
1

CONTENTS

INTRODUCTION...2

GLOBAL STRUCTURE ...2

THE COMPONENTS ..3

THE FOUNDATIONS...3
FIPA ..4
JADE..4
Protégé ..5

TESTBED COMPONENTS..5
Configuring agents..6
RelatedAgent ...6
Service Matcher ..6
Personal Agent ..6
UserLocationTracker..7
NaturalLanguageInterface ...7
Display...7
MobileGUI ..7

SUPPORTING AGENTS ...7
ActiveAgents ..7
UserHistory ...8
UserLocationTrackerGUI...8
MobileGUIClientTools ...8
KeepGuiWithUser ...8
UserChoiceGUI ..8
AreaAgent..9
tools/ScriptAgent...9
tools/ErrorHandling ...9
MapMaker ...9

TECHNICAL DETAILS ...11

RELATEDAGENT ...11
SERVICEMATCHER ...12
ACTIVEAGENTS ..14
NATURALLANGUAGEINTERFACE...14
TOOLS/ERRORHANDLING ...15
USERLOCATIONTRACKER ..15
MOBILEGUI..16
MOBILEGUICLIENTTOOLS ..17
KEEPGUIWITHUSER..18
PERSONALAGENT ...18
DISPLAY..19
USERHISTORY ..19
LIGHTAGENT ..20
TESTMOBGUICT..20
SCRIPTS...20
MAPMAKER..21
TOOLS/ERRORHANDLINGAGENT ...21
TOOLS/FSMSTATE..21
TOOLS/ALARMCLOCK ..21

RUNNING THE DEMO ..22

REFERENCES..22

2

Cactus Testbed
W.Pasman, 3 september 2003

Introduction
This document explains the components of the testbed and describes technical details involved in using
and programming for the testbed.

We start with a very short overview to sketch the structure of the testbed. Then we discuss all the
components briefly, to give an idea of the system as a whole and how the components work together.
Then we go into the technical details of each component.

Global Structure
The core of the Cactus testbed is a structure to create ordering hierarchies in an ad-hoc agent network
based on our RelatedAgent ontology. On top of these hierarchies we implemented a number of agents, the
most important ones being a service matcher and mobile graphical user interfaces.
The service matcher is an agent that searches agents in the users 'environment' to find agents matching a
user request. Currently the user request is a natural language string typed by the user, but our architecture
is not restricted to this modality. Figure 1 shows our current interface to the service matcher. Mobile
graphical user interfaces are GUIs that follow the user, hopping between windows in the environment of
the user to keep as close as possible to him.

Figure 1. Graphical user interface (GUI) for the servicematcher. User types his needs in natural
language, and then presses 'Search for Service'. The servicematcher searches for an agent matching his
needs and activates the agent found.

The service matcher will not attempt to understand the user's request all by itself. Instead, it is up to the
individual agents to judge whether they (1) understand and (2) are able to handle the user's request. Of
course we offer tools to make this task easy for the programmer of an agent. When a large number of
agents and users are in the system, it would be infeasible to ask all agents to check the user's request.
Instead,we search the agent space hierarchically, based on the user's context. The RelatedAgent ontology

3

implements such context awareness in each agent. Figure 2 shows the relations of the RelatedAgent
ontology and the tool used to define the ontology (Protégé).

Figure 2. The RelatedAgent ontology, shown in the Protégé tool used to define ontologies.

The mobile graphical user interfaces, MobileGUIs in short, can be moved between displays with
preservation of their full status (selections made, positions of scrollbars, etc). In the testbed, the GUI is
completely separated from the agent, it is just another means to talk with agents. Internally the agents all
adhere to the FIPA protocols and speak ACLMessages. There is a mechanism available to automatically
keep MobileGUIs with the user if required, so that the GUI moves to the nearest screen if the user moves
around. In fact the GUI Figure 1 is such a MobileGUI.

The components
Now we proceed describing all the components of the testbed, and how they are related. We will not yet
go into full detail.

The Foundations
Our testbed is built on a number of foundations: the FIPA protocols, the JADE development framework,
and the ontology constructor tool Protégé.

4

FIPA
The Foundation for Intelligent Physical Agents (FIPA) has created standards for the interoperation of
heterogeneous software agents [FIPA]. These standards describe how agents communicate, how they
find each other, and how messages are transported. This goes into quite some detail, for instance
communication is not just sending messages, but involves so-called communicative acts: an agent sends a
message because it has some goal, and is expecting the receiver to react in certain ways (a protocol).
FIPA defines numerous communicative acts and protocols that have to be understood in detail before the
right one (for a certain situation) can be selected and used properly.

JADE
The technical basis of our agent system is Java Agent Development Framework [JADE]. JADE is an
implementation of FIPA, making it easy to adhere to the protocols, communicative acts, etc. Basically
every agent is a thread running in parallel with the other agents. Agents usually have to be able to
communicate with several other agents in parallel. Often this does not pose problems, but in some cases
this causes extra problems and a lot of tricky situations.
In JADE, it is common practice to launch threads for each type of message, so that different message
types are handled by different threads. Such threads are called 'behaviours'.
JADE is running on a Java virtual machine, and therefore compiled code can be run on all java platforms,
and agents can be moved around relatively easy. However, on desktop machines and laptops the 'java
standard edition' is running, while a lightweight version of java and of jade is run on PDAs and mobile
phones. As an effect, agents can be started on both types of machines, but once they are running they can
not easily be moved between PDAs and desktop machines.
To build a distributed agent system, we use most of the FIPA and JADE mechanisms. The only thing we
avoided is the directory facilitator. The directory facilitator (DF) is supposed to keep track of the agents,
their names and which ontology(s) they speak. However, such a central DF is quite opposite to an ad-hoc,
distributed agent system, and would become quite unworkable in a large distributed agent system.
Furthermore, currently JADE has a central platform manager that make it less suited for large distributed
agent systems. However it seems that this is only a temporary solution, and we expect future versions of
JADE to be better.
In JADE, several tools are available to track messages and agent behaviour, create new agents, create
messages, etc. Figure 3 shows the dummy agent, that enables us to create, save, load, send etc FIPA
messages.
For the remainder of this document we assume the reader to be familiar with JADE and FIPA, but we
avoid FIPA and JADE terminology as far as possible so that other readers can understand most of this
document.

5

Figure 3. Dummy agent, with the message editing panel. This
picture shows the minimum that has to be set for a message: the
sender and receiver, the content, the communicative act, the
language and the ontology.

