PCM 10247 Format: Reverse Engineered

W.Pasman, F. Goddeeris, 6/1/4

Introduction

This report documents Futaba PCM1024Z data format. This report is the combined result
of previous known knowledge from the internet [Pasman03] and reverse engineering of
which multiple people [Runryder03]. Source codes of PCM decoders [SekirikiO2b],
[Autopilot02] and a few important details [Sekiriki02] were also an important source of
knowledge.

We start with a short overview of the available channels. This is the data that has to be
transferred to the receiver. Then we discuss how PCM1024 represents this data. We
distinguish three steps in the construction of the PCM1024 packets. First, there is the
source coding, which describes how the channels are encoded into data packets, how the
source data is compressed, what extra bits are added etc. Next, there is the adding of error
protection that allows to detect and maybe even correct errors that occurred during
transmission of the data to the receiver. Finally there is the channel coding, which
describes how the data is modulated and adapted to fit it on top of a radio wave carrier.
The appendices discuss a few issues that are not central to the PCM1024Z format, but are
relevant to understand our results.

Channels

This section gives a short overview of the channels that have to be transmitted in the
10247 format. We distinguish the non-real time and the real-time channels.

Not all transmitters use all channels, and sometimes channels are controlled in
unexpected ways. Appendix B describes this.

Non-Realtime Channels

The non-realtime channels are channels that only need very infrequent update. They are
transitted four to eight seconds after turning on the transmitter, and after that once per
minute. Additionally they are sometimes transmitted immediately after changing (see
Appendix B).

As far as we know only failsafe data is transmitted on the non-realtime channel.

The receiver can enter a failsafe mode when it detects that control is lost or will be lost
soon. Currently there are two such modes: battery failsafe and radio failsafe.

Battery failsafe is a special mode that the receivers goes to whenever the receiver battery
voltage goes too low (below 3.8V). When the receiver goes into this mode, the throttle
channel (channel 3) moves to a predetermined position. The other channels remain
working in real time — as long as the battery permits of course—.

When the receiver has sustained radio reception failures, the receiver will go to the radio
failsafe mode. This mode is normally referred to as 'failsafe’ but we use 'radio failsafe'
here to distinguish it from the battery failsafe mode. The radio failsafe condition is
triggered by sustained radio reception failures'. When the radio enters radio failsafe
mode, the receiver moves channel 1 to 8 to a predetermined position.

" The FF9 receiver goes to failsafe after 70 half bad frames. For other receivers this might
be different.

Ideally every realtime channel (Table 1) would have a corresponding failsafe channel, but
as far as we know only failsafe-channel 1 to 8 exist. Failsafe settings for channel 1 to 8
consist of a "mode" value ('normal' or 'preset'’) and a "position" value (0-1023). If a
failsafe mode for a channel is set to O ('normal’), the channel is supposed to hold the last
position in case of a battery or radio failsafe condition. The 'position' value is ignored in
that case. If the failsafe mode is 1 ('preset'), the channel is supposed to go to the pre-set
value as defined in the position value for the failsafe setting.

The Real-Time Channels

The real-time channels are the channels that appear normally on the receiver output. They
are updated approximately 35 times per second, and therefore follow your stick and
switch movements in ‘real time’.

PCM1024 offers place to eight real-time proportional channels and a few switch
channels. Proportional channels offer a continuous value that is digitized as an unsigned
10 bits number (so can have values between 0 and 1023, with 512 in the middle), switch
channels can only be on or off.

Currently up to two switch channels are provided by the transmitter, one documented and
one not documented, but it seems that there is space in the format to accomodate more
channels. Table 1 shows the currently known channels and their name in the standard
helicopter setup.

The battery failsafe channel is a bit special, related to the receiver 'battery failsafe' mode.
The transmitter can reset this mode, which returns the receiver for 30 seconds to non-
battery-failsafe mode, allowing temporary regain of throttle control. To do this, the
transmitter needs to send a 1 over the BFR channel, it is 0 normally. Appendix B
describes when the transmitter sends a battery failsafe reset. The battery failsafe reset
channel (BFR) is not documented by Futaba as a separate channel but we found it
convenient to do so because we found that the battery failsafe reset mechanism works
similar to switch channel 9.

