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Abstract. Rational agents programmed in agent programming languages
derive their choice of action from their beliefs and goals. One of the main
benefits of such programming languages is that they facilitate a high-level
and conceptually elegant specification of agent behaviour. Qualitative
concepts alone, however, are not sufficient to specify that this behaviour
is also nearly optimal, a quality typically also associated with rational
agents. Optimality in this context refers to the costs and rewards associ-
ated with action execution. It thus would be useful to extend agent pro-
gramming languages with primitives that allow the specification of near-
optimal behaviour. The idea is that the quantitative heuristics added to
an agent program prune some of the options generated by the qualitative
action selection mechanism. In this paper, we explore the expressivity
needed to specify such behaviour in the Blocks World. The program-
ming constructs that we introduce allow for a high-level specification of
such heuristics due to the fact that these can be defined by (re)using the
qualitative notions of the basic agent programming language again. We
illustrate the use of these constructs by extending a GOAL Blocks World
agent with various strategies to optimize its behaviour.

1 Introduction

In this paper, we use the well-known Blocks World domain [1] to explore and
present evidence for the usefulness of adding expressive programming constructs
that allow the specification of utility-based heuristic strategies for action se-
lection to the agent programming language GOAL [2]. By means of various
examples we illustrate that the new constructs introduced allow for an elegant
specification of such strategies. Additionally, we present some experimental re-
sults that demonstrate the usefulness of the programming constructs introduced
and confirm and slightly extend earlier results available in the literature [1, 3, 4].

Our objectives are twofold: (i) The first objective is to extend GOAL with
programming constructs to define a heuristic or utility-based decision capability
as an additional action selection mechanism. Such constructs allow the optimiza-
tion of agent behaviour as well as reduce the amount of nondeterminism present
in an agent program. (ii) The second objective is to assess the usefulness of the
mechanism by comparing the behaviour of a GOAL agent which does not use
the mechanism with various instantiations of GOAL agents that do use it.



Although some related work on adding quantitative heuristics based on e.g.
resource costs or other decision-theoretic extensions has been done, see e.g. [5,
6], as far as we know little research has been done on programming constructs
for specifying heuristic action selection in the area of agent programming. [5]
allows for defining such decision-theoretic capabilities by means of arbitrary
programming languages instead of introducing primitives that reuse the basic
concepts of a rational agent programming language as we propose. Moreover,
the work extending Golog with decision-theoretic capabilities in e.g. [7] relies on
the situation calculus and cannot straightforwardly be incorporated into rational
agents that derive their choice of action from their beliefs and goals.

The paper is organized as follows. In Section 2 the Blocks World is briefly
introduced and a GOAL agent is presented that is able to effectively deal with
Blocks World problems. In Section 3 some issues to improve the behaviour of this
agent are discussed and a general framework for adding (utility-based) heuristics
to an agent programming language is outlined. In Section 4 various heuristics for
the Blocks World are presented and it is shown how these can be implemented
using the primitives introduced. Section 5 concludes the paper.

2 Designing a GOAL Agent for the Blocks World

In this Section, we design a GOAL agent that is able to effectively solve Blocks
World problems. The Blocks World has been labelled the “Hello World” exam-
ple for planning [1]. One reason why this domain is still being used is that it
is computationally hard and moreover has some similarities with other, more
realistic domains, e.g. it is related to freight operations [1]. Another reason why
this domain is still interesting is that it provides a simple domain that can be
analyzed in detail to gain an understanding of the capabilities needed to deal
with it effectively [1, 3]. Since, historically, agent programming languages were
motivated in part by ideas from reactive planning (see in particular [8, 9]), it is
interesting to start with this domain for analyzing whether the right features
for fine-grained control of action needed to generate near-optimal behaviour are
present in agent programming languages.