Protégé
Protégé is a tool to define ontologies (and some other things that we dont use) [Protégé]. Figure 2 shows
the GUI of Protégé. In our case, an ontology defines the commands that an agent understands, so it is in
fact an API definition for an agent. Protégé is a general tool but it has been customized for JADE/FIPA
purposes by the so-called bean generator [BeanGenerator]. The bean generator converts an ontology as
built in Protégé into an ontology that can be put straight into JADE. Once the ontology has been loaded
into JADE, JADE can parse messages that are expressed in that ontology. Those messages are always a
mix of the ontology and the FIPA semantic language (SL). Figure 4 shows a typical message in the
RelatedAgent ontology (see also Figure 2).

((all ?x (= ?x (HasStep :agentname ?y :tightness ?z))))

Figure 4. Typical message using the RelatedAgent ontology. This message could be send to an agent to ask
whether the agent contains task-related substeps. The keywords HasStep, agentname and tightness come from
the ontology, the other words, variables and brackets are defined by the FIPA SL.

Testbed Components
This section attempts to give a feeling for the cooperation between the components of the testbed. To do
this we briefly describe the procedures, agents, behaviours and components of the testbed.

6

Configuring agents
Usually agents have to be configured, because most agents are of a 'generic' type when just created. For
instance a light agent when just created might represent a standard bulb of 100W being off, it does not
know how to access the real bulb and it does not know in which room the real bulb is and where other
bulbs are in that room. All these parameters have to be set before the agent can work properly.
This configuration is done by sending the new-born agent messages. For instance, the LightAgent might
have a 'SetMaxPower' and a 'SetLocation' action. Usually simple agents will refuse other actions before it
is configured completely. More advanced agents might try to figure out part of the information they need
by trying to talk with other agents.
Configuring is supposed to be done by some specialized personel, it is like setting up a network or a PC.
In our demo application, this setup is done by a number of scripts.

RelatedAgent
RelatedAgent is a behaviour that adds capabilities to an agent A to handle questions about which other
agents are related to agent A and how they are related. In this document we will call an agent that has this
behaviour a 'related agent'. All related agents together, when properly configured, make two hierarchies
of relations (Figure 2). The first hierarchy is the task hierarchy: an agent is a step of another task, and may
have other agents that handle substeps of the task. The second hierarchy is the spatial hierarchy: agents
are associated with a piece of space, which may be part of an other agent's space and which may contain
other agents as well. Finally there are user-related relations, such as which agent the user is looking at.
The information in the RelatedAgent structures allows us to search hierarchically through space and
through taskspace, which is useful for several situations such as service matching and finding nearby
displays to put GUIs on.

Service Matcher
The service matcher takes a natural-language string and searches the agent space to find an agent
matching the string. Agent space is searched hierarchically. The hierarchy is described by the
RelatedAgent hierarchies. Startpoint for the search are the personal agent and the history agent, whose
names (pa and history in our system) have to be made known to the ServiceMatcher before the
ServiceMatcher can do its work.
Actual service matching starts when the ServiceMatcher receives an AttemptHandling request. To
alleviate the user from writing FIPA messages to the service matcher, a graphical user interface is
available (Figure 1).

Personal Agent
The personal agent (PA) has two jobs:
1. Keep connection between the user and the agents. Currently it does so by keeping a MobileGUI

(Figure 1) with the user that enables the user to search agents. So the MobileGUI of Figure 1 is owned
by the Personal Agent, not by the Service Matcher. Currently we don't do anything when the interface
dies but the idea is that a new interface is launched when the old one dies or becomes unreachable.
This can always happen because the display the GUI is on may not be the user's property, the power
may be low (if it is on a PDA), networks may break down, etc.

2. Being the referrer (by being a RelatedAgent) to tasks common to the user, such as the user's
locationtracker, travel agent and agenda . This is done with the configuration of the RelatedAgent
structures from the startup script (see the Scripts section in the next chapter).

The PA is supposed to run in a safe place where it never breaks down and can reach most of the displays
in the user's environment, for instance in the backbone.

7

UserLocationTracker
This agent is responsible for keeping track of nearby agents and the agents that the user looks at. It
supposedly integrates location information from multiple sources, integrating them in a consistent user
location and user gazedirection. To do this it presumably needs the reliability of the various sources.
However the current version of the location tracker is very simple, it just uses the latest location and gaze
direction as it is told by the UserLocationTrackerGUI.
Agents that need the user location can subscribe with the location tracker, and then they will receive a
message every time the user changes locations. We did not consider any privacy issues that obviously
arise with our mechanism.
Distinction is made between agents that the user carries with him and those in his environment, otherwise
the most nearby agent probably would always be his mobile phone.
The UserLocationTracker reflects its knowledge in its RelatedAgent structures. Thus, it dynamically
changes the links of its RelatedAgent structures to match the current tracker situation. This way, all
services using the RelatedAgent structures automatically are informed when they hit the
UserLocationTracker.

NaturalLanguageInterface
This agent converts a natural language string in ASCII text format (a presumed request from the user)
into a FIPA message. It provides a two-step interface:
1. Attempt to interpret a natural language string. It will reply with an interpretation: a message whether

the agent (a) understands the query (b) if it can, and how it would handle the request.
2. Execute the proposed interpretation (of course only if it thought it could handle the request). If it is

asked so, it usually will start up some interface with the user to get further details from the user, and
then communicate with the lower-level FIPA-speaking agents to fulfill the user's request.

Display
A Display agent is an agent representing a Display. It can tell MobileGUI agents how to get themselves
on the display.

MobileGUI
This agent is offers the basics to create a graphical user interface that can be moved around between
Displays. When a MobileGUI receives a 'move to display' message it asks the display how to do the
move, and it then moves to the display. The GUI itself is created with standard java.awt functionality
which enables basic buttons, menus, panels, lists, sliders etc. We dont support the more comprehensive
java.swing library because swing is not supported on PDAs and mobile phones.

Supporting Agents
Numerous other agents and behaviours are used to support the above 'key' agents. We sketch a few
important ones briefly.

