Straightforward solving γf⩵γb this is not possible with Mathematica.
Instead we solve which introduces negative solution as well, which we drop after solving
![[Graphics:../Images/impdist_gr_17.gif]](../Images/impdist_gr_17.gif)
![[Graphics:../Images/impdist_gr_19.gif]](../Images/impdist_gr_19.gif)
Therefore the minimal error γ is
![[Graphics:../Images/impdist_gr_21.gif]](../Images/impdist_gr_21.gif)
Help a little in the simplification
![[Graphics:../Images/impdist_gr_23.gif]](../Images/impdist_gr_23.gif)
![[Graphics:../Images/impdist_gr_25.gif]](../Images/impdist_gr_25.gif)
Thus, γ is the minimum error achievable with imposter at optimal distance,
when viewed at distance r and angle θ
![[Graphics:../Images/impdist_gr_27.gif]](../Images/impdist_gr_27.gif)
![[Graphics:../Images/impdist_gr_28.gif]](../Images/impdist_gr_28.gif)
![[Graphics:../Images/impdist_gr_29.gif]](../Images/impdist_gr_29.gif)