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Sampling strategies 
The data fitting experiments have shown that the exclusion of the extreme angles from the data fitting 

actually increases the accuracy of the fitting when measured for this limited range. However, we would 

also like to focus the sample positions around the ideal reflection angle. This is where the largest 

variation in the signal occurs, and we want to accurately capture the variation. By placing more 

emphasis on the specular peak, we can model it more accurately using fewer sample points. 

Specifically we want to vary the sampling positions around the ideal reflection direction over the 

hemisphere of outgoing directions for all angles 
o

θ  and 
o

ϕ . We now move from the rectangular space 

of ),(
oo

ϕθ  to the also rectangular space ),( ϕθ ∆∆  where θθθ ∆+=
ro

, and ϕϕϕ ∆+=
ro

. 

We try to divide this space in such a way that the highest density of sample points is around the point 

(0, 0).  

Sampling setups 
If we use a simple regular rectangular grid type setup, we can divide the sampling hemisphere into 

equal sections. This gives a regular sampling of the hemisphere into fixed blocks of a certain size x. 

However, it is also possible to adjust the grid distances in such a way that we get a grid that is more 

densely sampled in the center as shown in figure 1. This irregularly distanced rectangular grid places 

more emphasis on the center while maintaining a very 

regular nature. 

This setup has the advantage that it is very easy to 

iterate through all the positions. To get from one 

position to the next, only 1 of the two variable 

directions needs to be adjusted. The other direction 

remains fixed. Another advantage is that it is very easy 

to alter the grid in order to increase or decrease the 

sample density in the horizontal or vertical direction. 

A disadvantage is that this setup requires a quite large 

number of sample positions. Especially in the farther 

regions of the sample space we might have more 

sample points than we really need. The density of the 

ϕ∆  parameter division is the same at + 45 and -45 

for θ∆ , as it is around 0. These points however are far 

less relevant. The same is true for the division of θ∆  at the extreme reaches of ϕ∆ .  

One way to avoid this problem is to reduce the density of the grid at certain threshold values. Doing 

this for one parameter already creates a reduction. And doing it for both parameters reduces it further. 

Figure 1: Irregular rectangular grid 

Figure 2: Vertical density reduced after 3 and 

6 steps 

Figure 3: Vertical density reduced after 3 and 

6 steps, Horizontal after 2 and 4 steps 
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Another possible setup is to use an elliptical setup, in which the sample space is subdivided into a 

number of concentric ellipses figure 4. Each ellipse contains a fixed number of sample positions at 

equal distances from each other. This setup automatically guarantees that there will be more sample 

positions around the 0° direction. To further influence the density of the sample points it is possible to 

use different distances between the ellipses.  

An advantage of this setup is that the number of 

sample positions is much lower than the 

rectangular grid, while still maintaining a 

relatively good spread of points around the 

sample space. Unfortunately every position has 2 

degrees of freedom. This means that almost 

every position change would require movement 

in 2 directions across the hemisphere, and that 

means more measuring is needed. 

Ideally we would like the lower density of the 

elliptical setup, with the regularity of the 

irregular rectangular grid. A possible solution is 

replacing the ellipses with rectangles. Each 

concentric rectangle has an equal number of points on 

it. These may not be equidistant anymore, which gives 

a mechanism with which to influence the division of 

points in both directions. Once again it is possible to 

further influence the density of samples by increasing 

the size of the consecutive concentric rectangles 

exponentially.  

A possible problem that may arise is that because of the 

regular nature of the sampling positions, aliasing effects 

start to occur. A possible solution to this for the 

elliptical sampling is jittering. By randomizing the 

initial position so that the rotation of the points on each 

ellipse is different, aliasing effects should be reduced. 

Jittering to avoid aliasing can also be performed on the rectangular sampling. By altering the precise 

position of the points on each side of the rectangle, a randomness is introduced which should limit the 

aliasing effects. 

Analysis 
We can perform the data fitting with these reduced sets of data points, and examine how well the model 

fits to the measurements. In our previous work we already determined that for our purposes the 

Lafortune BRDF model is best suited. Specifically a 2 lobe Lafortune model outperforms a single lobe 

model. Therefore we only fit the reduced data sets to the 2 lobe Lafortune model. 

Just like before we want to quantify the goodness of fit, and we use the same measures as before. We 

quantify how well the fitting went by calculating a scaled signal to noise ratio, SNR’, of the model to a 

regular 1° sampled data set with 
o

θ  limited to  60°. We compare this value with the values obtained in 

the previous experiment to determine how good the fitting was. Comparisons are of course twofold. 

