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Introduction 
This document will discuss the fitting of measured reflectance data to various 

reflectance models. This investigation was done in the context of a masters-project 

with as goal to measure and model the reflectance of paintings and other two-

dimensional artwork. The models used in this investigation are those models that are 

candidate models for the representation of the reflection of paintings. A large number 

of candidates [1] have been reduced by certain criteria to two different models, the 

Lafortune Generalized Cosine Lobe model, and the Ashikmhin model. This 

investigation will examine aspects of these models and how well they lend themselves 

to data fitting. 

By examining the process of fitting of measured data to these models and determining 

the goodness of fit, we can answer a number of different important questions. First of 

all we have a better understanding of how the models will behave when using our own 

measured data. We are also able to design a scheme for sampling the BRDF. By 

comparing the results of the fitting to measurements, it is possible to design a 

sampling scheme that, when used for the fitting, will result in a good representation of 

the actual reflective behavior of the surface. 

First this document will discuss the theoretical aspects of the data fitting process and 

our application of these principles. This will be followed by an explanation of the 

complications and adjustments made specifically for this problem. Finally a 

comparison of the results will allow us to decide which model is more suitable for our 

purpose, and what sampling scheme gives an optimal balance between sampling 

density and fitting accuracy. 

The data fitting problem 
There are many different methods that can be used to fit measured data to a model. 

Since we are dealing with mathematical models, we look for a mathematical approach 

by which to do this. These methods are cumulatively named optimization algorithms. 

In essence we are dealing with a system of equations which we are trying to solve. 

)(),( ββα yF
r

≈  

Where α  is a vector of model parameters, β is measurement specific parameters 

such as the incoming and outgoing direction, F is the mathematical function of the 

reflection model, and y
r
 is a vector of the measured reflectance, which is of course 

also a function of β . The purpose of performing the data fitting is to find the set of 

parameters α  that makes the model correspond to the measurements best.  

There are several classes of optimization algorithms: line search algorithm, gradient 

search algorithms and other methods such as genetic algorithms. In this case the non-

linear nature of the models means a non-linear method is needed to perform this 

fitting.  

The original work done by Lafortune suggests the Levenberg-Marquardt algorithm, 

which is well suited to the problem and gives good results according to the paper. 

The Levenberg-Marquardt Algorithm 

The Levenberg-Marquardt algorithm is a non-linear optimization algorithm in the 

class of gradient search methods. It is based on the Gauss-Newton method of 

optimization. The Gauss-Newton method approximates the solution of a non-linear 

least squares problem by replacing it by a series of linear least squares problems.  
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The basis for the problem is the residual or error function )(xr , which describes the 

difference between the measured value y  and the function value )(xF . It is this 

residual function that we try to minimize. So we try to find a set of parameters α  

such that 0),()()( ≈−= βαβα Fyr
rrr

. The Newton method of optimization attempts to 

find the minimum of an arbitrary function )(xf  by finding a point where the 

derivative of the function (or the Jacobian J  in the case of a vector) is 0. This is done 

iteratively by calculating consecutive values )()(11 kkfkk xfxHxx ∇+= −

+ , using the 

Hessian matrix H , a matrix containing the second partial derivatives of function f  

for all values of x . These steps are repeated until )(' kxf  is close enough to 0. In 

practice inverting the Hessian is very computation intensive so a linear system of 

equations )()( kkkf xfsxH −∇=  is solved instead to calculate 
kkk sxx +=+1 .  

For non-linear least squares optimization of a residual function )(xr  for a discrete 

number of chosen values of x , we minimize the function )(xg . 

This means we need to find the gradient vector and Hessian of )(xg
r

, which are 

functions of the Jacobian of )(xr
r

, and the Hessian matrix of )(xri , which is the thi  

component of the residual function )(xr
r

. 

Next, we calculate each Newton step to get an approximate solution. 

The Gauss-Newton method for optimization of non-linear systems of equations 

replaces this iteration step calculation by a simpler calculation 

)()()()( kk

T

kkk

T xrxJsxJxJ −=  because the Hessian is computationally inconvenient 

and expensive to compute. Also the Hessian is multiplied by the residual which 

should be quite small for well fitting systems. Like most Newton derived methods, the 

Gauss-Newton method can fail if it is started too far from the minimum. Also if the 

residual is not negligible, the method may not converge or converge very slowly. 

The Levenberg-Marquardt method uses a similar strategy as the Gauss-Newton 

method, but uses the linear system )()(])()([ kk

T

kkkk

T xrxJsIxJxJ −=+ µ  instead. 

In this system the parameter kµ  is chosen at every iteration using some suitable 

strategy. The Levenberg-Marquardt algorithm is essentially a weighted combination 

of the Gauss-Newton method and the steepest decent method. This allows the 

algorithm to be very robust in practice and it is therefore a very common algorithm 

used. 

Other possibilities 

There is a vast array of possible optimization algorithms available and while the 

Levenberg-Marquardt algorithm was a straightforward choice based on the literature, 
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there are many possible alternatives which could offer faster convergence or other 

advantages in our specific case. For our purposes the Levenberg-Marquardt 

algorithms sufficed but during the course of the research we came across an analysis 

of several different optimization methods done by J. Backer at the University of 

British Columbia [2]. This analysis compared the speed and accuracy of several 

optimization methods in fitting the 2-lobe Lafortune model to various sets of 

generated data altered by Gaussian noise. While relatively incomplete, this study may 

form a basis on which further research may be based. 

Another approach, less based in mathematics, is fitting of the data using a genetic 

algorithm. This approach simply iteratively creates a large number of “children” from 

a starting point and selects the best children for each iteration step. Each child spawns 

more offspring which are filtered and this continues until a minimum is reached. The 

genetic algorithm is rather more insensitive to local minima than any of the gradient 

search methods because it does not take the gradient of the surface into account. This 

algorithm requires less computation per iteration but depending on the problem may 

require more steps to reach a minimum. 