Table 1. channel numbers and usual channel assignment in helicopter mode.

channel number | Helicopter channel assignment | Channel type

1 aileron proportional
2 elevator proportional
3 throttle proportional
4 rudder proportional
5 gyro sensitivity proportional
6 pitch proportional
7 channel 7 proportional
8 channel 8 proportional

BFR battery failsafe reset switch
9 channel 9 switch
10 channel 10 switch

The calculation of the channel values depends on the settings of the transmitter: the stick
positions, switch positions, mixer settings, etc. The Futaba transmitter manuals describe
how the values for the channels are calculated in the transmitter.

Source coding

This section describes the source coding: how all the normal and failsafe channels are
packed into data bits. We start with a discussion of the real-time channel coding, and then
discuss how the non-realtime channels are put through.

Real-time channels

The real-time channel data is encoded into datapackets. Every datapacket holds 16 bits of
data: two auxiliary bits, a four bit difference from a previous position, and a ten bit
position (Figure 1).

Auxiliary Delta Position
Al [A0 |D3 |D2 |D1 DO |P9 |P8 |P7 |P6 |P5 |P4 |P3 |P2 [Pl |PO

Figure 1. 16 bits in a datapacket.

Two of those datapackets form a packetpair (Figure 2). Aux bit B3 of a packetpair is
always 1 in real-time data frames. In packetpairs we use the letter B for aux bits instead
of A, to avoid confusion about the bit positions.

Aux Delta Position Aux Delta position
B3[B2| | [[[/[l /BtfBOf [[[][]][]]]

Figure 2. Two datapackets form a packetpair. B3=1 in realtime frames.

Four of these datapackets, or two packetpairs, are needed to transmit all proportional real-
time channel data. Such a block is called a frame. The switch channels are transmitted
only once in two frames. Figure 3 shows an overview of the packet contents.

The first datapacket in a frame holds the channels 1 and 2, the second channels 3 and 4,
the third channels 5 and 6, and the fourth channels 7 and 8. One of the two channels in
each datapacket is coded/compressed with a delta code, the other channel is transmitted
uncompressed.

Every channel is transmitted alternatingly compressed (into the delta field) and
uncompressed (into the position field). In the even numbered frames, channel 1, 3, 5 and
7 go uncompressed, and in the odd numbered frames channel 2, 4, 6 and 8 are
uncompressed.

The delta encodes the difference between the current channel value and the last
transmitted value. Table 2 shows the actual differences, and the delta code associated
with each difference. The last column shows the difference that is probably used by the
receiver, assuming it tries to avoid overshooting.

Channel BFR, channel 9 and channel 10 are all coded into aux bit BO, of packetpair 0 and
1 in even frames, and packetpair 2 of odd frames respectively.

Table 2. position differences and the delta code used for those differences.

delta difference jump probably
code used in receiver

0 -116 .. -1023 -116

1 -88 -115 -88

2 -64 -87 -64

3 -44 -63 -44

4 -28 -43 -28

5 -16.. =27 -16

6 -8.. -15 -8

7 -4 .. -7 -4

8 -3 .. 4 0

9 5 .. 8 5

10 9 .. 16 9

11 17 .. 28 17

12 29 .. 44 29

13 45 .. 64 45

14 65 .. 87 65

15 88 .. 1023 88

When injection of non-realtime data (see below) into the frame causes a channel to miss
its 'opportunity' to update the absolute position, that channel may need a larger jumps in
its subsequent delta slot to catch up. We did encounter some apparently too large delta

codes in such situations, so it's not entirely clear what happens here.
Aux bits B2 and B1 apparently are unused in the realtime frames.

