
July 5, 2004, Philips ApresLuvo Series

Vermelding onderdeel organisatie

Mobile Augmented Reality

Wouter Pasman

Ubiquitous Communications

Low Latency Mobile Augmented
Reality

base
station

ba
ck

bo
ne

Mobile unit

Library

Entrance

Applications

Maintenance, assistance

See-through
display

Real objectMisaligned
virtual object

Alignment error=
Latency * Rotationspeed

For the applications targeted, 0.5˚ at 50˚/s seems
acceptable =>10ms.

Latency in Optical AR

Std. Voodoo 3D
game card

Render just ahead
of raster beam

4 partitions
gives latency
4-8 ms

20ms
Displaying

here

Rendering here

To be cleared and rendered

Low-latency rendering

Application
databases

Network
resources

Compute
station

simplified
scene

Base
station

Server (backbone) Client (mobile unit)

position from camera,
GPS and prediction User

movement

Display

240Hz~10Hz~1Hz

~1s ~100ms <10ms

Position from
inertial tracker

display
list

simple
virtual
objects

complex
scene
graph

Latency Layering

Limited resources on mobile, 250-400 polygons
w. textures

Dynamic Simplification

Mathematical model per object

• Estimate link and CPU load, memory
 usage, lifetime of objects, etc
• Est screenspace error and geometric distortions

D=0.001
R=1m

VIDEO: Statue on Campus

NISHE

Augmented Reality with Large 3D
Models on a PDA

Introduction

• AR with large models on PDA

Application area picked: supporting architects

VR is getting more popular for this.
But modeling of environment is cumbersome

--> often modeled quickly with large grey blocks

AR is making its way

-hand work: placing building at right location,
proper lighting, occlusion, ...
- still picture

AR on PDA seems useful for such situations.

Architecture

Capture camera
image

RLC decode, Track markers,
Render virtual objects

Decode virtual objects &
mask, Overlay with camera
image

Show
result

PDAServer

Transparent bitmap of virtual
objects

Hardware:

PDA: iPaq H3800, Camera 640x240, display 240x320

206MHz StrongARM

Server: Dell Latitude, GeForce4 440 Go, 1.8GHz P4

Links tested: WLAN, USB, GPRS

Tracking

ARToolkit
Multimarking tracking: spanning large area with multiple markers
Markers 76cm wide for tracking up to 10m distance

ARToolkit adaptations:
• using low resolution

320x240 bitmap
• bitmap from link, not

from camera
• Disable rendering of

camera image

Real scenes:
• outdoor parking place with snow, -20˚C, bright

enhanced with few 76cm markers
• Lobby at entrance of the first floor

enhanced with 40cm marker or
with smaller markers as needed

Virtual scenes: VRML
• Simple scene (flower) not filling screen
• Itäkeskus building, 60k polygons w. texture

60m wide, 15m high, more than screen filling

The Test Scene

Compression Opportunities

1. Compressed B&W bitmap the camera image to the server
2. Video compress the overlay image to the PDA
3. Compressed Transparency mask to the PDA

PDAServer

• B&W bitmap the camera image to the server

• RGB to B/W: 24x compression
• RLE coding: using Elias Gamma code: 5x compression

Cam image size:

Original 320x240 : 230 kbyte
B/W : 9.6 kbyte
RLE coded : 1.9 kbyte

2. Video encode the overlay image to the PDA

Using Motion Vector Quantization (MVQ)
Commercial coder, developed at our VTT group

• Very light decoding:
using motion vectors and lookup tables,
not using DCT
typically 50ms for full 320x240 image on PDA

• Large motion vectors up to 64 pixels,
suits shaky cam movements and low frame rates

Original SNR 15dB SNR 10dB

Optimizing MVQ Coding Modes
Optimization for Modem (4kb/frame) and Wavelan (30kb)

“Offline” = Best but 510ms/frame (10.8/15.3dB)
“Online” = Fast 160ms/frame but not so good (9.8/15.2dB)
Optimize for synthetic images with large smooth shaded areas
“Synthetic” = compromise, 200ms/frame (10.1/15.3dB)

3. Compressed Transparency mask to the PDA

• RLE coding: using Elias Gamma code:
now 9x compression (less noise than natural imgs)

320x240 mask compresses about 1 kbyte.

Some Performance results

Without optimizations, “offline” MVQ compression,
 half-screen object, USB1 : 0.28 fps

With optimizations, worst case full screen object
using USB1 and “online” : 0.9 fps
using WLAN and “synthetic”: 1.25 fps
using GSM and “synthetic” : 0.2 fps

Much more details in the paper.

Usability

• WLAN 1fps good for architecture. GSM is bit slow
but convenient and always ready for demo

• Architects appreciate on-site experience of
presence

• Need for markerless tracking
• ARToolkit has some tracking problems with certain

marker orientations
• iPaq screen bit dim, especially when sunny
• Our system can be run even on mobile phone now.

Videos

• AR on PDA “digitalo”. (1:30)
• AR “indoors” (1:10)

Conclusions

• AR with video mixing was implemented
on PDA/Mobile Phone.

• For mobile AR with optical mixing and
for gaming latency is more critical. For
such situations the UbiCom approach still
seems the way to go.