The data sets 
Data fitting requires two things, a data fitting algorithm which was discussed in the 

previous section and data which to fit the model to. The data set contains a number of 

important aspects. First of all the source of the data is relevant as the type of material 

determines the shape and behavior of the actual reflectance function. Second the 

sampling of the data set influences the data fitting by emphasizing parts as well as 

influence the fitting time. This section will discuss the various aspects of the data sets 

that were used by us for the fitting. 

The BRDF is a function of 2 parameters, the incoming and outgoing light direction, 

),( oiBRDF ωω . The ideal data set therefore, is a complete measurement, meaning all 

the incoming and outgoing direction, iω  and oω , of 

the BRDF of certain very specific surfaces. Each 

direction can be written as a pair of angles, θ  and ϕ , 

as shown in figure 1. These selected surfaces should 

be of a material similar to what we expect to be 

measuring. Unfortunately data sets such as these are 

not readily available. The data measured during our 

initial experimental investigation [3] was too 

inaccurate and too limited to be used for data fitting 

purposes. Instead the main portion of the fitting was 

based on the MIT/MERL dataset, part of which is 

available on the web [4]. These sets of densely 

measured, isotropic data allowed sufficient samples to perform a good fitting while 

allowing us the freedom to pick and choose the sample positions based on our own 

assessment of the important data positions. The initial test portion was done using 

data generated from the models themselves. 

Because it costs time to measure the entire reflectance behavior of a surface, and not 

all viewing and lighting directions are needed for a good fit of the model, we attempt 

to eliminate directions that are deemed less relevant. A comparison of the signal-to-

noise ratio of the resulting fittings can provide insight into which sub-sampling 

scheme is better. We sub-sampled the data according to four rather different 

x 

y 

z 

θ

ϕ

Figure 1: Spherical Coordinates 
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approaches and for a number of different sample densities. These are indicated in the 

following table. 
Sampling # of sets per material 

Regular 5 

Output Limited 6 

Matusik Mapped 6 

Custom 5 

Table 1: The number and types of sub-sampling sets 

The exact purpose of each of these different sampling approaches will be discussed in 

the following sections, but the general reasoning is the following. Sampling the 

reflectance is a very expensive process. Our setup would require the taking of 

photographs for each of the directions that are deemed relevant in the sampling. In the 

case of a regular sampling of 1 degree in every direction this would mean 

90x360x90x360 = 1,049,760,000 pictures. Aside from this amount being impossibly 

large to perform in practice, using this number of samples would slow the fitting 

down to a significantly degree that it is practically impossible to perform. Any kind of 

reduction in the number of samples required to perform a fitting would therefore be 

useful. The different sample sets allow the examination of the fitting under different 

circumstances to measure the influence each different reduction of the sampling has 

on the resulting fitting. 

Since the MIT/MERL data is isotropic, there is no use for the parameter iϕ  since the 

data does not vary for differing values. This parameter is therefore limited to 3 

regularly distributed values for all data sets that were used. 

Generated Data 

The very first data set used was a set of data generated specifically for testing 

purposes. The data set was generated by taking plausible model parameters and 

calculating the model values for a set of incoming and outgoing directions. A fitting to 

this dataset should converge to the exact parameters that were used to generate the 

data set. By performing a fitting to this generated data, we could test the fitting 

algorithm speed and accuracy based on different starting values. This gave us an idea 

of the sensitivity of the algorithm to starting position. When we were satisfied with 

the algorithm we continued to perform the fitting on the Matusik data with which we 

were able to test the different sampling schemes. 

Regular Sampling 

The first sampling scheme used was simply a regularly sampled dataset sampled at 

every x degrees over the 3 free parameters. This was done for x = 2, 3, 5, 10, and 15 

degree spacing. Unfortunately the fitting takes a substantial amount of time and any 

dataset larger than the 5 degree samples set (70,000 samples) takes more than an hour 

to complete. Therefore the sets larger than this were dropped relatively quickly. 

(Matusik states that using more than 10,000 samples is infeasible, but we have found 

that even up to 1,000,000 samples is possible using a dual processor machine within a 

matter of a couple of hours) This regular sampling was done equally in all directions 

in order to form a basis with which the other sampling schemes can be compared. 

Limited Output 

Since frontal viewing of the object has more relevance than the side for most people 

viewing a painting, we can exclude a number of outgoing angles from the hemisphere 

of viewing directions. Therefore we can limit the outgoing sample positions to those 
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that fall within those ranges that are deemed relevant and useful. We use two different 

ranges to limit the number of outgoing directions used. First we limit the outgoing 

directions to the range [0 60] degrees for the zenith angle of the outgoing direction 

)( oθ , which results in a 33% reduction in the amount of data. Using a range of [0 45] 

degrees for the same parameter results in a reduction of 50%. Comparing the results 

of the fitting for reduced dataset to the regular sampled data might give insight into 

the general effect of limiting the data in this way for other sampling schemes, though 

the amount of data reduction will not be the same. 

Matusik Exponential Mapping 

The MIT/MERL data uses a mapping on the zenith angle of the halfway vector (
hθ ), 

where the halfway vector is the vector bisecting the vector of the incoming and 

outgoing direction, to get a higher sample density around the specular highlight 

direction. This places more emphasis on the specular peak and should have an effect 

on the fitting. The parameter is split into 90 bins positioned at intervals based on a 
bin

h 07.1*2.0=θ  exponential mapping [5]. We make use of the same parameter 

mapping; however we adapted it slightly to 2.007.1*2.0 −+= bin

ro θθ  to make sure 

there are samples in the ideal reflection 

direction ( rθ ). We also want to control the 

number of bins used, which means we need 

to alter the value 0.2 into a value A for each 

different sub-sampling density. We create 

distributions using the same total number of 

samples per direction as were used during 

the regular sampling. For example a 5 degree 

sampling results in a distribution of 90/5=18 

samples for θ  and 360/5=72 samples for ϕ . We keep the exponent parameter 1.07 

and modify the initial parameter A  such that the bins are spread out over the entire 

interval [0 rangeθ ]. 