The Blocks World consist of a finite number of blocks of equal size that are
stacked into towers on a table of unlimited size. Each block has a unique name
a, b, c, ... representing the fact that different blocks cannot be used interchange-
ably (which would be the case if only the colour of blocks would be relevant).
Some basic axioms of the Blocks World are that no block is on more than one
block, no more than one block is on a given block, and every block is either on
the table or on another block (see e.g. axiom 4 and 5 in [10], which provides
a complete axiomatization of the Blocks World). More realistic versions of this
domain have been investigated (e.g., limited table size, varying sizes of blocks;
cf. [4]). However, as argued in [1] the elementary Blocks World domain can sup-
port systematic experiments and, at least as important for our purposes, allows
features relevant to various kinds of reasoning to be abstracted and studied. The
Blocks World domain in particular allows for a precise study of various heuristics



to ensure that an agent’s choice of action generates near-optimal behaviour. Ar-
tificial domains such as the Blocks World moreover are hard for general purpose
AI systems (e.g. planners), and it is only to be expected that this also holds
for programming languages to build rational agents which provide abstract se-
mantic primitives derived from common sense to do so [11]. In this paper some
of these difficulties will be explored and discussed. In addition, Blocks World
problems allow us to illustrate that programming languages for rational agents
provide the expressiveness to construct elegant agent programs that solve such
problems, though admittedly the domain is too simple to be convincing by itself.

Fig. 1. Example Blocks World problem taken from [1].

The Blocks World planning problem is to transform an initial configuration
of towers into a goal configuration, by means of moving one block on the top of
a tower onto another tower or to the table; see Figure 1 for an example problem.
A block on top of a tower, i.e. without any block on top of it, is said to be
clear. By definition, there is always room to move a clear block onto the table
and therefore the table is also said to be clear. The positioning of towers on the
table is irrelevant in a Blocks World problem. The main task of an agent in this
domain thus is to restack the blocks on the table according to its given goals. The
main choice such an agent faces is which action (moving a block) to select. The
performance of a Blocks World agent can be measured by means of the number
of moves it needs to turn an initial state or configuration into a goal state. An
agent performs optimally if it is not possible to improve on the number of moves
it uses to reach a goal state. The problem of finding a minimal number of moves
to a goal state is also called the optimal Blocks World planning problem. This
problem is NP-hard [4], an indication that the problem is not trivial.1

Several basic insights help simplify the solving of a Blocks World problem. A
block is said to be in position if the block in the current state is on top of a block

1 It is not within the scope of this paper to discuss the complexity of various proposed
Blocks World heuristics for near-optimal planning; see [1, 4] on this topic.



or the table and should be so according to the goal state, and all blocks (if any)
below it are also in position; a block that is not in position is said to be misplaced.
In Figure 1 all blocks except block c and g are misplaced. Only misplaced blocks
have to be moved in order to solve a problem. A move of block X onto another
block or the table is called constructive if in the resulting state block X is in
position. In the elementary Blocks World with unlimited table size moving a
block onto another block should only be done if the move is constructive, i.e., it
moves the block in position. A constructive move always decreases the number
of misplaced blocks. If in a state no constructive move can be made, we say that
the state is in a deadlock (see [1] for a detailed explanation). A block is said
to be a self-deadlock if it is misplaced and above another block which it is also
above in the goal state; for example, block a is a self-deadlock in Figure 1. The
concept of self-deadlocks, also called singleton deadlocks, is important because
on average nearly 40% of the blocks are self-deadlocks [1].

Representing Knowledge and Goals In the remainder of this paper, we will use
Prolog notation to define and specify knowledge and goals. The basic facts and
goals to be achieved in the Blocks World can be expressed by means of the
predicate on(X,Y). on(X,Y) denotes that a block X is on Y, where Y may refer to
either another block or the table. We use a predicate block(X) to denote that X

is a block. The predicate clear(table) is used to denote that the table is clear,
i.e. it is always possible to move blocks onto the table. Using the on predicate it
is possible to formally define a Blocks World planning problem as a pair 〈I, G〉
where I denotes the initial state and G denotes the goal state. A state is defined
as a set of facts of the form on(X,Y) that is consistent with the basic axioms of
the Blocks World. A state is complete if for each block X it contains exactly one
fact of the form on(X,Y); from now on, we only consider complete states.

In the agent program, all blocks are enumerated to make it clear how many
blocks there are. The predicate above(X,Y) expresses that block X is above
block Y and predicate tower([X|T]) expresses that the list of blocks [X|T] is a
tower grounded on the table. We do not require that block X is clear, so e.g.,
tower([b,c]) holds in the initial state of Figure 1. The Prolog definitions of these
concepts are given in the beliefs section in Table 1, which is called the belief

base of the agent. The initial state of Figure 1 is represented in the agent’s belief
base, which is updated after every action that is performed.

