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Ubiquitous Communications

Low Latency Mobile Augmented
Reality
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Alignment error=
Latency * Rotationspeed

For the applications targeted, 0.5˚ at 50˚/s seems
acceptable =>10ms.

Latency in Optical AR
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Limited resources on mobile, 250-400 polygons
w. textures



Dynamic Simplification



Mathematical model per object

• Estimate link and CPU load, memory
    usage, lifetime of objects, etc
• Est screenspace error and  geometric distortions

D=0.001
R=1m



VIDEO: Statue on Campus



NISHE

Augmented Reality with Large 3D
Models on a PDA



Introduction

• AR with large models on PDA



Application area picked: supporting architects



VR is getting more popular for this.
But modeling of environment is cumbersome

--> often modeled quickly with large grey blocks



AR is making its way

-hand work: placing building at right location,
proper lighting, occlusion, ...
- still picture

AR on PDA seems useful for such situations.



Architecture

Capture camera
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Render virtual objects
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Transparent bitmap of virtual
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Hardware:

PDA: iPaq H3800, Camera 640x240, display 240x320

206MHz StrongARM

Server: Dell Latitude, GeForce4 440 Go, 1.8GHz P4

Links tested: WLAN, USB, GPRS



Tracking

ARToolkit
Multimarking tracking: spanning large area with multiple markers
Markers 76cm wide for tracking up to 10m distance

ARToolkit adaptations:
• using low resolution

320x240 bitmap
• bitmap from link, not

from camera
• Disable rendering of

camera image



Real scenes: 
• outdoor parking place with snow, -20˚C, bright

enhanced with few 76cm markers
• Lobby at entrance of the first floor

enhanced with 40cm marker or
with smaller markers as needed

Virtual scenes: VRML
• Simple scene (flower) not filling screen
• Itäkeskus building, 60k polygons w. texture

60m wide, 15m high, more than screen filling

The Test Scene



Compression Opportunities

1. Compressed B&W bitmap the camera image to the server
2. Video compress the overlay image to the PDA
3. Compressed Transparency mask to the PDA

PDAServer



• B&W bitmap the camera image to the server

• RGB to B/W: 24x compression
• RLE coding: using Elias Gamma code: 5x compression

Cam image size:

Original 320x240 : 230 kbyte 
B/W : 9.6 kbyte
RLE coded : 1.9 kbyte



2. Video encode the overlay image to the PDA

Using Motion Vector Quantization (MVQ)
Commercial coder, developed at our VTT group

• Very light decoding: 
using motion vectors and lookup tables,
not using DCT
typically 50ms for full 320x240 image on PDA

• Large motion vectors up to 64 pixels,
suits shaky cam movements and low frame rates



Original SNR 15dB SNR 10dB

Optimizing MVQ Coding Modes
Optimization for Modem (4kb/frame) and Wavelan (30kb)

“Offline” = Best but 510ms/frame (10.8/15.3dB)
“Online” = Fast 160ms/frame but not so good (9.8/15.2dB)
Optimize for synthetic images with large smooth shaded areas
“Synthetic” = compromise, 200ms/frame (10.1/15.3dB)



3. Compressed Transparency mask to the PDA

• RLE coding: using Elias Gamma code: 
now 9x compression (less noise than natural imgs)

320x240 mask compresses about 1 kbyte.



Some Performance results

Without optimizations, “offline” MVQ compression,
 half-screen object, USB1 : 0.28 fps

With optimizations, worst case full screen object
using USB1 and “online” : 0.9 fps
using WLAN and “synthetic”: 1.25 fps
using GSM and “synthetic” : 0.2 fps

Much more details in the paper.



Usability

• WLAN 1fps good for architecture. GSM is bit slow
but convenient and always ready for demo

• Architects appreciate on-site experience of
presence

• Need for markerless tracking
• ARToolkit has some tracking problems with certain

marker orientations
• iPaq screen bit dim, especially when sunny
• Our system can be run even on mobile phone now.



Videos

• AR on PDA “digitalo”. (1:30)
• AR “indoors” (1:10) 



Conclusions

• AR with video mixing was implemented
on PDA/Mobile Phone.

• For mobile AR with optical mixing and
for gaming latency is more critical. For
such situations the UbiCom approach still
seems the way to go.