In our first set we sample only 
oθ  in this way. In the second set both 

oθ  and 
oϕ  are 

subject to the exponential mapping. This results in a higher density of sample points 

around the highlight which should correspond to a better fitting of the curve or an 

equivalent fitting using a lower number of data points. 

Custom Mapping 

The 7th set of data is created by manually supplying a number of incoming and 

outgoing directions based on what we think is important. First we can reduce the 

number of incoming directions by excluding those that we consider less important. It 

is difficult to say which lighting directions are irrelevant however as light could 

conceivably come from most directions. It is therefore smart to spread these incoming 

directions fairly evenly around the surface. 

(6) 

(5) 

Figure 2: Exponential mapping of sample points 

(black dots) on a hypothetical highlight curve. 

)107.1(07.1* −=− binbin AAA

)107.1(
1_ −

=
−binsnr

range
A

θ
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Fortunately it is easier to exclude angles in the outgoing direction. We can limit the 

amount of measurement points in the diffuse directions because we want a good 

fitting in the specular direction and the diffuse values show less variation than the 

highlight positions. This reduction is done by specifying the distance in degrees of the 

measured data points from the ideal reflectance angle, θθθ ∇+= ro
. In general we 

use 3 different data lists to perform this reduction. They are listed in the table below 

and are sorted by which set they belong to I, II, III, IV, or V. 

Parameter θ∇  

I [0, 1, 2, 3, 5, 7, 10, 15, 25, 35, 45, 60] 

II [0, 1, 2, 5, 10, 17, 25, 40, 60] 

III [0, 1, 3, 7, 15, 25, 45] 

IV [0, 1, 3, 7, 15, 25, 45] 

V [0, 3, 7, 15, 30, 50] 

Parameter ϕ∇  

I [0, 1, 2, 3, 5, 7, 10, 15, 25, 35, 45, 60, 90, 115, 140, 170] 

II [0, 1, 2, 5, 10, 17, 25, 40, 60, 90, 125, 170] 

III [0, 1, 3, 7, 15, 25, 45, 75, 110, 155] 

IV [0, 1, 3, 7, 15, 25, 45, 75, 110, 155] 

V [0, 3, 7, 15, 30, 50, 90, 135] 

Table 2: Angle distribution for manual specified data sets 

The incoming directions are, [0, 10, 20, 30, 40, 50, 60 70, 80] and [0, 90] for 

parameters 
iθ  and 

iϕ  respectively for the first three sets. They are [0, 20, 45] for 
iθ , 

and [0, 155, 270] for 
iϕ , for the last sets IV and V. 

The 
oθ  values are limited depending on the actual angle of 

iθ  as any values out side 

the [0 90] range are excluded. This is not true for the 
oϕ  parameter which has a 

possible range of [0 360] and which is circular all values will always be included. 

Problems 
In the process of performing the data fitting we ran across a number of issues that had 

to be resolved before we could complete the data fitting. This section will discuss the 

problems that arose during the fitting process, the solutions used to solve these 

problems and any future considerations that might need to be taken into account.  

Error space manipulation 

The very first runs of the Levenberg-

Marquardt fitting of the generated 

data to the model brought up a very 

important problem. The algorithm 

was very dependent on starting 

positions in particularly for the 

exponent parameter n in the 

Lafortune model. While the diffuse 

parameter would rapidly scale to the 

desired value, the specular lobes 

would converge very slowly if they 

converged at all. If the exponent 

value was close to the desired value, 

the optimization would give the 

desired result, but in all other cases, 

Figure 3: Noisy Gauss lobe 
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there was no convergence. 

In order to determine what the problem 

was and how it would be possible to 

solve it, we made an analysis of the 

function space of the mean squared error 

in terms of the exponent parameter n .  
First of all we examined the error space 

in terms of a broader or narrower lobe. 

To quickly simulate a reflectance lobe 

we use a 2D Gaussian bell curve. Also 

used by Ward [6] to model reflection, 

this simple lobe model allows us to 

quickly and easily examine what 

happens to the MSE as a function of 

the lobe width in both directions. We 

start with a Gaussian lobe with a certain width 
xW  and yW  in both directions with 

some noise added to simulate a lobe measurement (figure 2). Then we calculate the 

MSE between this data set and a group of other lobes with varying lobe widths. These 

residuals are then plotted against 
xW and 

yW  to examine the behavior of the 

residual. As can be seen in figure 3, the 

space is noisy and riddled with local 

minima. An analysis of the error space 

between non-noisy gauss lobes results in 

figure 4. It shows a very flat space with a 

minimum which is only made very clear 

by pseudo-coloring. This is an exact 

fitting of an exact lobe, so the expected 

error space behavior corresponds more 

closely to figure 3. 