ActiveAgents
This agent helps the ServiceMatcher to keep track of the list of 'active' agents. The ActiveAgents agent is
an agent that creates a map of the environment (using the RelatedAgent ontology), and can extend the
map if it is requested to do so. There is quite a lot of parallelism and error handling (wrong adresses,
broken links, late replies) involved here, and to make things clearer and enable easier debugging this
functionality was separated from the ServiceMatcher. Basically the ServiceMatcher asks the

8

ActiveAgents agent to set a startpoint and then to extend the map. Every time the ActiveAgents agent
finds a new point (agent) on the map it informs the ServiceMatcher about it. The ServiceMatcher then just
takes the new found agents and asks them questions about interpretation of the user's query.

UserHistory
This agent keeps track of which agents the user interacted with.The ServiceMatcher informs this agent
when it connects an agent to the user, but other agents might keep the UserHistory agent informed as
well. The UserHistory agent reflects its knowledge in its RelatedAgent structures.

UserLocationTrackerGUI
This agent is a stub to get the UserLocationTracker working. We currently don't have a working tracker
system, instead this interface allows a person to update the UserLocationTracker by clicking on an agent
name. Figure 5 shows the typical look of this GUI.

Figure 5. typical look of the UserLocationTrackerGUI. In
the left column the agent closest to the user can be selected,
on the right the agent the user looks at.

Figure 6. typical look of the UserChoiceGUI. Texts can
all be set by the agent, and a scroll bar will appear on the
right if many choices are available.

MobileGUIClientTools
Creating and managing a MobileGUI involves extensive messaging. After creation, messaging still
continues because the GUI is constantly checked to be alive, and because all user's actions in the GUI are
translated into FIPA messages. The MobileGUIClientTools make all this transparent to the programmer.

KeepGuiWithUser
Keeping a MobileGUI with the user involves (1) subscribing on tracker events, to know when the user
moves (2) searching the area around the user for displays (3) determining whether a move of the GUI is
necessary (4) negotiating with the MobileGUI to get it to the appropriate display. All this could be put
into every single agent that has to keep its GUIs with the user, but that would result in heavy messaging
and lots of duplicated work for step (1) and (2).
Instead, we have a specialized KeepGuiWithUser agent. Agents can subscribe their MobileGUIs to this
KeepGuiWithUser agent, after which their MobileGUIs are automatically kept with the user.

UserChoiceGUI
This is a generic MobileGUI that shows a list of choices, and asks the user to make a choice. After the
user made his choice the GUI closes itself. Any agent can use this GUI, by instantiating one and sending

9

it the list of choices. It is up to the using agent to get the GUI to the user's display. Figure 6 shows how
the UserChoiceGUI typically looks.

AreaAgent
In some cases an agent is needed just to make up a proper spatial- or task-hierarchy in the RelatedAgent
structures. For instance in our example system we have a 'MondriaanArea' agent, which is a subarea of
the museum. This was needed to create a small area around the mondriaan, light311 and the
exhibitdisplay. If such a small area would not be there, the mondraan, light and display would be directly
under the museum, and the system would not know that the mondriaan, light and display are physically
close together. Not knowing this would result in failure to find a nearby display if the user is nearest the
mondriaan.

tools/ScriptAgent
In the long term we expect that agent systems will be up and running all the time, and only parts of the
agent system would be taken down temporarily for maintenance. For demo purposes however it is easy to
be able to quickly set up a full blown agent environment from scratch. The ScriptAgent takes a text file as
argument. It reads the messages from this text file and sends them to the adressed agent. Messages in the
text file are the same format as those saved with the dummyAgent (the standard JADE tool).

tools/ErrorHandling
In a distributed agent system, thorough error handling is critical. Just dumping a stacktrace to stdout will
not work, as we would not know which agent is throwing and because we can't see the preceeding
messages that led to this problem. ErrorHandling provides (1) a log file where the errors and other
messages can be dumped (2) a MakeError function completely prepares an ACL error message for
sending, including stack trace, source, description of the problem, and optional variable values (3)
SendError does the same but also sends the error so that the client of the agent knows what happened.

MapMaker
How agents are related is invisible at the surface of JADE, and near impossible to recognise from the
messages scattered around in the setup scripts. MapMaker can show all RelatedAgents and how tight they
are related. To make and show a map, go to the MapMaker directory and type ./makemap. On Apple, you
have to install and run X [Apple03] and dotty [Dotty00]. You dont need to have the agent system running
to create a map: the MapMaker will check the scripts and create a map in dotty format (tmp.dot). Figure 7
shows the current configuration .

10

delft

museum

0_2 0_3

museumrestaurant

0_3

exhibitarea

0_3

museumguidenli

0_3

exhibitdisplay1

mondriaanarea

0_2 0_3

0_3

mondriaan

0_3

restaurantdisplay

0_2

0_1

0_1

museumrestaurantnli

0_1

1_0

0_3

museumlights

0_21_0

light311

1_0

light311nli

1_0

light313

1_0

light313nli

1_0 light317

1_0

light317nli

1_0

1_0museumlightsnli

1_0

0_7

0_6

mondriaannli

0_7 1_0

1_0

1_0

1_0

1_0

1_0

1_0

1_0

1_0

1_0

1_0

1_0

1_0

0_1

0_3

museumnli

0_3

1_0

0_7

0_1

pa

restaurantplannernli

0_2 travelagentnli

0_14

travelagent2

0_2groupagentnli

0_4

userlocation

1_0 1_0

travelagent2nli

0_8

0_2 0_4 0_2

touristicroutenli

0_2

1_0

1_0

Figure 7. Current relations between agents. Blocks are agents, every arrow is a relation, and the number along the arrow is the
tightness of the relation.

Makemap will show all relations, (task- spatial- and user-relations), and thus it is not so clear from this
picture how spatial relations are. Therefore we have another script: maketopologymap. Figure 8 shows its
output.

delft
R=5000_0

museum
R=50_0

Contains

exhibitdisplay1
R=1_0

mondriaanarea
R=3_0

In

restaurantdisplay
R=1_0

museumrestaurant
R=15_0

In

exhibitarea
R=25_0

Contains

museumlights
R=25_0

Contains

In

Contains

In

mondriaan
R=2_0

Contains

light311
R=2_0

In

In

light313
R=10_0

In

light317
R=3_0

In

In

Contains Contains Contains

In

In

Contains Contains

Contains

In

pa

userlocation

In In

Figure 8. Current topology relations. Now the topological relation is mentioned along the arrow.

