
August 24-26, 2004, Boston, USA

Vermelding onderdeel organisatie

Organizing Ad Hoc Agents
for Human-Agent Service Matching

Mobiquitous Conference

Wouter Pasman
W.Pasman@ewi.tudelft.nl

http://www.cg.its.tudelft.nl/~wouter/

Introduction

Increasing number of agents:
- Home automation: light, blinds, doors, fridge,

stereo, tv, coffeemachine, ...
- Web services: Travel planning, weather forecast ...
- Applications: text editors, photo editors, ...
- Communication: email, phone, web browsers, ...
- E-Commerce: payment systems, shopping

assistants
- Health care: pacemaker adjustment, monitoring..
- Mobile agents: snack shop, riding shop, car agents

How does user find an agent?

A few approaches exist
• Every agent has its own special physical interface
• Browser with list/menu of agents, keyword search
• Ontology-based approaches
• Central mediator with NL interface

1. Physical Interface per Agent

Devices at home: select = handle physical interface
+ Optimal for device and average user
- Expensive, needs extra space, inflexible

-> Thus, suboptimal for individuals
- Many agents have no natural, nearby or
 human-size physical counterpart (heating, lights..)

-> where is the interface?
- You have to know how to get what you want and
 where the physical device and its interface is

2. List of Agents

Browse list/menu of agents, keyword search
Gets unworkable when

- There are many agents
- Agents doing similar jobs but with

different constraints, scope etc
- Agents are not at a fixed location
- When physical location of the agent matters
- Words in the list are not consistent (eg, Chinese,

Dutch and English agents?)
- User can not determine from the words in the

list which agent(s) suit his needs

3. Ontology-based approach

Two different mechanisms exist:
(1) Service discovery service: enables searching for

agents delivering a certain service type
(2) Service abstraction: a resolver forwards a request

to an available agent.

SELECT grounding(service)

FROM Cantonese

WHERE booking_date=‘02.10.2003’ AND
booking_time=‘8:00 pm’ AND
price_range=‘medium’

Problems for the user:
He doesn’t know and even want to know about
- ontologies
- service names
- programming agent-search queries
- communication protocols

Technical problems in massive adhoc agent worlds:
- Straightforward implementation is not robust and

efficient enough in ad-hoc networks
- Risk of network flooding
- Excessive caching and update work at each node

4. Central NLI Interpreter

Central natural language interface interpreting all user
requests and orchestrates the agents

-Not ad-hoc: new agent may offer service not fitting
into the knowledge of central interpreter

-Massive central knowledge/rule planning system
needed, seems unfeasible at this moment

-Natural language interpretation is not robust when all
vocabularies of all agents are combined

-Central translation ignores domain knowledge
available in the agents (e.g., lights that are already on)

Our Proposal
Use Natural Language and Context

to support user in finding the appropriate agent

Context: usual tasks, location, gaze direction, task, plans,
goals, history and agenda; detail knowledge.

(1) Distribute NL interpretation over the agents, to improve
robustness of language understanding and to enable
semantic interpretation

(2) Organize agents in ad-hoc network to enable context
sensitive search

Architecture

Distributed NLI
Define NLI-ontology for agents understanding NL:
(1) Interpretation AttemptInterp(String user_request)
(2) Execute(Interpretation interp)

Interpretation contains
- value [0...1] for the understanding (syntactic fit)
- value [0...1] for the executability (semantic fit)

Agent has highly restricted scope so this should be quite
straightforward for each agent

Distributed Context Knowledge

Every agent knows and can communicate about its context
using a RelatedAgent ontology

Context for an agent:
- Area size it covers in the real world [0...∞]
- Other agents that have some relation with this agent

Three types of relations
1 TaskRelated (SimilarTask, StepOf, HasStep)
2 LocationRelated (In, Contains)
3 UserRelated (NearbyAgent, UserLooksAt, CommonTask,..)

Each agent can have many relations
Each relation also has a tightness [0...1]
Agents have to be asked individually about their relations

The relations organize the agents

HKitchen

HKWorktop

HKSink

HKWaterTap

HKCookArea

HKWorktopLights

HKDisplayNLI

HKFridge

HKGroceryStoreNLI

HKFridgeContentNLI

HKDisplay

HKCoffeeMachine

HKFridgeContent

HKGroceryStorage

HKCoffeeMachineNLI

HKCoffeeMachineGUI

PersonalAgent

HistoryAgt

LocTracker

In

In

In

In

In

In In

In

In

In

StepOf

In

StepOfStepOf
In

StepOf In

In

In

StepOf

CommonTask

CommonTask

NearbyAgent

RecentlyInteracted

ServiceMatcher agent

Matches a user request to the available agents
Uses our architecture to do the match
Negotiates with agents until good match is
found or a problem arises

scope={PersonalAgent}
Repeat
{

Ask interpretation(request) from agents in scope
Wait long enough that all agents can reply
Check #interpretations received
{