Error Minimization 

The second issue that arose was what error was going to be minimized. In a regularly 

sampled dataset the number of diffuse positions far outweighs the number in highlight 

directions. A simple minimization of the squared difference between the measured 

and the fitted data, as in equation (1), therefore results in a slow fitting process and 

may have rather unexpected and unwanted results in terms of local minima. A good 

fitting of the specular peak is of particular importance. Certainly an accurate fitting of 

the size and shape of the specular lobe outweighs the need for a perfect fitting of the 

diffuse areas of the painting. The presence of noise has greater relative influence on 

the diffuse values than it does on the specular values, and the values in the diffuse 

vary less than in the specular. It is therefore important to find an error function that 

takes into account our objective to fit especially well to the highlight. The solution to 

this is scaling the error by a function of the distance of the angle from the ideal 

reflection direction. This is done by using the angle between the halfway vector and 

the surface normal (
hθ ). This places a higher emphasis on the specular peaks and 

results in a better fit of the lobes. We replace the original error function )(xg  in 

equation (1) with the equation (7). 
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Figure 4: MSE as a function of lobe width and 

height 

Figure 5: Non-noisy error space 
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Fortunately this approach also led to a solution for the previously described problem 

of the error space. Experimentation using the error function resulted in a better fitting 

of the lobe width by placing special emphasis on the reflection direction. This was 

done by scaling the error by an exponent n  of the cosine of the angle with the ideal 
reflection direction.  

Once a reasonable fitting has been found using error function (8), the result is then 

used as a starting position for a fitting using the error function (7). By using exponent 

values of 2 and 4, this approach results in a good fitting of the width of the specular 

lobe. Testing the method on the generated data sets also showed the resulting method 

of dual fitting was insensitive to the distance of user supplied starting point to the 

minimum. 

Ashikhmin Model 

The Ashikhmin model is relatively simple to calculate and requires a very limited 

number of parameters. Research by Addy Ngan [7] has shown that it also performs 

significantly better than the Lafortune model because of its ability to better model 

reflection at the extreme reflection angles. 

Unfortunately we encountered some problems while trying to fit the Ashikhmin 

model to the data we used. This led to an in depth investigation into the mathematical 

workings of the model, which in turn gave some surprising results. 

The original Ashikhmin model is based on the following formula. 

)(
),max()(

)(

8

)1)(1(
),(

22
sincos

hkF
kNkNhk

hNnn
kkp

oi

nn
vu

oi

hvhu

⋅
⋅⋅⋅

⋅++
=

+

rr

r
ϕϕ

π
 

Where N
r
is the surface normal, h  is the halfway vector, ik  and 

ok  are the incoming 

and outgoing directions, 
hϕ  is the azimuth angle of h , and un  and 

vn  are the 

exponent parameters. )( hkF ⋅  is a fresnel function, for which Ashikhmin suggests 

Schlick’s function 5))(1)(1()( hkRRhkF ss ⋅−−+=⋅ . This leaves us with 3 free 

parameters sR , un  and vn , which can be used to format the reflectance function. 

The problem lies in the multiplication by 

),max()(

1

oi kNkNhk ⋅⋅⋅
rr , which describes 

the increase of the specular lobe as the 

incoming angle increases towards the 

grazing angles. Since there is no free 

parameter here this relation is fixed. This 

behavior contrasts quite sharply with the 

behavior we observed in certain materials. 

Some of these have a much smaller growth than others, and the Ashikhmin model is 

unable to cope. 

After examining the problem, we decided it was necessary to adapt the model slightly 

in order to make it useful to us. In doing so, it was also necessary to maintain the 

properties that made the original Ashikhmin model useful. The solution came in the 

)cos()(
2

1)(' hxrxg θ=

n

hxrxg )cos()(
2

1)(" θ= (7) 

(9) 

(8) 

Figure 6: Original Ashikhmin Lobes 
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form of an additional exponent parameter 
sn , which takes on values within the range 

of [0,1]. Observing that 
sn)cos(

1

)cos(

1

φφ
≥  for all values of sn  within the specified 

range, we apply the exponent to the factor 
),max()(

1

oi kNkNhk ⋅⋅⋅
rr  leading to the 

following new formula for the modified Ashikhmin model. 

)(
)),max()((

)(

8

)1)(1(
),(

22
sincos

hkF
kNkNhk

hNnn
kkp

s

hvhu

n

oi

nn
vu

oi ⋅
⋅⋅⋅

⋅++
=

+

rr

r
ϕϕ

π
 

This new parameter gives an additional degree of freedom and allows the model to be 

fit to materials which have a different growth rate towards the grazing angles. 

Resulting fittings also showed a much better fit of the model to the data.  

Highly specular materials 

Another issue that arose is that highly specular materials in the MIT/MERL database 

have a property which makes it very difficult to perform the data fitting. These 

materials have the property that, as they are supposed to, the specular peak values at 

near grazing angles become very large. The following images illustrate the difference 

in the peak size for various different incoming directions. The left image shows the 

peaks at incoming zenith angles of 0, 30 45 and 60 degrees. The right picture shows 

the same peaks but now with an additional peak at 80 degrees. This peak is a factor 

100+ larger than the highest peak in the picture on the left. 

The models are simply not capable of dealing with these extreme relations and the 

data fitting results in models that fit well at the grazing angles since any error there is 

magnified 100 fold by the size of the peak itself.  

There are a number of possible solutions to this problem. First of all it is possible to 

perform the fitting on the log of the measured data instead of the actual values. This 

means any error in the fitting at high values becomes much more costly than when 

using the current solution, but since these generally occur at extreme angles, they are 

less relevant to the viewing. However this also means the shape of the lobe will 

probably not be much like a cosine lobe as the models predict, but a log(cos) lobe. 

This would obviously influence the ability of the models to fit to the data.  

Another solution is to perform an additional scaling of the error function to place 

additional emphasis on the angles that are not near grazing. This has a similar result in 

creating a better fitting at other angles at the cost of large errors around the grazing 

angles. A third solution is to discard the near grazing angles altogether. Naturally this 

means a loss of information and it will result in bad fitting around the grazing angles. 

But because of the ease of implementation and consistency, it is this third option that 

is used. 

(10) 

Figure 7: Height difference between 80° lobe and the other lobes in plastic data 
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Results 
The following section will describe the results obtained using the different data sets. 