Figure 3. Channel assignments for the four datapackets in odd and even frames. This shows the
usual case holding only realtime channel data. A number of aux bits are not used, those are

usually 0.

frame packetpair | datapacket | aux Al | aux AO delta position
0 1 1 ch2 chl
even 2 bfr ch4 ch3
1 3 1 ch6 ch5
4 ch9 ch8 ch7
0 1 1 chl ch2
odd 2 ch10 ch3 ch4
1 3 1 ch5 ch6
4 ch7 ch8
0 1 1 ch2 chl
even 2 bfr ch4 ch3
1

Non-Realtime Channels

Instead of occupying a full frame, the non-realtime data is injected into the a fraction of
the realtime datapackets. The aux bits are used to indicate when, where and which non-
realtime data has been injected. In such a case, part of the real-time channel is forced out
of the frame, and therefore can not be updated. This causes a short hickup in the reception
of the overridden realtime channels.

If transmitted, non-realtime data for channel N (N=1..8) overrides the realtime position
field for channel N. Aux bit B3 is set to O if non-realtime data is being mixed into a
realtime frame. If that is the case, aux bit B2 determines whether the position field in this
datapacket is overwritten with non-realtime data (B2=0) or the position in the next
datapacket is overwritten (B2=1). The overwritten position value is the failsafe value for
the channel that would normally been transmitted. In both cases, the failsafe mode value
(FSM) is put in B1.

All other fields are untouched, and contain normal real-time data. Figure 4 shows the
possible configurations of the aux bits, and where the non-realtime data goes. Empty
fields are untouched, and hold real-time data.

frame | Packet | B3 B2 delta Pos B1 BO delta Pos
pair
even 0 0 0 ch2 FSCH1 FSM1 bfr ch4 ch3
1 0 0 ch6 FSCHS FSMS5 ch9 ch8 ch7
odd 0 0 0 chl FSCH2 FSM2 ch10 ch3 ch4
1 0 0 chS FSCH6 FSM6 ch7 ch8
even 0 0 1 ch2 chl FSM3 bfr chd | FSCH3
1 0 1 ch6 ch5 FSM7 ch9 ch8 FSCH7
odd 0 0 1 chl ch2 FSM4 ch10 ch3 | FSCH4
1 0 1 ch5 ch6 FSMS8 ch7 | FSCHS8

Figure 4. Channel assignments when non-realtime data is transmitted. Bold letters show
differences with normal frames. non-realtime data FSCH# overrides one realtime data. In fields
with small letters contain normal realtime data as in Figure 3. Typically those four frames are sent
immediately after each other, but the order can differ. The order shown here is used by the FF8S.

Note that the repetition of bits B2 and B3 (twice per frame) is strange. Maybe this
structure gives the possibility to transmit only four channels, by transmitting only the first
packetpair. Bit BO of odd frames seems unused.

Error Protection

Error protection is done by adding eight extra bits to every datapacket. This gives us a
new larger datapacket, which we named pcm_packet. Figure 5 shows the layout of the
pcm_packet.

aux Delta position cre
1{o]3]2]1]o]9]8|7]|6][5]4]|3]|2]1]0]7]|6]5][4]3]2]1]0

Figure 5. pcm_packet: datapacket with added error detection code (crc).

This eight bit code is a CRC code. Briefly, it is calculated by XOR-ing the values in
Table 3 for every bit in the datapacket that is 1. This code can also be represented with
CRC polynomial x*+ x°+x” + x* + x + 1. An efficient shift register implementation is
possible to detect errors. More details on CRC codes can be found in [Kassam99]. It
shows that all single and double errors, any odd number of errors, any error burst of
length <8 and most larger error bursts can be detected. Furthermore it is possible to
correct one-bit errors. However it is hard to detect in practice if only one bit was
damaged, so it is unlikely that Futaba uses error correction.

Table 3. XOR values for calculating the CRC.

BIT Value for XOR
(hexadecimal)

Al 6B

A0 D6

D3 C7

D2 E5

D1 Al

DO 29

P9 52

P8 A4

P7 23

P6 46

P5 8C

P4 73

P3 E6

P2 A7

P1 25

PO 4A

Channel coding

The channel coding converts the data bits into streams of bits that can be modulated by
the radio. It manipulates the data a bit, to ensure the following properties for the radio
signal:

* Lower the high frequency components by eliminating isolated 1's or 0's’.