1 which is executable:
activate that agent

>1 executable:
ask user which interpretation suits best

many understood but no one executable
fail: user probably asks something impossible

0: if scope already extended 8 times
then fail: limit of search space reached
else scope=extend(scope)

}
}

Service Matching Example

Example Use:
• user in kitchen,
• Just turned on the light
• now asks the Service Matcher

HKitchen

HKWorktop

HKSink

HKWaterTap

HKCookArea

HKWorktopLights

HKDisplayNLI

HKFridge

HKGroceryStoreNLI

HKFridgeContentNLI

HKDisplay

HKCoffeeMachine

HKFridgeContent

HKGroceryStorage

HKCoffeeMachineNLI

HKCoffeeMachineGUI

PersonalAgent

HistoryAgt

LocTracker

In

In

In

In

In

In In

In

In

In

StepOf

In

StepOfStepOf
In

StepOf In

In

In

StepOf

CommonTask

CommonTask

NearbyAgent

RecentlyInteracted

HKitchen

HKWorktop

HKSink

HKWaterTap

HKCookArea

HKWorktopLights

HKDisplayNLI

HKFridge

HKGroceryStoreNLI

HKFridgeContentNLI

HKDisplay

HKCoffeeMachine

HKFridgeContent

HKGroceryStorage

HKCoffeeMachineNLI

HKCoffeeMachineGUI

PersonalAgent

HistoryAgt

LocTracker

In

In

In

In

In

In In

In

In

In

StepOf

In

StepOfStepOf
In

StepOf In

In

In

StepOf

CommonTask

CommonTask

NearbyAgent

RecentlyInteracted

HKitchen

HKWorktop

HKSink

HKWaterTap

HKCookArea

HKWorktopLights

HKDisplayNLI

HKFridge

HKGroceryStoreNLI

HKFridgeContentNLI

HKDisplay

HKCoffeeMachine

HKFridgeContent

HKGroceryStorage

HKCoffeeMachineNLI

HKCoffeeMachineGUI

PersonalAgent

HistoryAgt

LocTracker

In

In

In

In

In

In In

In

In

In

StepOf

In

StepOfStepOf
In

StepOf In

In

In

StepOf

CommonTask

CommonTask

NearbyAgent

RecentlyInteracted

HKitchen

HKWorktop

HKSink

HKWaterTap

HKCookArea

HKWorktopLights

HKDisplayNLI

HKFridge

HKGroceryStoreNLI

HKFridgeContentNLI

HKDisplay

HKCoffeeMachine

HKFridgeContent

HKGroceryStorage

HKCoffeeMachineNLI

HKCoffeeMachineGUI

PersonalAgent

HistoryAgt

LocTracker

In

In

In

In

In

In In

In

In

In

StepOf

In

StepOfStepOf
In

StepOf In

In

In

StepOf

CommonTask

CommonTask

NearbyAgent

RecentlyInteracted

HKitchen

HKWorktop

HKSink

HKWaterTap

HKCookArea

HKWorktopLights

HKDisplayNLI

HKFridge

HKGroceryStoreNLI

HKFridgeContentNLI

HKDisplay

HKCoffeeMachine

HKFridgeContent

HKGroceryStorage

HKCoffeeMachineNLI

HKCoffeeMachineGUI

PersonalAgent

HistoryAgt

LocTracker

In

In

In

In

In

In In

In

In

In

StepOf

In

StepOfStepOf
In

StepOf In

In

In

StepOf

CommonTask

CommonTask

NearbyAgent

RecentlyInteracted

Prototype implementation

• FIPA compliant Java agents running on JADE/LEAP
• Ignore central Directory Facilitator
• Currently only coffeemachine doing full semantic interpr.

Other agents match request with their vocabulary
• 522 Dutch agents spanning areas in Amsterdam

running on 16 unix machines
• Search time = distance to matching agent

* deadlinetime per ‘round’

DEMO on tuesday: 17:00 with smaller English version

Robustness
• Frame-based parsing for robust NL understanding
• Semantics and actual situation used for matching
• If agents drop out, we continue with remaining agents

Hopefully an alternative agent is available
• Agent approach promotes robustness over centralistic system
 - agents can be moved away from troublesome hardware

- no single point of failure
• Tight deadlines on requests: avoid waiting on replies
• Internal failures cought within the agent

-> agent survives; failure message to caller
-> agent may correct its feasibility estimates
BUT: caller maybe uncertain about status of request

Future Work

• WOz test of our system with real users
• Comparison of WOz study with

performance of automatic servicematcher
• Other ways to support the user finding services