The section will focus on the results from the fitting of the blue metallic paint data, as 

this corresponds most closely to what we expect the paint to behave as. The rest of the 

fittings will be included as an appendix to this document. We start off with a plot of a 

few cuts of the Matusik data sets used to fit to the models. This gives a general idea of 

the shape of actual reflection that was used. Two-dimensional representations will be 

used as a backdrop for the plots of the fitted models, as a means to compare the 

models to actual reflectance data.  

A series of 3d plots of the data for various incoming angles will give a general idea of 

the shape of the measured reflection.  

While the peak around the surface normal is symmetrical, the peaks at different angles 

become gradually higher and oval in nature, as is shown by the cross-section. They 

also become elongated when viewing from extreme angles, with an especially with 

incoming light from the grazing angles. This behavior is also present in the other 

materials, but they have a narrower peak, and a greater difference between the peak 

heights. 

Figure 8: A 3D plot of measured data for Blue Metallic Paint for different incoming directions of 

light. On the right is a cross-section of the different lobes. 
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Regular Sampled Fitting  

First of all we can look at the parameters that were the result of the regularly sampled 

fitting. While these do not give a clear view of the shape of the model, it is useful to 

note the difference in parameters between the different sampling densities. 

These numbers do not give any insight into how well the dat fit so a number of 

comparative images were made using the measured data (at a resolution on 1° 

sampling) as a background. The red line is the measured data with each marker 

representing a datapoint. For 5° sampling (cyan) this means every 5
th
 marker was 

used, for 10° sampling (green) every 10
th
 and for 15° sampling (blue) every 15

th
 

marker was used for the fitting. The following plots indicate the fitting of the different 

models to the data. 

Note the fact that the lobe height grows much faster with increasing angle than the 

data for the 10° and 15° sampled lobes. This is due to the aforementioned property 

  1 lobe Lafortune 

Blue Metallic Paint 
Nr of 

samples d
ρ  Cx Cz n 

5 deg  69,984 0.0928 -1.0107 0.9694 21.4036 

10 deg  8,748 0.1195 -1.0201 0.9819 30.3379 

15 deg  2,592 0.1162 -1.0204 0.9847 30.7859 

 

  Ashikhmin 

Blue Metallic Paint 
Nr of 

samples d
ρ  

s
n  

sR  un  vn  

5 deg  69,984 0.0537 0.2525 0.2431 50.0369 44.2850 

10 deg  8,748 0.0566 0.3169 0.2318 55.7669 48.9106 

15 deg  2,592 0.0844 0.1503 0.1839 85.5375 77.9953 

 

  2 Lobe Lafortune 

Blue Metallic Paint 
Nr of 

samples d
ρ  Cx Cz n Cx Cz n 

5 deg  69,984 0.0766 -1.0044 0.9658 328.9611 -0.9956 0.9612 17.4077 

10 deg  8,748 0.0810 -1.0097 0.8930 201.2291 -1.0014 0.9693 19.4582 

15 deg  2,592 0.0570 -1.0012 0.9962 352.5315 -0.9761 0.9275 12.5118 

 

Figure 9: 1 Lafortune Lobe fitted on regularly sampled blue metallic 

paint data for angles of 0°, 30°, 45° and 60° 

Table 3: Parameter values for 1 Lafortune lobe for regularly sampled data 

Table 4: Parameter values for Ashikhmin  lobe for regularly sampled data 

Table 5: Parameter values for 2 Lafortune lobes for regularly sampled data 
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that the peaks at the grazing angles are much higher than the other peaks. At 80° the 

fitting is much better for these models as seen in figure 12. 

It is interesting to note that Ashikhmin model is better able to cope with the bulging of 

the lobe towards the extreme angles. The model has a far better fitting of the 

measured data at these angles than the 1 lobe Lafortune does. 

The 2 lobe Lafortune model is better able to model the peaks of the reflection because 

of the flexibility of the two lobes. While one lobe fits well to the bottom part of the 

specular lobe, the other forms towards 

the rest of the peak. Because of the 

lack of data points, however, the 

model will try and reach the extreme 

peaks at 80° while not having anything 

to adhere to in between for the 15° 

sampling, which results in the funny 

bottleneck looking peak. 

Figure 10: Ashikhmin Lobe fitted on regularly sampled blue metallic 

paint data for angles of 0°, 30°, 45° and 60° 

Figure 11: 2 Lafortune Lobes fitted on regularly sampled blue metallic paint data for 

angles of 0°, 30°, 45° and 60° 

Figure 12: Comparison of an 80° lobe (right) and a 

-45° lobe (left) for measured data, and fitted lobes for 

Ashikhmin (dashed) and Lafortune (blue) 
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Limited Output Range fitting 

The fitting in the previous section were still based on a rather large number of data 

points. We are going to try to reduce this number of data points in order to examine 

the effect this has on the fitting. By reducing the range of outgoing directions from the 

full range of [0°, 90°] to [0°, 60°], we reduce the number of data points used. The 

reduced set should result in a fitting that has fewer problems with extreme peaks at the 

grazing angles. 

What the numbers don’t show, but the pictures do show, is that for these fittings, the 

size increase of the lobes is not much of an issue anymore. The models are fitted far 

more closely to the peaks since they don’t have to stretch to reach the peak at 80°.

