
architecture. Then we describe how the ServiceMatcher
and KeepGUIWithUser services run on top of this
architecture. We also describe a number of supporting
agents, to give a coherent system overview. Then we



discuss the robustness of our system. Finally we
discuss our prototype implementation and give some
performance indications.

2. Previous Work

Usually the term service discovery (SD) is used for
locating agents for a certain service. We start with a
discussion of the existing technical solutions for SD
and their problems. The technical solutions mostly
ignore the user, and SD usually refers to a one-way
mechanism from service name to agent. Some attempts
have been done to come to a more user friendly SD,
mostly by using context information to select relevant
services. We look at the area of natural language
processing, where using context information is much
more mature.

2.1. Service Discovery

Current SD architectures can be classified into two
approaches: the service discovery service approach and
the service abstraction approach.
The service discovery service  (SDS) approach is based
on using a 'yellow page' like service agent. An SDS
agent/database/repository host can be asked which
agents can deliver a certain type of service. Sometimes
additional requirements can be set, for instance in
Semantic Web approaches (e.g. [1]). The SDS returns a
list of agents including the protocol(s) that each agent
in the list uses. The user of the list then has to pick an
agent and negotiate with it. To negotiate, the user has
to find the protocol specifications, construct messages
and negotiate with the agent according to the protocol.
The service abstraction approach is slightly different.
The user just picks a protocol that suits his needs, and
sends a service request to a 'resolver' agent. The
resolver figures out which of the available agents can
(best) handle the request, and forwards the request to
that agent. The idea is that it does not matter which
agent fulfils the request as long as all service
requirements as set in the request are met.
Straightforward implementation of either approach
results in a single, central SDS [2, 3, 4, 5, 1] or
resolver [6, 7]. This makes the system highly
vulnerable to network failures, and thus not robust for
the ad hoc situations we foresee for the future.
Several attempts have been made to distribute the
knowledge about available services over the system.
At one extreme, every node can be checked
individually until the service is found (e.g., [8]). This
approach is very robust for network failures, missing
services etc, and it will always find the best matching
service. Unfortunately it floods the network with
service requests, which is extremely energy inefficient
and slow.  

At the other extreme, all nodes can keep pointers to all
available services. For instance in the ACAN system
[9] all network nodes keep track of the nearest agent for
each service. Chen and Kotz [10] propose a similar
system, but here service names can even change at run
time, for instance a camera agent may have the name of
the room in its name. In a proposal to adapt FIPA
agents for ad hoc situations [11] it is proposed to make
the SDS optional for a platform, and to reconfigure a
cluster of un-managed agents into an ad hoc cluster.
One problem with all these distributed approaches is
that when the agent having the service descriptions
moves out, many agents may have to be informed
about modified or broken services, making the
reconfiguration expensive.
Another problem with this approach is that in the
massive agent scenario we envision, the number of
services would be way too large to keep track of at
each node. As Ratsimor et al. put it [12], existing
approaches are based on the supermarket model (few
services, many-customers) while our future scenario
more resembles a bazaar model (many services, many
customers).
Other approaches as Jini [13] and the Intentional
Naming System [14] allow multiple SDSs to be
organized hierarchically, allowing unresolved lookup
requests to be passed upwards. Although this allows
distribution of the SDSs, these systems are not
sufficiently robust for ad hoc situations, because every
node in the hierarchy is a single point of failure.
Ratsimor et al.[12] avoid keeping track of all services,
by using caching of services in the same 'alliance' of
partner agents. They propose a lightweight version of a
SDS to be available in every agent. If a service is not
available in the alliance, they can use multicasting to
other alliances in the vicinity – instead of broadcasting
– to avoid overloading the network, but they may need
broadcasting depending on the situation. Multicasting
can target for the 'most powerful' nodes, by checking
the cache size of known nodes. This approach seems
promising but they offer no measurements or
evaluations. Remaining problems with this approach
are that only 'good' neighbouring services are checked,
ignoring the purpose and known relations of agents.
Furthermore there is no mechanism to limit the search
scope of a search and the risk stays of flooding the
network with requests.
Crespo and Garcia-Molina [15] improve this system. If
a node can not answer the service looked for, they
forward the query to the node that is most likely to
know the answer, instead of to all neighbours. The
route indices do not store the target agent for each
service, but instead they indicate the neighbours
through which that type of services can be found.
Furthermore they introduce a maximum hop count,
enabling limits on the search scope. They show that
with the appropriate heuristics, the performance can be