11

Technical Details

RelatedAgent
Figure 10 shows the RelatedAgent ontology. Every agent is supposed to speak this ontology, to create
hierarchies of relations as discussed in the previous section. We also have made a default RelatedAgent
behaviour that can be used directly by an agent. Just add the RelatedAgent behaviour to the agents'
behaviour, the constructor of the RelatedAgent behaviour will add the required ontology to the agent.
Most agents are related to a certain physical area, via the AreaSize predicate. The location is not absolute,
but relative of other agents using the 'In' (the agent is in the -larger- area of another agent) and 'Contains'
(the agent contains other agents, that should have smaller areas) relations. The tightness in this case is
directly calculated from the physical distance (meters). For the testbed, we defined
tightness=1/(1+distance) and distance=(1/tightness) -1. However it may prove that the tightness falls too
quick with distance, so the exact formula may change in later versions.
Agents can also know about task-related agents, and there are three types of them. The 'SimilarTask'
relation is used to indicate that another agent is similar to this agent. In attempt to get some consistency,
we defined the following indicative values: tightness 1=same agent but on different machine, 0.9=same
capabilities but slightly different, 0.8=comparible eg do-it-yourself coffee machine vs automata,
0.7=maybe alternative eg cans versus coffee machine. The StepOf relation indicates that this agent is a
step of the agent referred to. Ideally, tightness indicates how often this step occurs as substep of the
indicated agent, as a kind of probability, and the sum of tightnesses of StepOf relations should then be 1.
However in practice it may be useful to manipulate the values. Similarly, HasStep indicates that this
agent has a substep handled by referred agent. Tightness indicates how often the indicated substep is
actually used. For obligatory steps this should be 1. Steps that are possible as substep but are never used
in practice still might be added, with tightness 0.
Finally there are five types of relations between agents and the user. The NearbyAgent relation indicates
that the referred agent is near the user (not necessarily near the agent that provided this relation) but not
permanently carried around by him. This info is typically returned only by user-tracking agents. An agent
could return multiple such NearbyAgent's. The tightness value is set according to the distance, as above.
When the user is carrying an agent with him, the CarriedByUser relation (and not the NearbyAgent
relation) is to be used. The UserLooksAt relation indicates that the user is looking at an agent. If not clear
what user is exactly looking at, tightness may be <1 or multiple agents may be referred to with a summed
tightness <=1. Typically there will be only 1 agent delivering this kind of info. The RecentlyInteracted
relation indicates that the user recently interacted with the referred agent. Tightness as calculated in the
UserHistory agent currently is a function of how long ago the interaction was:

tightness = 2−(steps_ ago+ time _ ago /(15minutes))

where steps_ago is the number of steps that were added after that to the UserHistory (the ServiceMatcher
adds one step for every successfull match) and time_ago is the time that passed since that interaction. In
future formulas we might also take into account how intense and successful interaction was. Finally there
is the CommonTask relation, reflecting tasks commonly done by the user. Usually the PersonalAgent will
return such relations.

12

Concept
AgentAction

addRelation :relation aRelatedAgent
setAreaSize :radius Float

aRelatedAgent :agentname AID :tightness Float
TaskRelated

SimilarTask
StepOf
HasStep

LocationRelated
In
Contains

UserRelated
NearbyAgent
UserLooksAt
RecentlyInteracted
CommonTask
CarriedByUser

Predicate
AreaSize :radius Float

Figure 10. RelatedAgent ontology.

RelatedAgent's can be queried with a QUERY_REF request. Figure 11 shows an example. Currently only
queries of the form ((REFOP ?var (= ?var (REL ...)))) are supported, with REFOP being either iota, any
or all, and REL being aRelatedAgent or one of its subclasses. For querying the AreaSize, use "((iota ?x
(AreaSize ?x)))".
The ontology also provides actions: addRelation to add a relation, and setAreaSize to set the areasize.

((all ?x (= ?x (UserRelated :agentname ?y :tightness ?z))))

Figure 11. Example RelatedAgent query.

ServiceMatcher
Figure 12 shows the ontology of the ServiceMatcher agent. The personal agent assumes one
servicematcher per user.
Before the ServiceMatcher accepts any request, it has to be informed about the personalagent and the
historyagent with the SetPersonalAgent and SetHistoryAgent requests.
The service matcher is requested to try to match a user request with the AttemptHandling action. The
service matcher will reply with an 'accept' message, followed by a number of 'Status' messages and
ending with either a failure or inform-done message. During matching, a service matcher will refuse
new AttemptHandling requests. Running requests can be cancelled.
The UnderstoodThreshold is ment to indicate the minimum understood level for an interpretation to be
acceptable to the user, and the ExecutableThreshold the minimum level for executability of interpretation
to be acceptable to the user. Interpretations with lower values would have to be ignored. Currently this is
not implemented.

13

Concept
AgentAction

AttemptHandling :nlrequest String
SetPersonalAgent :agentname AID
SetHistoryAgent :agentname AID

Predicate
UnderstoodThreshold :threshold Float
ExecutableThreshold :threshold Float
PersonalAgent :agentname AID
HistoryAgent :agentname AID
Status :id Integer :message String

Figure 12. ServiceMatcher ontology.

Future versions of the ServiceMatcher might get rid of the need for a PersonalAgent, and jut send all the
information to the sender of the AttemptHandling request.