  1 lobe Lafortune 

Blue Metallic Paint 
Nr of 

samples d
ρ  Cx Cz n 

5 deg [0 60] 46,656 0.0779 -0.9953 0.9617 17.5658 

10 deg [0 60] 5,832 0.0861 -0.9983 0.9711 20.1451 

15 deg [0 60] 1,728 0.1023 -1.0020 0.9813 25.0176 

  Ashikhmin 

Blue Metallic Paint 
Nr of 

samples d
ρ  

s
n  

sR  
un  

vn  

5 deg [0 60] 46,656 0.0627 0.5140 0.2059 59.3289 56.6947 

10 deg [0 60] 5,832 0.0699 0.4542 0.1985 68.1899 64.5312 

15 deg [0 60] 1,728 0.0892 0.3216 0.1758 89.8085 83.1329 

 

  2 Lobe Lafortune 

Blue Metallic Paint 
Nr of 

samples d
ρ  Cx Cz n Cx Cz n 

5 deg [0 60] 46,656 0.0447 -0.9693 0.9809 48.4114 -0.9582 0.8374 8.4967 

10 deg [0 60] 5,832 0.0524 -0.9666 0.9862 65.5352 -0.9828 0.8822 10.3932 

15 deg [0 60] 1,728 0.0588 -0.9911 0.9959 265.1631 -0.9907 0.9205 12.4124 

 

Figure 14: Data fitting for output limited to maximum 60°, blue metallic paint data for angles of 0°, 

30°, 45° and 60°. From left to right: 1 lafortune lobe, ashikhmin, 2 lafortune lobes 

Table 6: Parameter values for 1 Lafortune lobe for output range limited, regularly sampled data 

Table 7: Parameter values for Ashikhmin lobe for output range limited, regularly sampled data 

Table 8: Parameter values for 2 Lafortune lobes for output range limited, regularly sampled data 

Figure 13: Comparison of an 80° lobe (right) and a -45° lobe (left) for measured 

data, and fitted lobes for Ashikhmin (dashed) and Lafortune (blue) 
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Next we reduce the set even further by excluding more of the outgoing angles. By 

limiting this to [0°, 45°], the data fit fail to reach the peak at 60°. This is exactly the 

behavior that we would expect. The exception in both cases is the Ashikhmin model 

which has a natural tendency to grow regardless of the parameters. 

Reducing the included outgoing directions has a direct effect on the fitting of the 

models to the data. For this specific dataset, the grazing angles, which are problematic 

to the models, are excluded resulting in a more accurate fitting to the other lobes. The 

height difference between the peaks at 45° and 60° is not as great so the difference 

between figures 13 and 15 is less obvious. 

  1 lobe Lafortune 

Blue Metallic Paint 
Nr of 

samples d
ρ  Cx Cz n 

5 deg [0 45] 34992 0.0871 -0.9927 0.9667 19.2725 

10 deg [0 45] 4374 0.0997 -0.9894 0.9761 22.7135 

15 deg [0 45] 1296 0.1145 -0.9951 0.9836 27.1433 

  Ashikhmin 

Blue Metallic Paint 
Nr of 

samples d
ρ  

s
n  

sR  un  vn  

5 deg [0 45] 34992 0.0724 0.6339 0.1800 69.8588 69.9069 

10 deg [0 45] 4374 0.0844 0.4645 0.1679 83.8567 84.0973 

15 deg [0 45] 1296 0.1003 0.3985 0.1556 102.7602 99.6616 

 

  2 Lobe Lafortune 

Blue Metallic Paint 
Nr of 

samples d
ρ  Cx Cz n Cx Cz n 

5 deg [0 45] 34992 0.0400 -0.9641 0.9803 43.2426 -0.9514 0.7972 7.3250 

10 deg [0 45] 4374 0.0697 -0.6432 0.9881 97.2434 -1.0087 0.9370 14.5867 

15 deg [0 45] 1296 0.0583 -0.9879 0.9955 237.3779 -0.9898 0.9180 12.1178 

 

Figure 15: Data fitting for output limited to maximum 45°, blue metallic paint data for angles of 0°, 

30°, 45° and 60°. From left to right: 1 lafortune lobe, ashikhmin, 2 lafortune lobes 

Table 9: Parameter values for 1 Lafortune lobe for output range limited, regularly sampled data 

Table 10: Parameter values for Ashikhmin lobe for output range limited, regularly sampled data 

Table 11: Parameter values for 2 Lafortune lobes for output range limited, regularly sampled data 
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Matusik Exponential Mapping 

Another way to reduce the data set somewhat is to use the Matusik exponential 

mapping over the full data ranges. More importantly this gives a chance to examine 

how the fitting responds to placing the data points at different positions. By 

examining the difference with the regular sampled data it might be possible to get the 

same quality of fitting using fewer samples. 

First we exponentially map the 
oθ  parameter over the range [0°, 90°] such that the 

highest density of data points is around the ideal reflected angle rθ . The other 

parameters are regularly sampled according to the same density. 

In actual fact the behavior we see in these lobes is very similar to the behavior of the 

regularly sampled data sets. There is still a large overshoot of the peaks in the 1 lobe 

Lafortune model, and the strange bottleneck behavior still shows up for the 2 

Lafortune lobes when using 6 bins.  

  1 lobe Lafortune 

Blue Metallic Paint 
Nr of 

samples d
ρ  Cx Cz n 

18 bins θo  59,400 0.0990 -1.0102 0.9715 22.5173 

9 bins θo 7,344 0.1273 -1.0201 0.9830 32.5072 

6 bins θo 1,728 0.1181 -1.0205 0.9825 27.2888 

  Ashikhmin 

Blue Metallic Paint 
Nr of 

samples d
ρ  

s
n  

sR  un  vn  

18 bins θo  59,400 0.0615 0.1767 0.2387 55.0499 46.5807 

9 bins θo 7,344 0.0576 0.3217 0.2394 54.5388 47.7477 

6 bins θo 1,728 0.0721 0.1908 0.2257 68.8862 70.1549 

 

  2 Lobe Lafortune 

Blue Metallic Paint 
Nr of 

samples d
ρ  Cx Cz n Cx Cz n 

18 bins θo  59,400 0.0823 -1.0039 0.9701 380.6574 -0.9960 0.9645 18.4905 

9 bins θo 7,344 0.0824 -1.0094 0.8952 208.9375 -1.0013 0.9700 19.5069 

6 bins θo  1,728 0.0797 -1.0005 0.9959 2652.3 -0.9833 0.9770 18.7999 

Figure 16: Data fitting exponentially mapped θ, blue metallic paint data for angles of 0°, 30°, 45° 

and 60°. From left to right: 1 lafortune lobe, ashikhmin, 2 lafortune lobes 

Table 12: Parameter values for 1 Lafortune lobe for exponentially mapped θo sampled data 

Table 13: Parameter values for Ashikhmin lobe for exponentially mapped θo sampled data 

Table 14: Parameter values for 2 Lafortune lobes for exponentially mapped θo sampled data 
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The next step is to also use the exponential mapping on the other outgoing parameter 

oϕ  by mapping it over the range [0°, 360°] so that the highest density is around the 

reflected direction rϕ . 