In the goals section in Table 1, called the goal base, the goal state of Figure 1
is represented. (The clauses for above(X,Y) and tower(T) are repeated in the goal
base. In the current version of GOAL, repetition of such clauses is necessary when
they are needed in derivations that use the goal base.) One important difference
between the belief and goal base is that individual goals need to be represented
as a single conjunction instead of several clauses since it represents a single goal.
The reason for the distinction is that a goal upon completion, i.e., when it is
completely achieved, is removed from the goal base. Achieved goals are removed
to satisfy the rationality constraint that an agent does not have any goals it
believes to be achieved; the fact that this only happens when the goal has been
completely achieved implements a blind commitment strategy.



1 :main stackBuilder
2 { % This agent solves the Blocks World problem of Figure 1.

3 :beliefs{
4 block(a), block(b), block(c), block(d), block(e), block(f), block(g).

5 on(a,b), on(b,c), on(c,table), on(d,e), on(e,table), on(f,g), on(g,table).
6 clear(table).

7 clear(X) :- block(X), not(on(Y,X)).
8 above(X,Y) :- on(X,Y), block(Y).
9 above(X,Y) :- on(X,Z), above(Z,Y).

10 tower([X]) :- on(X,table).
11 tower([X,Y|T]) :- on(X,Y), tower([Y|T]).

12 }
13 :goals{
14 block(a), block(b), block(c), block(d), block(e), block(f), block(g),

15 on(a,e), on(e,b), on(b,table), on(f,d), on(d,c), on(c,table), on(g,table),
16 above(X,Y) :- (on(X,Y), block(Y)),

17 above(X,Y) :- (on(X,Z), above(Z,Y)),
18 tower([X]) :- (on(X,table)),

19 tower([X,Y|S]) :- on(X,Y), tower([Y|S]).
20 }
21 :program{
22 if bel(tower([Y|T])), a-goal(tower([X,Y|T])) then move(X,Y).
23 if a-goal(tower([X|T])) then move(X,table).

24 }
25 :action-spec{
26 move(X,Y) {
27 :pre{ clear(X), clear(Y), on(X,Z) }
28 :post{ not(on(X,Z)), on(X,Y) }
29 }
30 }
31 }

Table 1. GOAL Agent Program for Solving the Blocks World Problem of Figure 1

Actions Actions of a GOAL agent are specified in the action-spec section by
means of a STRIPS-like specification of a precondition and add/delete lists, see
e.g., Table 1. Add/delete lists are specified here as a single list of literals, where a
positive literal denotes an add and a negative literal denotes a delete. Note that
the precondition in Table 1 allows moving a block X on top of another block Y

even if block X initially already is on top of Y. Such redundant actions, however,
are never generated given the action rules in the program section; therefore it
is unnecessary to add conditions preventing such moves to the precondition. For
the same reason, it is not necessary to add the precondition not(X=Y).

GOAL agent design The basic parts of a GOAL agent have now been speci-
fied. The belief and goal base together are called the mental state of the agent,
typically denoted by m = 〈Σ, Γ 〉. A mental state needs to satisfy some basic ra-
tionality constraints: (i) beliefs need to be consistent, (ii) individual goals need
to be consistent, and (iii) individual goals in the goal base are not believed to be
the case. Actions are executed in GOAL by checking whether the preconditions
of an action follow from the agent’s beliefs and, if so, by updating the beliefs in
line with the action’s postcondition after executing it. In addition, if as a result
of action execution a goal in the goal base has been completely achieved, then
this goal is removed from the goal base.



The program section specifies the strategy for action selection by means
of so-called action rules. These rules consist of a mental state condition and an
action and specify which actions an agent may consider for execution. The mental
state condition determines which actions may be executed. In order to express
such conditions a belief operator bel(...) and a goal operator goal(...) are
available, which can be combined using conjunction , and prefixed with negation
not. For example, bel(block(a)) expresses that the agent believes that a is a
block whereas bel(on(a,b)), goal(on(a,e)) expresses that the agent believes it
has not yet achieved its goal on(a,e) (since it believes a to be on top of b).