HandleRequestBehaviour is the behaviour handling requests to the ServiceMatcher. When an
AttemptHandling arrives, this behaviour will launch a ServiceMatcher Behaviour that will supervise the
search through agent space.
The ServiceMatchBehaviour launches a WinningInterpretationBehaviour that does the search. After the
WinningInterpretationBehaviour finished, it checks whether the user has to be asked to make a choice and
launches the appropriate interface, suggests other ways to proceed or indicates why the search failed.
The WinningInterpretationBehaviour is the core of the ServiceMatching process. It is quite complicated,
mainly because during the search of the ad-hoc agent space agents can respond late or even not at all.
Basically what has to be done is (1) determine the 'active' agents and (2) send those active agents an
AttemptInterpretation message (see NaturalLanguageInterface). If none of the agents understands the
request, the space of active agents is extended and we try again. If an agent understands the interpretation,
we wait at least until all agents that are active had a chance to reply. If multiple agents understood, we ask
the user to make a choice. The final selected agent - or a failure - is finally passed to the
ServiceMatchBehaviour.
The map of active agents is not maintained in the ServiceMatcher, but in a separate agent called
ActiveAgents. See its discussion below.
At start, the WinningInterpretationBehaviour resets the ActiveAgent map by sending ResetScope
message to the ActiveAgent agent. ActiveAgents will reply with messages that the personal agent and
history agent are now active.
The NewActiveAgentBehaviour receives those NowActive messages, and for each of them it sends out
an AttemptInterpretation message to see if the new agent understands the user's request. If the new agent
understands the AttemptInterpretation, it will reply with an Interpretation. Otherwise it may not answer,
or send a NOT_UNDERSTOOD. We count the number of replies to detect early when all agents reply,
and use a timer to force continuation if not all agents reply.
InterpretationReceiver receives the answers (see NaturalLanguageInterface) and puts them in a list of
received interpretations.
WinningInterpretationBehaviour checks this list regularly (currently every 5 seconds). If it does not
contain good interpretations yet it will extend the search space by sending an ExtendScope message to the
ActiveAgents agent. The ActiveAgents agent will respond by sending more NowActive messages,
triggering the NewActiveAgentBehaviour above. After a number of such rounds (currently 6), the search
is aborted with failure. Good interpretations are currently interpretations that have an :understanding of at
least 0.9 and an :executable of at least 0.8 . If more than 2 agents reply that they understand but dont
understand the message the search is stopped before 6 rounds.
Late messages from agents thus are not missed, but they may miss a round of the
WinningInterpretationBehaviour. Messages arriving after a new search started filtered out, because we
use a unique ConversationId in all messages relating to a search round.

14

ActiveAgents
ActiveAgents is an agent supporting the ServiceMatcher. Once we planned this as a behaviour inside the
ServiceMatcher, but as a lot of parallel processing is involved in servicematching we decided to split it
out as a separate agent, also to facilitate debugging and clean time-out decisions.
This agent maintains a dynamic map of the active agents. Active agents here means that the agent has
been reached from the current startpoint. Thus, active is just a float-value 0-1 assigned to agents where 1
means active.

Figure 13 shows the ontology of ActiveAgents.
At the ResetScope call, the activeagent list is set to the startpoint (set when the behaviour was created)
This startpoint is expected to be the personal agent. The personal agent links to the historyagent,
locationtracker, usual tasks etc. and so the search flows out hierarchically from the personal agent.
Each time a new agent becomes active on the map, a NowActive inform message is sent to the
ServiceMatcher with the new active agent. One such message thus will be sent immediately after calling
ResetScope.
When an ExtendScope request is received, all agents currently active on the map are queried for
RelatedAgents. Info on this is aggregated in the activities of existing and new agents on the map. Once an
agent on the map gets an activity value >=1 it is considered active and the ServiceMatcher is notified
about the new active agent.
A remaining problem is with the Done message to the calling agent. If not all agents reply to the
RelatedAgent query, we can not finish the ExtendScope request as more replies may come in late.
Currently we keep receiving and handling late replies unless a ResetScope was requested. Later replies
will only miss their extendscope opportunity.
ActiveAgents is an agent supporting the ServiceMatcher: ServiceMatcher asks all agents that became
active to do an AttemptInterpretation. A future improvement might be to use the interpretation results to
steer the extension of the search space towards those agents being optimistic about their interpretation.
Other future opportunity for improvement is that ActiveAgents agent starts extending the scope already
before the ExtendScope message arrives. However some clever caching of the replies is needed to make
such a work-ahead possibility working, and inbalance between fast and slow responding agents might
become reflected too strongly in activated agents.

Concept
AgentAction

ResetScope :agentnames AID+
ExtendScope

AgentOnMap :agentname AID :activity float
Predicate

NowActive :agentname AID

Figure 13. Ontology of ActiveAgents.

NaturalLanguageInterface
The default NaturalLanguageInterface (NLI) takes a string (natural language) and does keyword matching
with its vocabulary. The vocabulary has to be configured before the NLI will do something useful. The
NLI has already a set of (English) words in it, that are not considered to be indicative of what the user
wants: it contains words as 'please', 'can', 'want', etc. Check the source code for a complete list.

Figure 14 shows the ontology of NaturalLanguageInterface.
The Vocabulary request can be used to add a list of words to the vocabulary of the NLI.
An AttemptInterpretation call for proposal will trigger a try to interpret the natural language string
given. The NLI will propose (possibly multiple) Interpretation's. It will send those separately, so
alternative interpretations may always come later.

15

The field :understanding of an Interpretation holds the confidence that this interpretation is right. Lower
than 0.1 is not OK as such low confidence should be rejected as valid interpretation. Values above 0.9 are
for interpretations that can account for every word in the sentence.The field :executable an Interpretation
holds a float between 0 and 1 for the estimated ability that the agent can execute the command. 1=100%
confident. For instance an agent may understand the request fully but be sure it can't fulfill the request. If
not set, the understood value is used for the executable value.
Currently the :understanding is calculated from the minimum edit distance (also called Levenshtein
distance, see [French97]) of each word with the vocabulary. We sum the edit distances of the words in
the request, and scale them against the maximum edit distance of the sentence to get a value between 0
and 1. It is important to have such a common mechanism for all NLI agents, as it ensures a uniform
judging scale for all agents.
Ideally an Interpretation would hold in its :action slot a FIPA message in the proper ontology that can be
sent, and sending it would execute it. For the conversion rules we think of PROFER-like regular
grammars [Kaiser98]. We did not implement the mechanism to translate from natural language to FIPA
requests, and for the moment the :action just holds the original natural language request.
Execute is a request to execute an interpretation from the proposal. This authorizes the NLI to negotiate
with the user as it thinks appropriate, in order to resolve uncertainties in the request, and to complete the
request.

Concept
AgentAction

AttemptInterpretation :nlrequest String
Execute :interpretation Interpretation
AddVocabulary :vocabulary String

Vocabulary :vocabulary String*
Predicate

Interpretation :executable float :action String :understanding float

Figure 14. Ontology of NaturalLanguageInterface.

tools/ErrorHandling
The errorhandling is closely related to the FIPAException categories available in JADE:
FailureException's, NotUnderstoodException's and RefuseException's. MakeError will set the
performative of the message to FAILURE, NOT_UNDERSTOOD and REFUSE respectively, depending
on the category of the exception it converts.
Currently the error message is not in a rigid ontology, so the receiver has to do some text scans if it needs
the details of the exception. I have not yet encountered a situation where the details of the error were
really needed.