* Add odd/even frame data because the receiver needs that

* Add sync pulses to enable the receiver to find the start of the frames

* Add preamble to ensure the sync pulse gets the right length and polarity.

Eliminating isolated 1's or 0's

This is done by splitting the pcm_packets into 4 chunks of 6 bits, and re-coding each
chunk of 6 bits with with 10 bits that have this property. This is called 6to10 coding.
Table 4 shows the particular codes used in PCM1024.

* The goal of this coding seems to avoid high frequency components.

Table 4. 6t010 bit coding. Every 6 databits (left column) are converted into 10 bits that don't have
isolated O's or 1's.

6-bit data 6-bit data 10-bit radio

(decimal) (hexadecimal) word
0 00 1111111000
1 01 1111110011
2 02 1111100011
3 03 1111100111
4 04 1111000111
5 05 1111001111
6 06 1110001111
7 07 1110011111
8 08 0011111111
9 09 0001111111
10 0A 0000111111
11 0B 1100111111
12 0cC 1100011111
13 0D 1100001111
14 OE 1110000111
15 OF 1111000011
16 10 0011111100
17 11 0011110011
18 12 0011100111
19 13 0011001111
20 14 1111001100
21 15 1110011100
22 16 1100111100
23 17 1100110011
24 18 1111110000
25 19 1111100000
26 1A 1110000011
27 1B 1100000111
28 1C 1100011100
29 1D 1110011000
30 1E 1110001100
31 1F 1100111000
32 20 0011000111
33 21 0001110011
34 22 0001100111
35 23 0011100011
36 24 0011111000
37 25 0001111100
38 26 0000011111
39 27 0000001111
40 28 0011001100
41 29 0011000011
42 2A 0001100011
43 2B 0000110011
44 2C 1100110000
45 2D 1100011000
46 2E 1100001100
47 2F 1100000011
48 30 0000111100
49 31 0001111000
50 32 0011110000
51 33 0011100000
52 34 0011000000
53 35 1111000000
54 36 1110000000
55 37 1100000000
56 38 0001100000
57 39 0001110000
58 3A 0000110000
59 3B 0000111000
60 3C 0000011000
61 3D 0000011100
62 3E 0000001100
63 3F 0000000111

Odd and Even Frame Code

The receiver needs to know whether the frame is odd or even. For some reason Futaba
decided not to put this into the aux bits but to put a frame code bluntly (without error
checking code) in front of the frame. Table 5 shows the bits that are prepended to odd and
even frames. Probably they use different code lengths as an alternative to error checking:
bits may get mangled but the length of the code can't be changed by interference.

Table 5. Odd or even frame code.
frame | frame code
even | 000011
odd | 00000011

Sync Pulse, Preamble

The sync pulse is simply a string of 18 consecutive 1's prepended before the odd/even
frame pulse. Note strings with more than 16 the same bits never occur in the 6to10 codes,
because all codes start and end always with at least two the same digits.

The last databit of a frame can be a 0 or 1. However the sync pulse has to be exactly 18
bits long. Therefore, a preamble (Table 6) is put before the sync, which always ends on
00. The preamble also compensates the different number of bits in the odd and even
frame pulse (Table Z), so that a full frame always takes 190 bits = 28.5 ms.

Table 6. Preamble for odd and even frame, ensuring a sync of exactly 18 1's.
frame preamble
odd 1100
even | 110000

Modulation

The final stage is the radio modulation. This step is rather straightforward. The preamble,
sync pulse, odd/even code, and 160 6to10 coded frame bits are concatenated to form a
full frame of 190 bits. Then, to remove DC in the radio signal (an unequal amount of 0's
and 1's) all bits in the full frame are inverted regularly. Then the bits are modulated onto
the frequency.

Remove DC

Removing DC is necessary in most radio transmitters, usually because of the use of
voltage-controlled oscillators that drift towards the center frequency if provided a DC
signal. Because the receiver doesn't drift, this would cause signal strength loss or worse.
To avoid (well, mostly eliminate) DC, all channel bits (thus, including the preamble and
sync) are inverted every third and fourth. So the bits in the first even and odd full frame
are all straight up, the third and fourth full frame are all inverted, the fifth and sixth full
frame are straight up again, etc.