improved with one to two orders of magnitude
compared to the brute-force 'ask all' approach, and up
to 100% compared to random forwarding. Although
this approach avoids network flooding, it is not clear
how the speed of the search compares to a more
parallel search as in Ratsimor et al. Furthermore, this
approach requires information to be stored for every
<service type, neighbour> pair. We assume a huge
number of services available, and it is not clear that the
lists of all such pairs will stay acceptably small.
Another problem, specific for the service abstraction
approach, is that an increasing number of additional
constraints will be required if a very specific service
has to be targeted, for instance a light near the user.
Searching for agents matching all these constraints will
become very expensive and overload the network in
massive agent worlds.

2.2. Human Friendly Service Discovery

In spite of the huge number of SD protocols, little
attention has been paid to supporting a human user in
finding useful services. Current technologies all require
the user to use the exact naming and ontology as
defined by the designers of that technology [16]. As a
result, human users unfamiliar with the ontology at
best have to browse lists of services, and even users
that know the naming and ontology still have to pick
one or a composition of services that best serve their
specific task from the list. As the number of services
increases, learning all related ontologies and names,
and picking from a list of matching services will
become impractical to totally infeasible [17]. With the
service abstraction approach, it may be hard or
impossible to specify the exact target agent, because
the resolver talks only in abstract terms. This makes
service abstraction unusable in certain situations.
Another approach would be to use context information,
such as his location, his task at hand, his plans and
goals, his previous tasks, etc, to focus the search space
and filter out good candidates.
Most frameworks claiming context-aware service
discovery have a very limited view on context and its
use. In several systems, the user's location and some
environment parameters are made available, and the
services have to look for themselves what they
consider appropriate in this 'context' (e.g., [18], [19]).
Ratsimor et al. [12] suggest to use the user's
preferences and constraints for service discovery.
However they only use these to control the resources
and communications of the service discovery service,
and not to select the appropriate services.
Context and its use is a critical and heavily researched
aspect in the area of natural language processing and
understanding. Natural language seems particularly
useful for human friendly SD, because it allows the
user to be vague or descriptive, and because it allows

to specify both his goals and/or his plans. Natural
language has been used in a few cases to aid the user
for SD. Balke and Wagner [16] start an SD attempt
with a keyword (apparently entered by the user) match.
Resulting services are requested to make an offer given
the user's hard requirements (in their case, a travel
scenario with arrival time and location), and then they
pick that offer best matching the user's preferences (the
'soft requirements', e.g. 'business class'). However in a
massive agent world, such an approach would drown
the network with requests for offers.
Coen et al. [20] have a single room equipped with
about hundred agents, each one controlling a device.
Every agent may listen to the user after the keyword
"computer" is spoken by the user. Each agent has its
own grammar, optimized for its specialism. It
individually monitors that parts of the user's context
relevant to him in order to determine whether it
actually will listen or not. Using the context and
natural language to find the required service is similar
to our approach. One problem with their approach is
that it is unclear how the room would react on
multiple users having different tasks at the same time,
it seems that they would heavily interfere with each
other. When several similar devices are close to each
other and all hearing the user, the user will have
difficulties targeting a single device. If a vague request
is posed, he might be overwhelmed with responses.
Furthermore, as with the approach of Balke et Wagner,
their approach seems not to scale to large areas.
Finally, the user has to know where the device is and
to go there physically before he can address it. This
last problem is larger than it looks at first, for instance
many services do not have a natural, human size,
visible and/or unique physical counterpart.
The Phoenix parser [21] is a speech parser. It aims at a
single speech-based application covering multiple
services simultaneously, such as flight planning, hotel
booking and car rental. Every service has a 'frame'
containing the input fields for the request (e.g.,
departure time and location for a travel planner). The
Phoenix parser can try to fit a user utterance to
multiple frames [22]. Thus, frame fitting works as a
kind of service selection mechanism. Real life tests
showed that the frame based approach is very robust
and effective. However, this parser has never been
intended for fitting a large number of frames (services).
More comprehensive attempts to understand user
utterances within the current context have been done
for story understanding. On the one hand there is the
plan-goal based approach (e.g., [23]), using logic to
explain and relate utterances. Several attempts have
been made to extend such plan-goal based approach for
user interaction (e.g., [24]). However these approaches
all have a very heavy, central interpreting core where
all knowledge is gathered. We do not see how this



approach could fit in a distributed ambient intelligence
situation.