The semantics of the goal operator bel(ϕ) is that ϕ follows from the belief
base (i.e. Σ |= ϕ where |= denotes the classical first order consequence operator;
since we use Prolog, additionally the Closed World Assumption is used in prac-
tice). Similarly, goal(ϕ) holds if ϕ follows from the goal base (i.e. Γ |= ϕ).2 It
is useful and necessary to have access to the belief base as well as the goal base
of an agent. For example, without either of these operators it is not possible to
specify that a block is in position, i.e. that its current position is in correspon-
dence with its positions in the goal state. Using both operators, we can express
that block X is in position by means of bel(tower([X|T])), goal(tower([X|T]))

for some tower T. We call such a (sub)goal a goal achieved and introduce the new
operator goal-a(...) as an abbreviation to denote this fact, i.e.,

goal-a(ϕ)
df
= bel(ϕ), goal(ϕ)

The notion of an achievement goal, i.e., a goal not yet believed to be achieved,
can also be defined using the belief and goal operator (cf. [12]). We introduce
the new operator a-goal(...) to denote such goals as an abbreviation for:

a-goal(ϕ)
df
= bel(not(ϕ)), goal(ϕ)

Using the achievement goal operator we can represent the fact that block
a is not in position in the initial state by a-goal(tower([a|T])) for T a tower.
a-goal(tower([X|T])) means that in the goal state block X must be on top of
the tower T but in the current state the agent does not believe that this is al-
ready the case; a-goal(tower([X|T])) thus expresses that X is misplaced. This
is an important concept in defining any strategy since only misplaced blocks
should be moved to solve a Blocks World problem. The definition of a self-
deadlocked block also requires the inspection of both the belief as well as the
goal base. The concept of a self-deadlock can be quite naturally defined by
a-goal(tower([X|T])), goal-a(above(X,Y)) where the first conjunct expresses
that X is misplaced and the second conjunct expresses that X is above some
block Y in both the current state as well as in the goal state. This concept is just
as important for solving Blocks World problems since any self-deadlocked block
needs to be moved at least twice to reach the goal state. Moving such a block to
the table thus will be a necessary move in every plan.

2 This is different from definitions of the goal operator in previous work [2] where the
goal operator was used to denote achievement goals. We need the more basic goal

operator however to express that a block is in position.



The two action rules in the program section of Table 1 implements a simple
strategy for a Blocks World agent. As explained, an action rule consists of a
mental state condition ϕ and an action a. If the condition ϕ holds, the action
a is said to be enabled. The first rule generates constructive move options the
agent can choose from. The second rule allows a move of block X to the table if
it is misplaced. The condition of this rule is weaker than the first implying that
whenever the first rule is applicable the second is applicable as well, meaning
that the actions of these rules are enabled. Then the agent arbitrarily chooses an
enabled action. Note that this agent will never move a block that is in position.

Summarizing, a GOAL agent program consists of four sections: a belief base
consisting of the agent’s beliefs, a goal base with the agent’s goals, a program
section defining the agent’s action selection strategy, and an action specification
section with STRIPS-like action specifications. The GOAL Blocks World agent
contains a specification of the initial state of the Blocks World problem in its
belief base, a specification of the goal state in its goal base, a specification of the
move action in its action specification section, and two action rules that define
its strategy for performing either a constructive move in case such a move brings
a block in position, or a move to the table if a block is misplaced.

3 Heuristic Action Selection in Agent Programming

Research in planning has shown that in order to plan effectively and be able to
generate near-optimal plans for the Blocks World it must be possible to specify
various domain-dependent heuristics [11]. The specification of these heuristics in
domain-independent planning systems requires the right concepts to express and
implement them. If agent programming languages are to match these capabili-
ties, programming constructs with similar expressive power need to be available
to program rational agents that use heuristics to improve performance. We argue
that in programming languages for rational agents such programming constructs
would be most useful if they allow for the specification of such heuristics in terms
of the core concepts of beliefs and goals present in these languages.

In this Section we introduce a generic extension of the GOAL agent pro-
gramming language that can be incorporated into other agent languages based
on concepts of belief and goal, and add a capability for specifying heuristic se-
lection strategies by means of utility functions. We first briefly introduce the
basic concepts needed and discuss the semantics of the extension of GOAL with
a utility-based action selection mechanism. Then we introduce a programming
construct for specifying utility values. In Section 4 we show that the program-
ming constructs we introduce allow for an elegant specification of behaviour that
shows improved performance compared with a GOAL agent that does not make
use of the utility-based selection mechanism.