UserLocationTracker
Figure 15 shows the UserLocationTracker ontology. This probably needs extension in the future, as this
agent is not yet fully implemented (see the description of UserLocationTracker in the components
section).
When a tracker has determined a new nearby agent it can use the SetNearbyAgent request to inform the
UserLocationTracker agent. Similarly, when a tracker has determined a new agent that the user is looking
at, the tracker can request the UserLocationTracker to update using the SetFocusedAgent request.
The results of this are reflected in the RelatedAgent structure of the agent, using the NearbyAgent and
CarriedByUser predicates. TheNearbyAgent and TheFocusedAgent are used internally only.

16

Concept
AgentAction

SetNearbyAgent :agentname AID
SetFocusedAgent :agentname AID

Predicate
TheNearbyAgent :agentname AID
TheFocusedAgent :agentname AID

Figure. 15 Ontology of UserLocationTracker.

MobileGUI
MobileGUI provides the basics to build a mobile graphical user interface on. It is an abstract class, so it
has to be instantiated and details have to be filled in before it can actually run. The UserChoiceGUI is an
example instantiation.
An instantiation of a MobileGUI is supposed to send appropriate ACLMessages to its agent(s) to request
actions corresponding to the interface actions, to request info, and to hande replies/inform messages from
the agent.
To create a MobileGUI, one parameter is immediately needed: the master agent of the MobileGUI. The
master is the agent to which all events happening to the gui (such as button presses, moves and dying
events) are sent to. The master is to be passed as the first argument, for instance:

java jade.Boot mobgui:nl.tudelft.cactus.UserChoiceGUI.UserChoiceGUI\(dummyagent\)

from the command line. The master is the name between the brackets. The brackets have to be escaped
with a backslash ("\") to avoid the shell to interpret the brackets.

Concept
AgentAction

GuiEvent :eventSource String :eventType Integer parameters String
Move :display AID

Predicate
Alive
Closing
Moving

Figure 16. MobileGUI ontology.

Figure 16 shows the ontology of MobileGUIs.
Directly after a MobileGUI is created, it starts sending Alive messages to the master. The alive message
is sent frequently, with a frequency set with MobileGUI.alive_time.
Send a Move request to move the MobileGUI to a Display. The display should speak the Display
ontology to get this working. The MobileGUI handles taking down the GUI and bringing it up again if a
move occurs. If the MobileGUI receives a Move request, it will first notify the master by sending it a
Moving inform message. This way, the master can anticipate a longer delay before the next Alive
message will come, because the MobileGUI will be unable to send Alive messages during the move.
The MobileGui already has a Frame variable called frame, and this one should be used to put in the
custom frame as it will be used to make the GUI visible and hide it during moving the GUI.
The initgui() function has to be overridden to set up the GUI, add buttons, etc. Remember to call
"addActionListener(this)" to each component that you want to generate gui events. For some components
it is also useful to set the action command with a suitable label, to make recognition of the event easy in
the actionPerformed handler (see below).
We unpack the GuiEvents coming to us (usually sent by the master) and parse them into a GuiEvent
package. This is passed to the GUI with a call to handle_gui_event. Override the

17

receiveGUIevent(GuiEvent ev, ACLMessage full_msg) to handle them. They are typically used to trigger
changes in the user interface. Of course a custom ontology can be used as well, specialized in the task at
hand, and this most likely would help in multimodal interfacing situations. The guiEvent is to be
considered a simple hack to avoid the trouble of custom ontologies in situations where multimodality is
not an issue. We can not use JADE's GuiEvent structures as those are designed for different threads
within a single agent: they use no real ACLMessages but instead use an internal queue.
The actionPerformed(ActionEvent e) can be overridden to catch events from the GUI, such as button
presses and list selections.
A MobileGUI can go down in several ways. First, the MobileGUI might call takeDown(). Second, the
JADE environment might kill the agent (also resulting in a takedown). Third, the unix process running
the agent might be killed. Fourth, the network between the MobileGUI and its master might break down.
Probably there are some more ways. If the agent reaches takeDown, it is able to send a last 'Closing'
message to the master, in which case the master knows the GUI is not there anymore. In other cases, the
MobileGUI will not be able to do so, and the master will only be able to infer that the GUI died because it
does not receive Alive messages anymore.
The UserChoiceGUI example shows all this, and more of the details involved.

As can be seen, a lot of work is involved also at the master side of the mobilegui, involving checking
Alive messages, handling incoming and outgoing guiEvents, etc. The MobileGuiCT toolbox aims at
handling all this and making life easy for the programmer of the master.

Finally some notes on mobility of MobileGUIs. Do not use Swing inside a MobileGUI, unless you accept
that the GUI won't run on mobile devices such as PDA. Furthermore you can use only classes that
implements Serializable, otherwise the GUI can not be moved around. As Protege generated ontologies
are not Serializable, be careful when you want to use your own ontologies. Override the
registerontologies and register your ontologies there. Remember to call super.registerontologies() so that
the MobileGUI can register the MobileGUI ontologies as well. Finally there are problems when moving
between different versions of Java, the problem seems to be that different versions have different fields
internal to the awt GUI components (the fields inside buttons, frames, etc). The only workaround
currently is to start up a GUI on a mobile device if it has to be run on a mobile device (not necessarily the
same device).

Known bugs
I think that GuiEvent should really pass objects, and not Strings. Unfortunately this is not supported by
the Protege tool. The 'ANY' option for the fields results in a compiler error: " package Ontology does not
exist public void setEventSource(Ontology.STRING_TYPE value) ".

MobileGUIClientTools
You should extend this class to easy create proper support of your MobileGUI. The TestMobGuiCT is an
example of this.
The function openGUI(String containerName,String guiName, String guiClassName, ArrayList args) is
convenient to open a MobileGUI. Typical call to open a MobileGUI using these tools is

guitools = new MyMobileGUIClientTools(this);
guitools.openGUI("","mygui","nl.tudelft.cactus.myMobileGUI.myMobileGUI",null);

The default containerName is Main-Container. the guiName is the name that the agent gets within JADE.
The guiClassName is the java class name of the agent. The arguments are the arguments as if passed in
the command line. The MobileGUI requires the first argument to be the name of the master (the agent