On the other hand there is a more fuzzy approach,
relying on estimated 'distances' between concepts that
were touched on in the dialog (e.g., [25]). For
explaining stories, this approach seems just as effective
as the plan-goal based approach. Additionally, the
concept knowledge graphs and marker passing
mechanisms of Norvig [25] are well suited to adopt for
SD in a distributed ad hoc agent architecture.

3. Architecture

The remainder of this paper describes our approach.
We introduce an ontology for agent relations to
organize the agents. The agents themselves are
responsible for knowing and communicating their
relations.

Next, we present two crucial services for ad hoc
environments: service matching and keeping GUIs
with the user. The service matching (SM) mechanism
is central to our system. It helps the user in locating
the service he needs. This mechanism matches a user's
request in natural language with the available
agents/services, using the user's context to restrict the
potentially matching services.

We end with some decisions and findings in our
prototype implementation.

We have only limited space here to describe our
architecture. For the fine details we refer the reader to
the technical documentation of our prototype [26].

3.1. Ontology for Agent Relations

This section presents a simple but effective method to
organize an ad hoc agent system. To structure an ad
hoc agent environment, every agent is supposed to (or
is configured to) know about its context. To
communicate this knowledge, all agents speak our
"RelatedAgent" ontology. Fig. 1 shows the ontology
(in the style of Protégé [27]; indentation means sub
classification, and words preceded by ':' are slots).
Effectively, this overlays the agent world with a
location tree, a task graph and user-related structures.
Because every agent knows its place, this builds a
robust, distributed system suiting an ad hoc agent
world.
Every agent is assigned an AreaSize, roughly
indicating the size of the area the agent represents in
the real world (meters). This makes area-limited
searches possible, for instance to find nearby displays
or restaurants. This does not mean that all agents are
directly coupled to a physical object, it can also
indicate that the agent has control over, or knowledge
about that area. Some agents, such as a universal
currency converter, might claim a (near-)infinite area
size.

AgentAction
addRelation :relation aRelatedAgent
removeRelation :relation aRelatedAgent
setAreaSize :radius Float  

AreaSize :radius Float
aRelatedAgent :agentname AID

:tightness Float
TaskRelated

SimilarTask
StepOf
HasStep

LocationRelated
In
Contains

UserRelated
NearbyAgent
UserLooksAt
RecentlyInteracted
CommonTask
CarriedByUser

Figure 1. RelatedAgent ontology.

The agent relations are all subclasses of
aRelatedAgent. As such they all inherit an agent that is
related to, and a tightness (a float between 0 and 1).
The tightness is defined different for the various
relations, but it always attempts to approximate the
relevance of this relation in the search for an agent
matching the user's natural language query. See the
discussion of the service matcher agent for more details
on this.

Every agent can claim as many relations as it
judges appropriate. What is important is that the agent
makes itself related properly, so that it can be
discovered and checked by the service matcher when
the user needs it. Figure 2 shows a typical message to
request an agent to add a relation.

(addRelation :relation (StepOf :agentname (agent-
identifier :name anotheragentname) :tightness 0.7))

Figure 2. Example request to an agent, to

add a StepOf relation.

The LocationRelations locate agents in the real world.
Agents know about larger areas they are contained in
(the 'In' relation), and smaller areas that they contain
(the 'Contains' relation). Areas can have any shape that
is appropriate for the layout and typical use of the
space that is modeled. For In- and Contains-relations,
the default tightness of a relation is inversely
proportional to the distance between the centers of the
referred areas.  
The task graph relates agents with similar tasks,
subtasks (HasStep) or supertasks (StepOf). Here the
tightness refers to the probability that a user will do
that related task next, assuming he last time did the
task related to the agent claiming this relation.
Fig. 3 shows how an agent might be queried for
relations, using FIPA-SL [28]. In FIPA, this message



string is embedded in a larger ACLMessage structure
before it can be send to an agent.