There is a marked difference in the overshoot of the lobes for the 1 lobe Lafortune 

model. Aside from that there is little significant perceptual difference between the 

fittings including and excluding the exponential mapping of ϕ . 

  1 lobe Lafortune 

Blue Metallic Paint 
Nr of 

samples d
ρ  Cx Cz n 

18 bin θo 72 bin φo 56,925 0.1520 -1.0113 0.9677 23.2669 

9 bin θo 36 bin φo 6,732 0.1356 -1.0148 0.9748 25.7507 

6 bin θo 24 bin φo 1,512 0.1153 -1.0136 0.9775 22.6943 

 

  Ashikhmin 

Blue Metallic Paint 
Nr of 

samples d
ρ  

s
n  

sR  
un  

vn  

18 bin θo 72 bin φo 56,925 0.1041 0.1957 0.2415 52.2858 45.4716 

9 bin θo 36 bin φo 6,732 0.0726 0.3405 0.2430 48.5912 44.3160 

6 bin θo 24 bin φo 1,512 0.0834 0.2396 0.2416 62.8981 57.8512 

 

  2 Lobe Lafortune 

Blue Metallic Paint 
Nr of 

samples d
ρ  Cx Cz n Cx Cz n 

18 bin θo 72 bin φo 56,925 0.1108 -1.0027 0.9750 332.8595 -0.9977 0.9572 17.2941 

9 bin θo 36 bin φo 6,732 0.1029 -1.0028 0.9652 724.9096 -1.0023 0.9661 19.2253 

6 bin θo 24 bin φo 1,512 0.0898 -1.0008 0.9940 1873.7 -0.9844 0.9736 17.9174 

Figure 17: Data fitting exponentially mapped θ and φ, blue metallic paint data for angles of 0°, 30°, 45° 

and 60°. From left to right: 1 lafortune lobe, ashikhmin, 2 lafortune lobes 

Table 16: Parameter values for 1 Lafortune lobe for exponentially mapped θo and φo sampled data 

Table 15: Parameter values for 1 Lafortune lobe for exponentially mapped θo and φo sampled data 

Table 17: Parameter values for 2 Lafortune lobes for exponentially mapped θo and φo sampled data 
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Custom Sampling Distribution 

The final group of data sets is based on a custom selection of data positions. This 

allows an exact choice in what input and output angles are to be included in the data 

set. The 5 different specified datasets were indicated by table 2. Of these sets the first 

3 are comparable in sample count to 10° regularly sampled data, ranging from 10,000 

to 5,500 samples. The last to sets are relatively sparse in comparison. 

What immediately becomes obvious is the 1 lobe Lafortune model which results in 

very awkward fitting for each of the first 3 data sets. This rather odd behavior, was 

confirmed after several runs of the fitting algorithm with different starting positions, 

and seems to indicate the presence of a rather problematic local minimum. 

The other thing that is noticeable is the good fitting of the plotted lobes. This is 

because of the exclusion of many extreme angles in the specified sets. The behavior of 

the fitting looks a lot like that of the output range limited sets. 

  1 lobe Lafortune 

Blue Metallic Paint 
Nr of 

samples d
ρ  Cx Cz n 

I 10,292 0.3809 -1.0123 0.9808 54.6710 

II  8,487 0.4422 -1.0136 0.9788 58.7150 

III  5,592 0.5086 -1.0123 0.9799 67.3642 

 

  Ashikhmin 

Blue Metallic Paint 
Nr of 

samples d
ρ  

s
n  

sR  
un  

vn  

I 10,292 0.0885 0.3028 0.2772 47.4451 47.4471 

II  8,487 0.1548 0.2586 0.2087 72.1862 58.3486 

III  5,592 0.1026 0.3124 0.2541 54.6981 48.6877 

IV 1,767 0.1313 0.4430 0.1771 76.5359 72.0680 

V 1,080 0.1411 0.4467 0.1646 83.7116 78.4152 

 

  2 Lobe Lafortune 

Blue Metallic Paint 
Nr of 

samples d
ρ  Cx Cz n Cx Cz n 

I 10,292 0.1334 -1.0046 0.9504 358.6305 -1.0003 0.9636 19.4978 

II  8,487 0.1311 -1.0051 0.9425 329.4051 -1.0007 0.9638 19.4422 

III  5,592 0.1297 -1.0043 0.9497 419.0863 -1.0034 0.9637 19.5609 

IV 1,767 0.1321 -0.8903 0.9829 76.6958 -1.0127 0.9416 17.2885 

V 1,080 0.1044 -0.9213 0.9867 87.1096 -1.0122 0.9329 15.4614 

 

Figure 18: Data fitting for custom specified, blue metallic paint data (sets I, II and III) for angles of 

0°, 30°, 45° and 60°. From left to right: 1 lafortune lobe, ashikhmin, 2 lafortune lobes 

Table 18: Parameter values for 1 Lafortune lobe for custom selected θo and φo 

Table 19: Parameter values for Ashikhmin lobe for custom selected θo and φo 

Table 20: Parameter values for 2 Lafortune lobes for custom selected θo and φo 
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The sparse data sets was fitted and plotted for the Ashikhmin and 2 lobe Lafortune 

model only. What is noticeable is that the fitting seems to perform a lot better than 

expected. Though the number of data points is reduced significantly from the other 

sets, the fitting varies relatively little perceptually from the other sets. 