First of all we compare the value of the SNR’ to determine which data set results in the best fitting. 

Second of all, a comparison of the number of data points can indicate whether a set achieves a good fit 

with lower number of data points. A comparison of both these values is used to determine which data 

set gives the best results. 

Setup 
In order to test each of the three setups listed above we created a number of data sets based on the 

different sampling approaches. For the reduced sets we start with a full manual set as used in the 

original experiment. We then reduce it somewhat to make a second set and more for a third set. This is 

done for 3 different densities, giving a total of 9 different sets of data samples. 

For the other two sample setups, we use 4 different rectangle or elliptical densities. This gives a total of 

17 data sets as indicated in table 1. The full set shows the angles at which measurements are taken, and 

Figure 5: Rectangular sampling 

Figure 4: Elliptical sampling 
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the reduced set shows the index to which the parameters are used. So for the first set an index of 16 for 

a value indicates it is used over the entire range of ϕ∇  values, while a value of 7 means after 10° this 

values is no longer used. For the elliptical sets, the values indicate the left and top values of concentric 

ellipses with the origin at 0°. For the rectangles these values are the same, but using concentric 

rectangles instead. Each of these rectangles or ellipses contain 8 points which are equally spaced on the 

ellipses and are the corners and midpoints of the edges for the rectangles. 
 Parameter θ∆  Parameter ϕ∆  

Full set I 0, 1, 2, 3, 5, 7, 10, 15, 25, 35, 45, 60 0, 1, 2, 3, 5, 7, 10, 15, 25, 35, 45, 60, 90, 115, 140, 170 

Reduc. 1 set I 16, 5, 7, 16, 16, 9, 16, 16, 16, 16,16, 16 12, 5, 7, 12, 12, 9, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12 

Reduc. 2 set I 16, 5, 7, 16, 16, 9, 16, 9, 5, 9,16, 16 12, 5, 7, 12, 12, 9, 12, 9, 5, 9, 12, 12, 12, 9, 12, 5 

Full set II 0, 1, 2, 5, 10, 17, 25, 40, 60 0, 1, 2, 5, 10, 17, 25, 40, 60, 90, 125, 155 

Reduc. 1 set II 12, 4, 12, 5, 12, 5, 12, 12, 12 9, 4, 9, 5, 9, 5, 9, 9, 9, 9, 9, 9 

Reduc. 2 set II 12, 4, 5, 5, 12, 5, 5, 12, 12 9, 4, 5, 5, 9, 5, 5, 9, 9, 9, 4 ,9 

Full set III 0, 1, 3, 7 ,15, 30, 45 0, 1, 3, 7 ,15, 35, 60, 90, 155 

Reduc. 1 set III 9, 4, 9, 5, 9, 9, 9 7, 4, 7, 5, 7, 7, 7, 7, 6 

Reduc. 2 set III 9, 4, 5, 5, 9, 7, 8 7, 4, 5, 5, 7, 6, 7, 7, 5 

Rect/Elliptical I 1, 2, 3, 5, 7, 10, 15, 30, 45, 60, 75 1, 2, 3, 7, 15, 30, 45, 60, 90, 135, 155 

Rect/Elliptical II 1, 2, 3, 7, 10, 15, 30, 45, 60, 75 1, 3, 7, 15, 30, 45, 60, 90, 135, 155 

Rect/Elliptical III 1, 3, 7, 15, 30, 45, 60, 75 3, 7, 15, 30, 45, 60, 90, 135 

Rect/Elliptical IV 1, 3, 7, 15, 30, 45 3, 7, 15, 45, 60, 90 

These data sets are calculated for different 
i

θ  values as well. First they are calculated for a regular 10° 

sampling from 0° to 80°, then for a different set of incoming angles based on the principle that 

paintings will often be lit from the side more than they will be lit from the front. This second set of 

angles consists of [85, 80, 75, 65, 55, 45, 30, 15]. Because these angles are further towards the extreme 

angles (and the ideal reflection will be as well) the number of data points within the range of [0° 60°], 

will be smaller than with the regular sampling. 