18

that calls openGUI and thus declares itself responsible for handling GUI messages). However this first
argument is not needed in the call to openGUI, instead openGUI will insert this parameter for you.
sendGuiEvent can be used to send a GuiEvent to the MobileGUI. This is a convenient means to set up
and change the properties of the GUI as needed.
receiveGUIevent can be used to receive guiEvents from the MobileGUI. As already mentioned in
MobileGUI, normally the MobileGUI converts interface gui events into FIPA messages using the proper
ontologies. For instance when the user presses 'CANCEL', a FIPA cancel message might be send to the
agent, and when the user turns a knob a request "setPower 50%" might be send. However in some cases
an agent uses a GUI just to ask the user a simple question. In such cases it may be too much hassle to
define FIPA ontology predicates and actions to deal with the question. Then, using just the sendGuiEvent
and overriding the receiveGUIevent is a convenient 'hack'.
The open_gui_finished(int status) function is called after the first Alive message arrives. It can be
overridden, for instance to do further setup of the GUI after it opened. The status can be
MobileGUIClientTools.GUI_OPENED_ or GUI_OPEN_FAILED.
When the GUI closes properly, you will get a callback of whenGUIcloses(). If no alive messages arrive
for too long (twice the time as specified in MobileGUI.alive_time), whenContactLost() is called. Both
end the contact with the interface, assuming it was killed somehow.

KeepGUIWithUser
Figure 17 shows the ontology of KeepGUIWithUser.
Before attempting to subscribe a MobileGUI to the KeepGUIWithUser agent, the MaxGUIDistance and
the UserLocationTracker have to be set. The MaxGUIDistance sets the maximum acceptable distance
between a display and the user.
To keep a MobileGUI close to the user, a KeepGuiWithUser request can be used. You can cancel this
subscription by sending a cancel with the same message to stop the service and release the GUI. The GUI
will then stay on its last display. Note that the agent name you give with the request has to point to an
agent talking the MobileGUI ontology, and the UserLocationTracker should point to a tracker talking the
UserLocationTracker ontology. The KeepGUIWithUser agent does not check this, but of course (non-
fatal) internal failures will occur later.
Immediately after subscription and every time the user moves (according to the given
UserLocationTracker), the subscribed displays are checked whether still on one of the displays within the
given MaxGUIDistance. The distance to displays is estimated from the RelatedAgent structures, starting
at the agent nearest to the user and then following In-relations as long as the areasize of the agent stays
smaller than the MaxGUIDistance. Then all agents Contained in this agent are collected. In fact both
searches happen in parallel and we keep track of checked agents as the RelatedAgent structures may
contain loops, duplicate links etc.

Concept
AgentAction

KeepWithUser :guiname AID
SetValue :predicate MaxGUIDistance|UserLocationTracker

MaxGUIDistance :distance Float
UserLocationTracker :agentname AID

Figure 17. Ontology of KeepGuiWithUser.

PersonalAgent
The PersonalAgent is responsible for keeping connection between the agent world and the user. It does
this by means of a PersonalAgentGUI, which is currently an interface accepting user input and showing

19

the status of the agent system (Figure 1). The PersonalAgentGUI is a MobileGUI, so that it can be kept
with the user (using a KeepGuiWithUser agent) as he moves around. The PersonalAgent receives
messages from the GUI, which it forwards to the ServiceMatcher. What is not shown in the figure is that
the ServiceMatcher keeps the PersonalAgent up to date about the progress. The PersonalAgent forwards
those status messages to the GUI for display. Figure 18 shows all this in a picture.
This setup is a bit unusual, in usual configurations an agent as the ServiceMatcher would directly create
its own GUI and make it stay with the user. The PersonalAgent was put here because the ServiceMatcher
was originally seen as an independent agent, from which multiple agents could request service.
Unfortunately the ServiceMatcher internally got so complex that we decided to postphone this.

Personal
Agent

Personal
AgentGUI

Service
Matcher

MobileGuiCT

MobileGUI

KeepGui
WithUser

Display

Tracker

Figure 18. Interaction between the PersonalAgent, its GUI, the ServiceMatcher, the
KeepGuiWithUser agent, the Tracker and the a display.

Also PA is responsible for pointing to user-related agents. It should have its RelatedAgents point to
userlocationtracker as being 'In' it. This way, the ServiceMatcher will find user location related agents.
On top of that, the PA should have RelatedAgents point to regular user tasks such as the user's agenda, his
favorite browser and travel agent, the tourist-group manager agent while he is on a touristic trip, etc.
Figure 7 shows this for the demo environment.

Display
Display agent represents a physical display at some location. To move a MobileGUI to a Display, ask the
GUI to move itself, see the MobileGUI details on this. For JADE, we assume that the display agent is
running on the appropriate container connected to the display, because the location of the MobileGUI
agent (in which location it is) will determine where it is shown, and the Display assumes that it is itself in
that particular container. The MoveDetails (Figure 19) are therefore JADE-specific, on other systems this
might have to be changed.

Concept
AgentAction

SendMoveDetails
Predicate

MoveDetails :ContainerName String

Figure 19. Ontology of Display.

UserHistory
The UserHistory keeps track of agent that were recently used by the user.

20

Figure 20 shows the ontology. AddAgent adds a new recently used agent to the history. Note that the
'relatedagents' ontology is used to query about historic relations, resulting in RecentlyInteracted
predicates (on top of the other relations that can be set using the RelatedAgent ontology). See
RelatedAgent for more details on this. In the demo system only the ServiceMatcher uses the UserHistory.

Concept
AgentAction

AddAgent :agentname AID

Figure 20. Ontology of the UserHistory agent.

LightAgent
This agent is accepting FIPA messages and is supposed to convert them to actual switching of a light. It
has no significant function in the testbed, it was merely ment to 'ground' ourselves. LightAgent has a very
simple ontology. The idea is that the lightagent is once configured to know its absolute maximum power.
Users are supposed to set only the relative power, eg 1 to turn it on, 0.5 to dim it and 0 to turn it off.

Concept
AgentAction

SetPower :relativepower Float
Predicate

CurrentPower :relativepower Float
MaxPower :absolutepower Float

Figure. Ontology of LightAgent.

TestMobGuiCT
This agent is a simple agent to test the MobileGUI system. You can start it up with the following
command :

java jade.Boot -gui test:nl.tudelft.cactus.TestMobGuiCT.TestMobGuiCT

It starts up a UserChoiceGUI named 'mygui'. Open a dummy agent and send the TestMobGuiCT some
messages to set the list of user choices. TestMobGuiCT has no ontology of its own, it just inherits (and
partially redefines) the ontology of MobileGUIClientTools.