(all ?x (= ?x (LocationRelated :agentname ?y
tightness ?z)))

Figure 3. Example query asking

LocationRelated relations.

UserRelated relations form a link between the user
and the other agents, pointing to the nearest agent in
his environment, the agents representing devices he
carries, agents he commonly uses (agenda, word
processing agent, etc), and so on.

Most of the relations are static, only a small part
changes over time. For instance a bunch of agents
coupled to a driving car could all link with a static 'In'
relation to the car agent, and only the car agent would
have to keep its 'In' relation up to date with the
changing environment. Services related to mobile
devices (e.g. non-stationary displays, newspaper seller
agents, etc.) can link themselves into the relation
hierarchy on the fly according to their latest situation
(position, task, etc), by requesting relevant agents to
update their relations.

Proper configuration of the relations is essential to
make our system work. Although this configuration is
handwork in our prototype system, we think a
significant part of this configuration process can be
automated.

3.2. Important Services

This section shows how a few services that are
essential for the user's experience, use and handling of
the agent world can effectively use our agent relations.

3.2.1. Service Matcher. One important service is the
SM agent, that we named ServiceMatcher. For SM,
the user describes his needs in natural language. The
ServiceMatcher takes this request and negotiates with
agents whether they understand the query and can help
the user. Once a matching agent has been found, that
agent is authorized to handle the request, and may set
up a user interface as it thinks appropriate. Users can
launch as many ServiceMatcher agents as needed, to do
for instance parallel searches. They can be run at any
place they like, for instance on their PDA or on a
server in the wired network.

For placing the request in the proper context, we
were inspired by the ongoing research on story
understanding, concept knowledge graphs and marker
passing technology [25]. The concepts translate to
agents, the knowledge graph was translated to an ad
hoc related-agent structure, and the marker passing
mechanism translated to a context sensitive search
algorithm for SM. This enables us to use numerous

context aspects, such as user location and viewing
direction, related tasks, recent interactions, etc. to be
incorporated in the search for the service the user
needs.

The ServiceMatcher accepts an 'AttemptHandling'
request with a natural language query (typically typed
by the user), coming from a user interface (e.g., a text
prompt or a speech to text converter). To attempt
handling the request, part of agent space is searched, as
spanned by the RelatedAgent structures. This is done
by starting with a small scope of potentially matching
agents, and gradually extending this scope if the agents
within the scope show incapable to handle the user's
request.

The search scope initially is set to the
PersonalAgent (see below). Then, it is checked whether
any of the agents in the scope understands the user's
request. If not, the ServiceMatcher 'zooms out' the
scope, by asking agents already within the scope about
their relations. The scope is extended until an
understanding agent is found or the search limit is
reached.

Every agent entering the search scope is sent an
'AttemptInterpretation'  message i n  the
NaturalLanguageInterface  (NLI) ontology (see below).
Only NLI agents speak and understand these messages.
They return an  interpretation message, whether the
user's query is understood and if it can be handled (is
'executable'). Other agents will return a not-understood
message or do not reply at all.

The internal behaviour of the ServiceMatcher is
complex, because non- and late-responding agents have
to be dealt with, user interfaces may have to be created
and brought into the user's attention to ask him to
choose in case multiple agents are found, a map has to
be maintained of the agents within scope, and all these
things can happen asynchronous. Fig. 4 shows the core
of the search algorithm in pseudo code.

Initialize search scope
Every second, until agent activated or fail
{
  check how many interpretations received
  0: if scope already extended 8 times
     then fail:limit of search space reached
     else extend scope
  1 which is executable:
    activate agent of that interpretation
  multiple executable:
    ask user which one interpretation 

or agent he wants
    activate agent of that interpretation
  multiple understood, but none executable:
    fail: user is probably asking
          something impossible
}

Figure 4. Pseudo code sketching the core of

the ServiceMatcher.