Modulation

The bits are then modulated onto a radio wave. Generally, PCM uses Frequency Shift
Keying or FSK. In FSK two frequencies close to the channel frequency are transmitted,
one to transmit a 0 and the other to transmit a 1. Every bit takes 150 ys.

At the 72MHz band, Futaba uses the channel frequency f to transmit a 0, and f - 5kHz to
transmit a 1 [Gulls03]. Channel distance is 20kHz on this band.

At the 35MHz band, channel spacing is only 10kHz and things are apparently set up
somewhat different [Armitage03]. With a center frequency f, the transmitter transmits f-
1500Hz for a 0, and f+1500Hz for a 1.

This modulation mechanism is according to literature, we did not measure it ourselves.
For the reverse engineering of the PCM format we relied on the trainer output of the
transmitters, which outputs the un-modulated full frames.

Acknowledgements

I would like to thank Angelos Gonias, Phil Cole, Erhard Klinke and Islander for their
input and help with the reverse engineering and testing various transmitters.

Reference

[Armitage03] Armitage, D. (2003). 35 MHz Channel Spacing. Available Internet:
http://rcrc.co.za/Other/35_mhz_channel_spacing.htm

[AutopilotO2] autopilot: Do it yourself UAV. Available Internet:
http://autopilot.sourceforge.net/index.html

[fmadirect03] FMA Direct (2003). FAQ’s. FMA Direct, Frederick, MD. Available
Internet: https://www.fmadirect.com/site/fags.htm?category=1.

[GullsO3] Gulls, T. P. (2003). Everything You NEVER Wanted To Know About
Radios! http://www.torreypinesgulls.org/Radios.htm

[Kassam99] Kassam, S. A. (1999). Cyclic Codes, and the CRC (Cyclic Redundancy
Check) code. Part of course TCOM370 Notes 99-9, Principles of Data
Communication, Dept,. of Electrical Engineering, Univ. Pennsylvania.
Available Internet: http://www.seas.upenn.edu/~kassam

[Pasman(3] PCM1024Z format: What's Known? Private Report.
http://graphics.tudelft.nl/~wouter/publications/publ.html

[Pasman03b] Pasman, W. (2003). Latency of Futaba FF8s PPM and PCM Radio
Controller. Private Report.
http://graphics.tudelft.nl/~wouter/publications/publ.html

[Runryder03] PCM1024: Part II. http://www.runryder.com

[SekirikiO2] Sekiriki (2002). Re Does Futaba PCM 1024 use CRC or checksum?
Bulletin board answer on http://www.sekiriki.jp/smartpropo/index.html

[SekirikiO2b] SmartPropo (2002). Available Internet: www.sekiriki.jp.

Appendix A: Hard- and Soft-ware

This appendix describes the software and hardware that was used for reverse engineering.

Hardware

Our software (both macintosh and PC) uses a simple cable connecting the transmitter
output to the computer audio inputs (Figure 6. Two resistors are needed to scale down the
high transmitter signal voltage (typically above 8V) down to audio line signal level (1V).

33kQ
Tx out)—: » audio in
(futaba pin 2) (left and right)
Futaba 5
3k
Futaba 4 3.3
Tx gnd audio

(futaba shield) ground

Figure 6. Wiring from transmitter to computer audio ports. Pin numbers are for Futaba
transmitters. For Futaba, shortcut between pin 4 and 5 turns on the transmitter.

Software

The software we made is specifically designed to support the reverse engineering effords.
It is not aimed at high efficiency, but instead assumes a powerful CPU (few hundred
MHz) allowing vast amounts of printing and flexible general internal (but less optimized)
code.

The basic sampling mechanism of both macintosh and PC versions of the software use
hardware in the computer to sample the incoming signal at 44kHz. The signal is
thresholded, and pulse lengths are calculated. These pulse lengths ar converted back into
a string of 0's (signal below threshold) and 1's (signal above threshold).