The initial results of the investigation led us to make some additional sets of data. The overlap between 

the different types of sets in terms of the number of sample points was minimal, so in order to achieve a 

greater overlap, more expansive sets indicated in table 2, were used. These were used with the standard 

8 points per ellipse/rectangle, and also with 12 points per ellipse/rectangle, with equidistant angles for 

the ellipses, and 5 points per ϕ  edge for the rectangles. 
 Parameter θ∆  Parameter ϕ∆  

Rect/Elliptical V/VII 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30, 45, 60, 75 1, 2, 3, 5, 7, 10, 15, 25, 30, 45, 60, 90, 135, 155 

Rect/Elliptical VI/VIII 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30, 35, 45, 60, 75 1, 2, 3, 5, 7, 10, 15, 25, 30, 45, 60, 85, 90, 135, 155 

These extra sets were only made for second set of 
i

θ  values. In total this gives 42 different data sets 

which were fitted to the data of metallic blue paint from the MIT/MERL database as was done before. 
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Results 
After the data fitting was performed the following SNR’ values were obtained. 

 Regular sampled 
i

θ  Extreme 
i

θ  angle set 

 Nr Samples SNR’ Nr Samples SNR’ 

Full set I 14756 17.54 10664 16.51 

Reduc. 1 set I 11196 17.59 8120 16.64 

Reduc. 2 set I 8332 17.46 5768 16.04 

Full set II 8188 17.49 5704 16.36 

Reduc. 1 set II 5324 17.37 3720 16.33 

Reduc. 2 set II 3332 16.79 2440 16.10 

Full set III 4420 16.58 3536 16.47 

Reduc. 1 set III 3504 17.04 2584 16.67 

Reduc. 2 set III 2784 16.65 2000 16.79 

Elliptical I 1888 12.44 1324 16.70 

Elliptical II 1688 12.58 1196 16.81 

Elliptical III 1320 12.12 932 16.83 

Elliptical IV 1112 16.02 784 16.52 

Elliptical V   4556 17.18 

Elliptical VI   3336 16.25 

Elliptical VII   2256 15.41 

Elliptical VIII   2108 15.62 

Rectangular I 1904 12.83 1316 16.31 

Rectangular II 1704 12.89 1188 16.48 

Rectangular III 1292 15.71 932 16.65 

Rectangular IV 1120 16.80 784 15.89 

Rectangular V   4520 17.07 

Rectangular VI   3320 16.49 

Rectangular VII   2256 15.84 

Rectangular VIII   2108 15.96 

These can be plotted according to the number of sample points as indicated in figure 6. If these values 

are compared to the SNR’ of the original regular sampled output range limited data sets from the 

original experiment, we see a higher SNR’ value for comparatively far fewer sample points. 
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Figure 6: SNR’ values of reduced sampling 
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Figure 7: SNR' compared to regular sampled 

output limited data 
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If the X axis is plotted in log space, the linear coherence of the original SNR’ values becomes stronger. 

What is clear is all the pictures is that though there are some differences in the value, in general all 

values are above line indicating the linear fit of the original data, indicating a better general fit. 

Conclusion 
The graphs show that it is possible to get relatively very good SNR’ values with comparatively few 

data points. Almost all the values obtained are above the line indicating the regularly sampled sets from 

the previous experiment. The sets with more than 4000 sample points, however, have a noticeably 

higher SNR’ value than the sets with fewer sample points. The difference is about 0.5 to 1 unit, which 

in log space is significant. It is also noticeable that the use of the alternate set of 
i

θ  values results in a 

lower SNR’ value. However even the sets with 2000 or less (less than 50% of the above mentioned 

sets) have values in the range 16-17. This is a significant improvement over values in previous 

experiments. 

Discussion 
After the completion of the experiment there are still a number of aspects that are open to discussion. 

First of all, there are certain sampling sets that contain sets which have a substantially lower SNR’ 

values. These sets are specifically low in sample density and contain the incoming light direction 0°. 

The inherent problem of this light direction is that camera and light direction of the ideal reflection 

direction are the same. This leads to measurement problems as the light interferes with the camera or 

vice versa. By replacing the value 0° in those sets with a small value such as 5°, results in fittings with 

SNR’ values in the range 16.8-17.3. Excluding the 0 value seems to have a beneficial effect on the 

fitting accuracy. 

Another point of discussion is how well the model could actually fit to the measured data. Currently we 

have no SNR’ values greater that 18. This could be because we haven’t managed to fit well enough 

because we are not using the right points (or enough points), but there is of course also a limit to how 

well the model will ever fit to the measured data. It is quite possible that this limit is very near in which 

case taking more sample points to perform a fitting, has no discernable advantage. 
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Figure 8: SNR’ compared to nr of samples in log space. 