3.1 Associating Utility Values with Action Execution

The idea is to associate a quantitative number with the execution of an action a

in a state m, i.e., to associate a real valued number U(m, a, m′) with executing



a in state m resulting in a new state m′. A number associated with an action
in this way can be perceived of in two different ways. One perspective, the more
principled view on what this number represents, is to suggest that the number
is a utility value that represents how much value is to be gained from executing
the action. It is standard to further decompose such a utility value into two
components, a cost component that is associated with taking an action in the
starting state and a reward component that associates a reward with getting
to the resulting state (cf. [13]). Alternatively, such a number can be perceived
of as a heuristic that only provides an estimation of e.g. the costs of executing
an action. Since these different views do not conflict, and in practice it is very
intuitive to use concepts such as costs and rewards, in the remainder we will
freely use either terminology.

Formally, a utility function can be introduced which is defined in terms of
costs and rewards by: U(m, a, m′) = R(m′)−C(m, a). Here, the reward function

R should be thought of as representing the utility of being in state m′. For
example, an agent gains more utility for getting to a state with more blocks in
position than to a state with less blocks in position. Likewise, the cost function C

represents the costs associated with the resources spent. However, a cost function
can also be used to indicate that performing an action is a good thing.

3.2 Semantics

Agent programming languages in general, and GOAL in particular, can naturally
be used to write programs that are highly nondeterministic and leave various
choices open as to how to implement the action selection mechanism specified by
the semantics of the language. Agent programs thus may underspecify the actual
behaviour of an agent. This may ease the design and building of an agent, but it
may also give rise to suboptimal behaviour (due to ad hoc suboptimal choices).
The basic idea now is to introduce another, utility-based mechanism for action
selection on top of the qualitative selection mechanism already present in GOAL
that can be used to further limit the number of choices.

Ideally an agent optimizes the sum of all utility gains over an entire execution
run. The set of such runs of an agent with which we would like to associate
utility values is given by the qualitative action selection mechanism. A run can
be formally specified as infinite sequences of computation steps. Very briefly, a
computation step written as m

a
−→ m′ denotes that action a can be performed

in state m (i.e. action a is enabled: the precondition of a holds in state m and the
condition of the corresponding action rule for a also holds) and results in state
m′. A run r then can be defined as an infinite sequence m0, a0, m1, a1, m2, . . .

such that mi
ai−→ mi+1 (for details, we refer the interested reader to [2]). The

set of all such runs is denoted by RA for agent program A.
The main idea is to associate a utility value with each possible run of an

agent and to actually execute that run which maximizes utility. In this setup,
an agent first (pre)selects possible actions which it may execute in each state
using its action selection mechanism based on qualitative action rules. In other
words, action rules define the search space in which the agent needs to find



an optimal run. The benefit is that this search space typically is significantly
reduced compared to the search space induced by the set of all enabled actions
in a state, i.e. actions whose preconditions hold.

Given a utility function U it is easy to extend this function to a run. We
use mr

i to denote the ith mental state in run r and similarly ar
i denotes the ith

action in run r. A utility value can be associated with a run r then as follows:

Uδ(r) =
∞∑

i=0

δi · U(mr
i , a

r
i , m

r
i+1)

where δ is a discount factor in the range 〈0, 1], intuitively accounting for the
fact that utility realized now is more valuable than utility in the future. For ease
of presentation we do not mention the discount factor in the remainder of this
paper anymore. The meaning of a GOAL agent A that uses the utility-based
action selection mechanism on top of the qualitative one then can be defined as
the set of runs r that maximize the associated utility U(r), i.e., the meaning of
a utility-based GOAL agent is defined by:

UA = max
U(r)

{r | r ∈ RA}

The semantics of a utility-based GOAL agent as defined above requires in-

finite look-ahead. That is, to select an action in any state requires the agent to
compute the utility of all possible runs before performing that action to ensure
utility is maximized over the complete computation. Computationally, such a re-
quirement is not feasible and therefore, we associate a finite horizon of a number
of n steps with the computation of a utility. In case h = 0, the agent would not
require any look ahead functionality at all. For h > 1 an agent would require a
lookahead facility before taking action, of depth h. Formally, this finite horizon
constraint can be defined on an arbitrary computation by:

U(r, i, h) =
i+h−1∑

j=i

U(mr
j , a

r
j , m

r
j+1)

The meaning Uh
A of a utility-based GOAL agent with a finite horizon h is defined

by Uh
A = σh

A(∞) where σh
A is defined by the following inductive definition:

σh
A(−1) = RA,

σh
A(i) = max

U(r,i,h)
{r | r ∈ σh

A(i − 1)} if i ≥ 0.