After this point, the macintosh and PC version of the software differ. The Macintosh
version was developed from scratch. There are four modules all compiled into a single
program. The sampling module stores all bits into a data block until the next sync pulse
comes by. After the sync pulse arrived, this module does a callback to the interpretation
module, that interprets the bits as PCM data. After the interpretation module is done, that
module calls the result handling module. The result handling module in our case will
print the result, depending on the printing options selected. The last module responsible
for interpreting the printing options and initializing all other modules.

Table 7 shows the options of the macintosh version. The program is started using a
command from the terminal window "PCM [printoption]*". Options are separated by
whitespace and start with either a '-' (minus) or '+' (plus). A minus turns an printoption
off, a plus turns it on. After the plus or minus follows a letter to indicate the printoption
targeted, and sometimes a few extra parameters. For example PCM -p0 turns off printing

10

of non-inverted frames. The a option needs some extra explanation. In general it looks
like aAMAA: auxfields in the four pcm_packets are holding 4 digits. A can be 0,1,2 or 3. For
example, PCM +p0 -a2020 prints all frames with polarity O and with NOT aux fields
2,0,2,0. You can set only 1 option for p, f for accept and one other for reject. So PCM
+20000 -a2000 is okay but PCM -a0000 -al000 is not ok. Be careful to use the right
digits, for instance digit 3 will be accepted for f but =3 will never become 'true'. The
option mechanism is rather clumsy and not as consistent as desirable, please refer to the
source code for more details.

Table 7. Program printing options for Macintosh decoder software.

option letter | meaning default printmode | extra params
p polarity: whether bits in | print all 0: non-inverted
the full frame are inverted. 1: inverted
f odd or even frame print both O=even 1=odd
S sync details on O=off 1=on
print all binary digits in | on O=off 1=on
frame
c parsed packet info on O=off 1=on
t binary aux fields on O=off 1=on
a aux fields not set 4 digits each 0,1,2 or 3.

The PC version uses separate sampling and interpretation programs. The sample program
has the name ReadPCM. "ReadPCM T" tests if PCM signal is present. It will dump a
line to the standardout every time a PCM frame comes by. "ReadPCM L FileName
NbSamples" dumps frame data to a logfile. After the ReadPCM file has been stopped, the
logfile still needs to be interpreted. The DecodePCM program just does that. The call is
"DecodePCM test.log <verboselevel>" where <verboselevel> is 0, 1, 2, 3 or 4, higher
values print more details.

B: Transmitter Specifics

We found that different transmitters in the Futaba line have different ways of generating
those channels. This appendix lists a few peculiarities of the different transmitters

FF6

No zero-delta used.
No channel 7-10 available.

FF8 super

All failsafe frames in fixed order.

10 bit DACs

BFR bit goes high when throttle goes to below 27%

The non-realtime data is also transmitted immediately after a failsafe for one of the
channels is turned to 'preset' but not when turned to 'normal'.

Channel 9 is turned on by pulling the snap/trainer switch.

throttle normal failsafe behaviour is throttle to idle

delta=0 is used.

11

FF 9Z-WC and 9Z

The BFS behaviour can be programmed, for instance to low or high throttle stick, or to
switch A.

Channel 9: switch on gives 0, off gives 1.

Channel 10 is controlled by switch D. down gives 1, up gives 0.

No delta=0 used.

10 bit DACs

FC16

delta=0 not used. All positions are even.

9bit DACs.

Failsafe frames change order.

BFR bit is copied onto CH10

Throttle normal failsafe behaviour is throttle to center.

FC28

Channel 9: switch on gives 0, off gives 1.
Channel 10 is controlled by switch. off gives 1, on gives 0.

Appendix C: Techniques

Measuring the delta field is a bit tricky. To measure how the transmitter encodes specific
jumps, it is necessary to provide those jumps at the input side of the transmitter. Applying
those jumps in analog form into the potmeters as we did in our latency measurements
[Pasman03b] might be prone to noise. Instead we came up with two techniques: the flip-
switch and delayed-servo technique.