Intuitively, to extend the scope we want to 'pressurize'
the network from the entry points and check
neighbouring agents when their pressure rises above



some threshold. To implement scope extension in a
computationally simple way, all agents in the current
scope are asked about their RelatedAgents. For every
agent that is reported to be related with an agent in the
current scope but not yet in the search scope, the
'activity level' is increased by an amount determined
by the tightness of the relation. Once the activity level
of an agent rises above 1 the agent is incorporated into
the current scope.

3.2.2. KeepGUIWithUser. Hopping GUIs between
displays to keep them with the user is another aspect
that we consider essential for smart environments. The
idea is not new (e.g., [29], [30]). However, most
current agent architectures are not rich enough to
support such a service, and need a lot of extra
programming and the addition of a separate
infrastructure holding location information of displays.
This section shows that our architecture is powerful
enough.

A GUI can be automatically kept on a display as
close as possible to a user as he moves around. A GUI
can do everything necessary itself. First, if it
subscribes to the UserLocation tracker agent, the
UserLocation agent will send a message whenever a
new agent is now closest to the user or being looked at
by the user. The agent then can use the
LocationRelated relations to find a display within a
few meters distance from the user and decide if it is
time to move to another display. The LocationRelation
hierarchy avoids flooding the network with location
requests, and also avoids the need of a central
organization or maps locating the displays. Second,
the agent can use ping messages to detect if the GUI
window dies. In such a case the agent can  launch a
new window or take other actions.

When the user has many open GUIs, having each
GUI doing those steps would cause lots of duplicate
work and messaging in all GUIs whenever the user
moves. To make life easy for GUIs and to avoid
duplication of work and code, GUIs can subscribe to a
KeepGUIWithUser agent that will take over GUI
movement and maintenance.

3.3. Supporting Agents

This section describes a number of supporting
agents in our system. Their functionality is not new,
but the organization and use of them is a bit unusual.

Typically these services would be run on the
backbone, so that the user can use them and keep in
contact with the agent world even if he forgets his
PDA or his battery goes flat. For many agents, it
could be transparent where an agent actually resides,
and the system might even be able to relaunch or
relocate agents from crashed machines.

3.3.1. UserLocation. The UserLocation agent keeps
track of the agent that the user is closest to, and the
agent the user looks at. Other agents can subscribe to
get informed if the user's position and/or gaze direction
changes.

3.3.2. UserHistory. The UserHistory agent maintains
links to agents that the user interacted with recently. If
an agent is not used for a long time or if other agents
are used, it becomes less likely that the user still wants
to contact that agent (using history information only).
Therefore, the tightness of a link with an agent halves
every 15 minutes and every time the user interacts with
another agent. To maintain the links, the UserHistory
agent relies on user-agent interaction messages. In our
prototype system the ServiceMatcher agent creates
those messages.

3.3.3. PersonalAgent. The job of the PersonalAgent
is to keep a living connection between the agent world
and the user. If that connection breaks down it tries to
re-establish it, and it starts up a new connection with
the ServiceMatcher if necessary.

The PersonalAgent is also the start point for service
matching actions. Therefore it maintains RelatedAgent
links with the user's often used and important agents,
such as the email, travel planning, UserLocation and
UserHistory agents.

3.4. Interface Agents
Besides the RelatedAgent ontology, most agents

speak only agent-specific ontologies. We coin the term
'core agent' for such agents. For instance a light core
agent will understand some on/off messages and
requests for the maximum power, if stated properly in
the light-ontology and properly formatted as a
message.

Ontologies are not suited for communicating with
ordinary human users. Therefore, we introduce interface
agents, that can present a user-friendly user interface
(e.g., a properly designed GUI) and translate between
the user interface events and the messages to and from
the core agent. An interface agent is designed for a
specific core agent. Multiple user interface agents can
exist for a single core agent, for instance for different
interface modalities.

This specialization of interface agents for a core
service enables the optimization of the UI for that
specific task. The separation into a core agent and
interface agents is good for lightweight, infrequently
used services such as light switches: the heavy user
interface can be run on a dedicated user interface
processor, while the service itself (the actual switching
of the light) can run on a small CPU near the light.
Furthermore, this separation promotes interface-
independent information storage in the core agent,



which helps to make modality switching more
consistent and understandable for the user.