σh
A(∞) =

∞⋂

i=0

σh
A(i).

The following proposition partly justifies the definition of σ. The fact that
UA is not the same as U∞

A = σ∞
A (∞) is due to the fact that σ defines a step by

step process and evaluates maximum continuations in each state and does not
just once evaluate a global property of a run.



Proposition 1.

RA = U0
A (1)

UA = σ∞
A (0) (2)

UA ⊇ U∞
A , i.e., max

U(r)
{r | r ∈ RA} ⊇ σ∞

A (∞) (3)

3.3 Specifying Quantitative Utility Values

In order to incorporate the assignment of quantitative values to transitions of
a GOAL program, such programs are extended with a new utility section and
the following notation is introduced for representating utility:

value(<initial-state-cond>, <action-descr>, <successor-state-cond>) = <utility-expr>

The initial-state-cond as well as the successor-state-cond refer to arbi-
trary mental state conditions, i.e., conditions that are combinations of goal(...)
and bel(...) operators. In addition, the constant true - which holds in any men-
tal state - may be used here as well. The action-descr part refers to any action
description that is allowed in GOAL, e.g., in the Blocks World move(X,Y). Vari-
ables are allowed in both mental state conditions used to characterize the initial
or resulting state, as well as in the action description. The same holds for the
utility-expr part, which denotes a numerical expression which may involve basic
arithmetic operators such as addition and multiplication. The action description
part may also be filled with a special don’t care label any.

In the utility section of a GOAL program, multiple lines of value statements
are allowed that apply to the same transition. In case multiple value statements
apply to the same transition the multiple values assigned to that transition are
added together by taking the sum of the values. As a simple example, the state-
ments value(true,move(X,table),true)=1 and value(bel(on(X,Y)),any,true)=2

are both applicable to a transition that starts in a state where bel(on(a,b))

holds and in which action move(a,table) is taken, and therefore the values 1 and
2 need to be added to give a total value of 3. Using the value construct we can
define various useful abbreviations for reward and cost components as follows:

cost(<initial-state-cond>, <action>)
df
= -1·value(<initial-state-cond>, <action>, true)

reward(<successor-state-cond>)
df
= value(true, any, <successor-state-cond>)

Note that according to these definitions both costs and rewards are condi-
tional on the beliefs as well as the goals of an agent.

For practical reasons, it is useful to introduce a case statement to define a
complex value function based on case distinctions. Inside a case statement condi-
tional expressions of the form <state-cond>:cost(<action-descr>)=<utility-expr>

and <state-cond>:reward=<utility-expr> are allowed. By using a case-statement,
costs and/or rewards are assigned to a transition using the first case that ap-
plies, i.e., that value is returned associated with the first condition <state-cond>

that holds (assuming, of course that an action description, if present, matches
as well). Various examples of the use of this statement are provided below.



In the extension of GOAL quantative values are assigned only to actions
that an agent has preselected given its current goals. This reflects the fact that
qualitative goals have priority over any quantitative preferences. That is, the
first priority of a GOAL agent is to achieve its qualitative goals, whereas its
second priority then becomes to do this such that utility is maximized.

4 Heuristic Action Selection in the Blocks World

As explained above, the GOAL Blocks World agent never moves a block that is in
position. The agent will only move a misplaced block to the table or move a block
onto another block. Note that the agent will only move a block X onto another
block Y if this move puts X in position, and such a move thus is constructive. Also
note that if a block can be moved onto another block the second action rule of
the agent also allows to move this block to the table. In almost all Blocks World
states multiple actions are feasible and in line with the semantics of GOAL an
action then is selected arbitrarily. The semantics thus allows for various strategies
of action selection and does not enforce any of these strategies.