The Flip-switch Technique

The flip-switch technique mixes a stick position into a proportional channel. The absolute
position jump caused by switching the switch can be accurately determined by reading
out the channel with our software, and the mixing can be adjusted until the required jump
is caused. Then, we flip the switch until we find a delta code corresponding to that switch
jump. This gives us the delta code associated with the absolute jump we set up.

The Delayed-servo Technique

The delayed-servo technique uses the servo delay function available in the FF8 and FF9
transmitters. Similar to the flip-switch technique we set up a jump associated to a switch,
mixing into a proportional channel. Now we set up for as large a jump as possible. Next,
we set up delayed servo jumps. This is a feature that smoothens out large jumps by
interpolating inbetween values (this is especially useful for instance for having a landing
gear coming down slowly). It shows that this feature uses equal steps between two
frames. The actual step size is determined with our software. Because there is a delta
code between every two position codes for the channel being affected, we have to divide
the difference between the two position codes by two in order to find the jump between
the position code and the delta code. Care has to be taken that the difference between the
two position codes is even, to ensure both jumps are equal size. This technique is

12

especially useful when checking the delta behaviour over failsafe frames. The technique

is less suited for very small and very large jumps, because of limitations on the delay.

Appendix D: Decoder Diagram

Figure 7 shows how the decoding can be understood as moving incoming data packets to
the appropriate memory position representing the channel or failsafe position. It is
convenient to see that the decoding is straightforward in this scheme, it gives some

evidence that we have all the bit signs right.

aux delta position
15 14 (12 11 10 9 8 7 6 3 2 1 0 | pcm_packet
F: odd/even frame
P1 PO | F P1,0: pcm_packet count in frame. 0..3.
_ N _ L Oleft
W 1:right CHANNEL MEMORY
chnr ch name
00000 1 ail
00001 2 ele
B3 B2 B1 BO 00010 3 thr
00011 4 ru
| > FS mode 00100 5 ay
00101 6 pi
00110 7 ch7
00111 8 ch8
01000 BFR bat failsafe reset
N 01001 9 ch9
01010 10 ch10
01011 -
01100 -
01101 -
01110 -
01111 -
All 1xxxx chnrs are the
failsafe values
for the Oxxxx channels.
Y Y VY
FS| 0 C2 C1 CO | Targetfor position
0 |0 C2 C1 CO | Target for delta
0 1 0 C1 Co Target for BO

Figure 7. Diagram showing PCM decoding as a data-to-memory strategy.

13

Supplement
10 february 2008

I received a report from Olav that Table 3 (the XOR table for calculating the CRC)
might be in reverse order. For me Table 3 worked (and for several others as well), but
Olav had to reverse the order, so Al =>4a, A0 => 25 and so on. Olav also provided
the VHDL code for checksum computation, as shown in Figure 1, includng a few
lines of explanation:
"Temp holds the frame consisting of aux, delta pos and absolute pos. The for-loop
scans through temp and xor ecc if temp(i) is one. The forloop initiates I at 15 and
counts downto 0. So: temp(15) is auxbit 1, and the corresponding ecc_table-value
(located at ecc_table(15) is 4A. Olav I might have mixed up the "to" and "downto"
here, but the code shown is tested and does work."

type ECC_TABLE TYPE is array (15 downto 0) of std logic_vector(7
downto 0);

constant ECC_TABLE : ECC_TABLE TYPE :=

(X"4A" ,X"25",Xx"A7" ,X"E6" ,X"73",X"8C",X"46" ,X"23",

X"A4",X"52",X"29",X"Al",X"E5",X"C7",X"D6",X"6B");

function calc_ecc(constant aux: in std_logic_vector(1l downto 0);
constant delta: in std logic_vector(3 downto 0);
constant pos: in std_logic_vector(9 downto 0))
return

std_logic_vector is

variable temp: std logic_vector(1l5 downto 0);
variable ecc : std logic_vector(7 downto 0);

begin
temp := aux & delta & pos;
ecc = (others => '0');

for i in 15 downto 0 loop

if temp(i) = '1l' then
ecc := ecc xor ECC_TABLE(i);
end if;
end loop;

return eccj;
end function calc_ecc;

Figure 1. VHDL code for the checksum calculation, provided by Olav.