We discuss two important types of interface agents
that we also implemented in our prototype system:
NaturalLanguageInterface agents and MobileGUI
agents.

3.4.1. MobileGUIs. A Mobile Graphical User
Interface (MobileGUI) is a normal Graphical User
Interface (using the standard WIMP techniques), but it
has the ability to move between the displays with
preservation of its state (open menus, scrollbar
location, selected items, etc). MobileGUIs can be
requested to move, both by an agent or by the
KeepGUIWithUser service we discussed.

Our MobileGUIs are depending only on Java,
making the MobileGUI independent of the underlying
window system. Also, by binding part of the software
essential for the interfacing to the GUI we avoid
intensive GUI messaging (such as mouse moves)
between the application and the window system,
making the GUI more responsive. In this respect our
work is comparable to [31].

3.4.2. NaturalLanguageInterfaces. A NaturalLangua-
geInterface (NLI) agent  is a user interface agent that
translates between natural language requests and
messages for a core agent. As with all interface agents
in our system, an NLI agent is optimized for one core
agent, and there are many NLI agents in the system.

Communication with an NLI agent goes in two
steps. Step (1) is an AttemptInterpretation request,
which asks the NLI agent to interpret a natural
language string. The NLI agent will reply with an
interpretation: a message whether it (a) understands the
query (confidence value between 0 and 1) (b) if it can
execute the request (again a confidence value), and (c)
how it would execute the request. Step (2) is triggered
by an Execute message, after which execution of the
proposed interpretation takes place (of course only if
the agent thought it could handle the request). If
execution is requested, the NLI agent usually will start
up some interface with the user to get further details,
and then communicates with the core agents to fulfil
the user's request.

Step (1) of an NLI agent is well suited for slot
filling. Basically this technique does phrase spotting
in the sentence to find the data it needs, ignoring
words in the sentence it does not understand. Slot
filling is a common technique, and is robust for
natural conversation which doesn't stick to grammar
and spelling rules [32]. Good slot filling parsers are
available [21].

Slot filling assumes and exploits the context (the
service of its core agent). Only the words and
conversion rules that are specific in its context have to
be set up. This property is inherited by the NLI agent.

Basic grammar rules and vocabulary are supposed to be
available in an NLI-agent template, and the
programmer of an NLI agent only has to refine the
grammar for the context.

Our NLI agent extends the availability of context
knowledge of frame based parsers in two ways. First,
the NLI agent communicates also the 'executability' of
the request, enabling the system to choose those core
agents that can not only understand but also handle the
request. Second, other context properties such as the
location of the core agent can also be used, for instance
a NLI agent in China would expect Chinese, in
England English language. Our architecture integrates
these aspects with the RelatedAgent hierarchy.

The NLI agent has a larger vocabulary than
traditional keyword supporting SDSs such as Jini or
UDDI, because it has to recognise a wide range of
pseudonyms, stop words and language about the
context relevant to the service. For instance, an NLI
agent for a spotlight lighting a painting would also
know basic painting vocabulary, so that it can
recognise requests like "light the painting".

The two-step protocol enables higher level
processes to decide whether the interpretation is good
enough, before an NLI agent is authorized to help the
user. Because the way the request will be executed is
made available, the user does not have to re-state
information he already mentioned, if this service
would be selected. It also avoids problems in
situations where the meaning of the request could
change over time, for instance because of context
changes.

All these properties enables the NLI to stay lean,
compact, fast, accurate and context-sensitive.

An NLI agent can have various even more
specialized input and output interfaces, for instance its
input side could be coupled to speech parsers, a
standard text prompt or handwriting recognition.

3.5. Robustness

Our mechanisms were all designed for robustness
in ad hoc situations. For instance,  if one or more
agents fall out of the system or move to another
location, the UserLocation agent will give other, now
available nearby agents from which nearby similar
services or displays may be found. Non-responsive and
unreachable agents are timed out, and the services
(service matcher, mobileGUIs, ...) move on using the
agents that responded. The only effect of failing agents
is that the system will look further for an alternative
agent fitting the request.