A number of alternative heuristics or strategies have been proposed in the
literature [1, 3, 4]. We explore several of these to illustrate the use of utility
values to guide the action selection mechanism of an agent. One of the most
straightforward strategies for solving a Blocks World problem is to first unstack
all (misplaced) blocks and then to move all blocks in position. This strategy has
been called the Unstack-Stack (US) strategy [1]. It is clear that this strategy
is compatible with the GOAL agent program presented in Table 1. Note that
this strategy will only worsen the behaviour of the agent by never making a
constructive move during the unstack phase even if such moves are available. For
reasons of comparison however we have implemented and experimented with it
nevertheless. The following code needs to be added to the utility section:

case{
bel(Y=table): cost(move(X,Y)) = 1. % unstack has priority

true: cost(move(X,Y)) = 2. % otherwise
}

USG Heuristic

A first idea to improve the behaviour of the agent is to give priority to
constructive moves over other moves. The reason that this may improve be-
haviour is simple: the move has to be made anyway, brings the current state
closer to the goal state, and may make it possible to perform another construc-
tive move next. Using the cost construct to assign costs to actions we have
to make sure that a constructive move always has an associated cost less than
that for other types of moves. Since as we noted above, any block that sat-
isfies bel(tower([X|T])), a-goal(tower([X,Y|T])) can be constructively moved,
the cost function can be defined as follows:

case{
bel(tower([Y|T]), a-goal(tower([X,Y|T])): cost(move(X,Y)) = 1. % a constructive move

true: cost(move(X,Y)) = 2. % otherwise
}

GN1G Heuristic



A second heuristic to get closer to near-optimal behaviour is to prefer moving
a block that is self-deadlocked over moving other blocks when no constructive
move is available. As explained above, a self-deadlocked block is a misplaced
block above a block it has to be above in the goal state as well. As a result, such a
block has to be moved twice (once to the table, and once in position) and it makes
sense to do this first when no constructive move is available.3 The addition of this
heuristic to the program requires the more complex conceptual condition that
defines a self-deadlock identified above. Here we can slightly simplify, however,
because costs of an action are only computed if the action is enabled, i.e. the
corresponding action rule condition is satisfied. This means that a block X in an
enabled action move(X,Y) is misplaced and we do not need to repeat it; the part
of the definition still required then is goal-a(above(X,Z)). For the same reason
we also do not need to check whether the block to be moved is clear.

case{
bel(tower([Y|T]), a-goal(tower([X,Y|T])): cost(move(X,Y)) = 1. % a constructive move

goal-a(above(X,Z)): cost(move(X,Y)) = 2. % X is a self-deadlock
true: cost(move(X,Y)) = 3. % otherwise

}
SDG Heuristic

Although the heuristic costs associated with move actions above is quite
natural, not quite the same behaviour but similar performance could have been
achieved quite elegantly also by using the reward function instead of the cost
function by making use of the counting operator #.

reward(true) = #T^goal-a(tower([X|T])-#T^Y^[a-goal(tower([X|T])),goal-a(above(X,Y))]

The first term in the utility expression #T^goal-a(tower([X|T])) counts the
number of blocks in position in a state, whereas the second term
#T^Y^[a-goal(tower([X|T])),goal-a(above(X,Y))] counts the number of self-deadlocks
in a state. Also note the use of the abstraction operators T^ and Y^ which, as in
Prolog, existentially quantify variables T (∃T) and Y (∃Y) to ensure that we do not
count variation over these variables. In the Blocks World domain the abstraction
over T is not strictly necessary since in any state a block can be present at most
in one tower, but the abstraction over Y is required since a block may be above
multiple other blocks in both the belief as well as goal state. Rewards increase by
either increasing the number of blocks in position or by decreasing the number
of self-deadlocks in a state. This heuristic values performing a constructive move
or breaking a self-deadlock the same which is different from the cost function
above which always prefers to perform a constructive move first if possible. As
noted above, however, since a self-deadlock has to be moved twice in any optimal
plan anyway this preference does not result in more optimal behaviour.

A third heuristic is adapted from a proposal in [3], and focuses on those
cases where neither a constructive nor any self-deadlock move can be made. In
that case some block has to be moved to the table, and we pick the block on

3 It does not make any difference whether a constructive or self-deadlocked move is
made first; we follow [3, 1, 4] in preferring to make a constructive move here.



the tower that has the lowest number of blocks that are neither in position nor
self-deadlocked. This number is called the deficiency of the tower and is added
as an additional third case to the previous cost function defined above.

case{
bel(tower([Y|T]), a-goal(tower([X,Y|T])): cost(move(X,Y))=1. % a constructive move

goal-a(above(X,Z)): cost(move(X,Y))=2. % X is a self-deadlock
bel(tower([X|T]),length([X|T],H),last(T,B)), goal-a(on(B,table)): % compute deficiency

cost(move(X,Y)) = H-#[bel(member(Y,T)), goal-a(tower[Y|U]))]
-#Z^[bel(member(Y,T)), a-goal(tower([Y|U])), goal-a(above(Y,Z))].

true: cost(move(X,Y)) = #bel(block(X))+1. % otherwise.