Scripts
The scripts directory the "startall" script that can be run from the shell to start a full blown agent system
as shown in Figure 7. It first starts JADE and inserts all the agents. Then it converts the configuration
files: the configuration files can hold the text "$HOST", and this text is replaced with the value of the
environment variable $HOST. This is done because agents often require a machine name to refer to an
agent , but we dont know the machine name until the demo is actually started. Next, the script starts up
ScriptAgents for every configuration file (configXXX.txt) available.
The script files hold lists of full ACLMessages, each including the receiver, communicative act, language,
ontology, content, etc. The format is the same as used when saving a message from the dummyagent (the
standard JADE tool). These are in human readable and editable format, making it convenient to edit them
with a simple text editor, without need for using the dummyagent.
See also the next section "running the demo".

21

MapMaker
MapMaker currently consists of two mapmaking tools: makemap and maketopologymap. These sare shell
scripts, glueing a variety of tools to create a map from the scripts in the script directory. Both scripts
contain 3 steps.
In step 1, the scripts are re-formatted to get every message on a single line (removing all newlines, and
changing strange characters as "@", ":" and "/" into "_"), and the messages that are relevant for the map
are selected with grep. The actual re-formatting is done with a simple c++ program (bla.cc).
In step 2, an awk script is used to get the important parameters from the message, and converts it into a
dotty command. Note that some of the characters in the message have turned into underscores here ("_").
The resulting dotty file is named tmp.dot.
In step 3, dotty [Dotty00] is shown using the dotty tool. The tmp.dot file can also be converted into
postscript for printing, using the following one-liner in the shell:

dot -Tps -o xt.ps -Gsize=16,12 -Gfontsize=12 -Nfontsize=10 -Gratio=compress xt.dot

tools/ErrorHandlingAgent
An old version of ErrorHandling needed a class that had to be instantiated, and therefore we made an
ErrorHandlingAgent that did this. Now, the ErrorHandling functions are all static and can be called also
from non-ErrorHandlingAgent agents.

tools/FSMState
FSM stands for Finite State Machine. We use finite state machines in complex behaviours, where various
situations exist that need different reactions and offer different possibilities. JADEs FSMBehaviour often
is quite clumsy when complex behaviour is needed. Instead in the testbed many complex behaviours have
been programmed using a SimpleBehaviour with a switch(state) handling the different states of the FSM.
The FSMState internally uses a Status object, which holds an Id (integer) and a message (String). The Id
is what is really used, the message gives some explanation (natural language) of why this state was
reached.
The Id contains of two parts: the topmost bits of the Id refer to the global status (Idle, Busy, Done,
Failure, or Ended). The lower bits are used to make a unique serial number for each different state as
there usually are various Busy and Failure states. As soon as the Ended state is reached, the behaviour is
supposed to stop. Therefore you will always find something like the following code in a Behaviour that
uses the FSMState:

public boolean done() { return state.getId()==FSMState.Ended; }

The FSMState has to be set when created, and can be changed after that using set(int, String), setId(int) or
setMessage(String). getType() returns the state that is stripped from its serial number. This is convenient
to distinguish between Done and Failure completions.

tools/AlarmClock
Behaviours wake up each time a message arrives in an agent. Unfortunately such a wakeup is often a
false alarm, if another behaviour in the agent handles the request. The AlarmClock class enables a

22

convenient mechanism to continue sleeping for the remaining time, doing all the bookkeeping to see how
long was already slept etc.

Running the Demo
Go to the scripts directory and type ./startall to start our fullblown environment. The startall script first
starts up all agents needed for the demo, and then uses the tools/ScriptAgent to read in message files and
send the messages that they contain to the agents. These message files are also in the scripts directory, in
the .txt files. The messages mainly involve setting all RelatedAgent properties of all agents, and the
vocabulary of the NaturalLanguageInterface agents.
If you have multiple machines, you can start another jade platform on the second machine with 'java
"jade.Boot -container -host <yourmachinename> display2:nl.tudelft.cactus.Display.Display" (type this
on the second machine!). Amongst others, display2 should appear in the UserLocationTrackerGUI where
you can double-click on it. After that, the KeepGuiWithUser starts searching around, and after a minute
or so the GUI should move to the new display. Also nice is to move the exhibitdisplay1 from the first
machine to the second machine (using the "Migrate agent" command from the JADE Remote Agent
Management GUI). After that is done, try moving the user to somewhere near the exhibitdisplay1 (eg,
click on "exhibitarea" in the UserLocationTrackerGUI), and after that the Personal Agent Interface GUI
should move to the new machine.
You can run this over a wireless network too. For Apple, click on the network address to get the ip
number of your machine. Now you have to start stuff using this number, for instance "java jade.Boot -mtp
jamr.jademtp.http.MessageTransportProtocol -host 169.254.250.31 -gui gui:nl.tudelft.cactus.
UserChoiceGUI.UserChoiceGUI\(bla\)" and on the remote machine "java jade.Boot -host 169.254.250.31
-container".

References
[Apple03] X11 for Mac OS X. Available Internet: http://www.apple.com/macosx/x11/.
[BeanGenerator] Ontology Bean Generator for Jade 2.5. University of Amsterdam. Available

Internet: http://www.swi.psy.uva.nl/usr/aart/beangenerator/index25.html.
[Dotty00] AT&T Labs-Research GraphViz. Available Internet:

http://www.research.att.com/sw/tools/graphviz/download.html.
[FIPA03] The Foundation for Intelligent Physical Agents. Available Internet: www.fipa.org
[French97] French, J. C., Powell, A. L., & Schulman, E. (1997). Applications of

Approximate Word Matching in Information Retrieval. Proceedings of the Sixth
International Conference on Information and Knowledge Management
(CIKM'97, Las Vegas, Nevada, November), 10-14. Also available as Technical
Report CS-97-01, Virginia University, Department of Computer Science.
Available Internet: ftp://ftp.cs.virginia.edu/pub/techreports/CS-97-01.ps.Z

[JADE] Java Agent DEvelopment Framework . Available Internet: http://jade.cselt.it/.
[Kaiser98] Kaiser, E. (1998). Robust Parsing: Tutorial. Internal Report, Center for Spoken

Language Understanding, Oregon Graduate Institute of Science and Technology.
Available Internet: cslu.cse.ogi.edu/people/kaiser/pubs/rptutorial.ps.gz.

[Protégé] Welcome to the Protégé Project. Available Internet: http://protege.stanford.edu.

23