All agent-internal errors are caught within the
agents and translated into detailed failure messages to
the calling agent, so agents can survive even dramatic
internal failures properly. A problem with this is that
the calling agent may be unsure about the status of his



request: was it completed, still in progress or cancelled
somewhere halfway? We defined some general failure
classes indicating those cases, so that the calling agent
can determine the case without digging through stack
dumps and the like. The calling agent then might try
an alternative approach to help the user, or inform the
user about the failure. The system as a whole just
continues in spite of some malfunctioning
agents/services, and if the agent properly adjusts its
executability estimations the user might find another,
more successful alternative the next time he needs a
comparable service.

Because each agent has a very limited task scope,
this should result in a robust system resembling frame-
based systems [21]. Furthermore, our approach enables
parallelization of frame-based parsing, which can speed
up the process.

4. Prototype Implementation

Our architecture is functioning as a test bed within
the encompassing Cactus project [33], which is
researching technological and usability aspects of
human-computer and computer-network interaction
with personalized, intelligent and context-aware
wearable devices in future ambient intelligent
environments. The primary goal of our prototype is to
demonstrate that our architecture enables users to
accurately find the services they need in such an
environment, using natural language requests.

For our prototype we complied with the FIPA
agent standards [28]. JADE [34] was used to
implement and run FIPA agents. JADE is based on
Java [35] and can run on desktop PCs and PDAs. A
lightweight version of JADE named LEAP [36] is
available for PDAs and mobile phones (although
LEAP for mobile phones has incompatible GUI
support). All our code is fully compatible with LEAP.

FIPA agents are not really ad hoc because it is not
specified how multiple directory facilitators (the FIPA
name for SD agents) would synchronise, and it seems
that the entire system breaks down if the infrastructure
running the SDS fails. To make a truly ad hoc agent
system, we ignored the directory facilitator and used
our RelatedAgent structures instead. We only use the
underlying FIPA message transfer mechanisms and
mechanisms working in individual agents.

The slot filling aspect of the NLI agents was not
implemented, because the implementation effort would
go way beyond our means. Instead we calculate the
distances between the words in the user's request and
the words in the vocabulary of each NLI agent. The
distance to the agent's vocabulary translates into a
value for the understanding. The executability value is
set to 1 for now. In our current prototype agent world,
most vocabularies are smaller than fifty words, and we
have an additional 200 words of the basic dictionary.

The mobileGUI functionality is unaffected by this
simplification, but of course it will reduce the accuracy
of the matches found by the ServiceMatcher. Also,
without slot filling, the agent finally selected by the
ServiceMatcher will start with a default interface,
ignoring what the user requested to find it. But we
expect that our main goal, showing the effectivity of
the architecture and ServiceMatcher, will still be
reached.

For the same reasons, we use a simple text input
window and keyboard to get the user's request.
Handwriting and speech recognition could be added in
a simple way.

First test results on a simple agent world of 50
agents showed to have acceptable speed. Typically the
ServiceMatcher responds in a few seconds. A few
parameter settings are the result of simple tests we did
with this prototype implementation. We expect that
these parameters have to be fine-tuned as we gain
experience with larger systems. For example, service
matching might slow down if our current limit of
eight search scope extensions would show too
restricted. Assuming that the average connectivity
(number of relations) of the agents in our test system
is representative for a large agent world, the total size
of the agent space should not have a big impact: we
never search the full agent space because we limit our
search to eight hops from the current context.

5. Conclusions, Future Work

We presented a mechanism to organize an ad hoc
agent system, and showed how it can be used to
provide services that are essential in a smart
environment. We discussed a few 'crisis' situations in
an ad-hoc environment, and explained how our system
robustly handles the situation. We avoid user overload
by having the ServiceMatcher agent negotiate with the
services, until it is clear which agent can really help
the user.

One remaining problem of our fault-tolerant agents
is that the user may not understand why the service he
expects is not available or acting unusual, because
everything looks fine at the surface. Only in
exceptional cases, the user may get very detailed but
hard to read errors if a failure deep in the system causes
a chain of errors that no agent can handle. Error
handling in smart environments is complicated and
needs more research.

Currently we are designing a large experiment
involving human users doing real-world tasks with our
system. A multi-location test environment with over
500 service agents running on 12 computers has been
created. This experiment should answer questions
about how well the user can find a service, and how
well the service found matches his requirements.
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