}
DSG Heuristic

Results Although our main aim has been to introduce expressive programming
primitives for defining (utility-based) heuristics, it is interesting to briefly dis-
cuss the results of running the heuristics discussed. The various heuristics defined
above were implemented in our prototype GOAL implementation. This proto-
type is implemented in Java and SWI-prolog. The default goal behaviour (RSG),
which selects one of the applicable actions at random instead of picking the one
that has maximum utility, was also measured.

To generate random start and end states in the blocks world, the BWSTATES
algorithm of [1, 14] was used, whereas the BWOPT algorithm of [1, 14] was used
to determine the optimal plan length. To run the experiments, 100 problems
were generated, each consisting of a random start and end state, for worlds of
size 10 up to 120 blocks with step size 10. Each problem was solved using the
various utility heuristics. The agents used a horizon of 1. The performance is
then computed as the number of steps it took to solve that problem divided by
the optimal plan length.

Figure 4 shows the average performance as a function of the number of blocks.
The standard deviations on the performance are all in the order of 0.04 and have
been left out to improve readability of the Figure. The dashed lines show the
results that were found by Slaney [1], the labels ending with G refer to heuristics
defined in GOAL.

Given the relatively large standard deviations on our measurements, the USG
and GN1G heuristics match Slaney’s results for the US and GN1 heuristics. The
various utility functions USG, GN1G, SDG and DSG were claimed to be a set of
incremental improvements on the basic heuristic USG, which is confirmed by the
performance results. At 120 blocks and with respect to the optimal performance
of 1.0, the GN1G performs twice as good as USG, and the SDG and DSG
adds another 37% to the performance of GN1G. The standard goal RSG also
performs as expected: better than the USG algorithm but worse than GN1G as
it still can do non-constructive moves when a constructive move is possible. The
DSG heuristic is only a marginal improvement over the SDG heuristic. Even
though the improvement is small, our results confirm the claim in [3] that the
deficiency heuristic optimizes performance and adds some new evidence that this
improvement is consistent at least for worlds of up to size 120 blocks.
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Fig. 2. Performance results

5 Conclusion

We have introduced new programming constructs that add expressiveness to the
GOAL programming language and allows to specify utility-based heuristics using
high-level concepts such as beliefs and goals. The construct can be added to any
programming language that is based on these agent concepts. Thus, high-level
agent programming concepts are combined naturally with a utility-based action
selection capability.

Similar ideas have been proposed in [5, 7]. [7] discusses an extension of Golog
with a decision-theoretic component called DTGolog. Since Golog is an extension
of the situation calculus there are many differences between our work and that
of [7]; one of the more important ones is that heuristics in the programming
language GOAL can be defined using the concepts of belief and goal, which gives
additional expressive power not present in [7]. [5] extends the AgentSpeak(L)
language with a decision-theoretic capability but allows the use of arbitrary
programming languages to do so instead of adding a new programming construct
to the language itself. Finally, it would be interesting to compare our work with
the specification of heuristics in planners such as TLPlan [11]. TLPlan allows
for specifying heuristics using temporal logic to guide search for planning from
scratch. The extension of GOAL in contrast assumes this search space has been
predefined by means of action rules, which may be further pruned by means of
the utility-based action selection capability introduced in this paper. It remains
for future work to compare the expressiveness of both approaches.

Several example heuristics and related results were presented which show that
the addition of a construct to specify quantitative heuristics for action selection
may significantly improve performance which cannot be achieved as elegantly
without it or not at all.

The extension of GOAL proposed here does not allow the use of probabilis-
tic concepts which are available in decision-theoretic approaches. Future work
could be to include these as well, but a proper integration of probabilistic con-
cepts into GOAL would require an extension of the basic language as well to



be able to execute actions with probabilistic effects. Another interesting idea is
to allow agents to learn the priorities they should associate with actions. For
example, reinforcement learning techniques could be deployed within GOAL to
learn optimal policies.
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