 

Figure 19: Data fitting of sparse custom data sets (IV and V) of blue metallic paint data for 

angles of 0°, 30°, 45° and 60°. From left to right: ashikhmin, 2 lafortune lobes 
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Comparison of results 
While it is nice to have a visual representation of the data fitting results as shown 

above, it is not enough just to do so. Not only does this method of comparison not 

give enough information, but it also only visualizes a select part of the dataset. In 

order to judge the results appropriately and to determine the difference between the 

different fittings it is necessary to make a qualitative comparison of the resulting 

fittings to each other. The purpose and manner of making this qualitative comparison 

will be discussed in this section. 

Qualitative comparison 

A measure of how closely the model fits to the data should give us a general idea on 

how well the fitting succeeded. In order to determine a meaningful measure we need 

to compare the model to a set of data that is larger than the set to which the model was 

fitted to. The most obvious choice would be to calculate the average deviation of the 

model to the data for every position. Unfortunately this is not a good measurement of 

the accuracy of the fitting because it fails to take into account the variation within the 

reflection. We would like our error measure to be unbiased in this regard. 

A common method of comparison is to use the Signal to Noise ratio as a comparison. 

The Signal to Noise ratio (SNR) is an estimation of the ratio of important data (signal) 

to unimportant or deviant data (noise). Consequently, the higher the SNR value is the 

better the model fit. There are various different metrics to calculate the SNR. The one 

used, which is commonly applied in graphics and computer vision to compare images, 

is calculated as follows. 
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N
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Here 
is  is the measured (signal) value, 

im  is the model predicted value, s  is the 

mean of the signal and N  is the number of samples in the set. We performed a 

comparison of the results using the SNR as a measure of accuracy, which will be 

discussed in the following section.  

In order to get a good match of the width and shape of the lobes, a scaling of the 

squared mean difference was applied during the fitting process. In order to take into 

account the distance of the outgoing direction from the ideal reflection direction, the 

fitting was done towards the mean squared error scaled by ih,cosθ , the angle between 

the halfway vector and the surface normal for measurement i. Unfortunately the 

original SNR comparison does not take this scaling into account, and we would 

therefore like to examine the ratio of this scaled error instead of the normal MSE. By 

simply scaling the MSE by the cosine of the angle
hθ , we unbalance the SNR which 

would require integrating the function for this angle over the hemisphere of possible 

angles to normalize it again. However, we can ignore the normalization if we don’t 

compare the original SNR to the new SNR. 
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)(log10' 10
Error

VAR
SNR =  

We know that the Ashikhmin model is better able to model the reflection behavior at 

grazing angles, however these are deemed less important to us than the angles in the 

range [0 60], for reasons specified before. A second set of ratios is therefore 

calculated using not the entire hemisphere of outgoing directions, but a reduced set in 

which only the values of oθ  that fall within this range are included. This should give 

an idea on which sub-sampling strategy and model combination works best in those 

situations. 

Signal to Noise Ratio 

The following SNR values were found for the fittings. 

A plot of these values offers more insight into the relationship between them. Figures 

20 and 22 show the unsorted SNR values for the unscaled and scaled error 

respectively. While the actual values should not be compared, the relationship 

between them is still valid. This shows that for the full comparison set, the differences 

are rather small. What is very noticeable is that the Ashikhmin model performs very 

badly for the output limited sets and the manual data sets. This is easily explained 

since these sets placed no emphasis on the values at the extreme regions while this is 

exactly where the large errors occur. A somewhat surprising observation is that the 

single lobe Lafortune model performs better when the output is limited to 45° than 

when the output is limited to 60°. Another surprising fact is that the 1 lobe Lafortune 

model does not have a significantly lower SNR on manual data set I, although the plot 

seemed to indicate a local minimum was interfering. 

Figures 21 and 23 show the same values but then sorted towards best fit of the 

Ashikhmin model, which performs best of all models at 5° sampled data. The graphs 

show the Ashikhmin model outperforms the other two models for all but one of the 

sampling strategies. Also noticeable is the fact that the 2 lobe Lafortune model 

 SNR SNR reduced set SNR’ SNR’ reduced set 

 1lobe ashik 2lobe 1lobe ashik 2lobe 1lobe ashik 2lobe 1lobe ashik 2lobe 

5 deg  7.81 8.86 7.96 12.24 11.05 13.52 8.65 9.57 9.00 12.96 11.38 14.15 

10 deg  6.05 7.61 4.50 8.93 11.56 12.72 7.21 8.16 5.65 9.53 11.95 13.33 

15 deg  5.60 7.73 8.84 8.37 9.78 13.62 6.91 8.58 9.36 8.87 10.24 13.97 

5 deg [0 60] 7.94 -2.70 8.18 13.48 9.55 17.20 8.50 -2.60 8.82 14.13 9.94 17.68 

10 deg [0 60] 7.24 -0.48 7.86 12.58 8.98 16.10 8.40 -0.35 8.74 13.26 9.36 16.60 

15 deg [0 60] 6.99 4.05 7.90 10.70 8.71 14.42 8.02 4.41 8.63 11.34 9.70 14.85 

5 deg [0 45] 7.58 -10.78 7.41 13.01 9.46 17.04 8.25 -10.75 8.63 13.75 9.97 17.57 

10 deg [0 45] 7.06 -2.78 7.84 11.55 10.50 14.90 7.58 -2.69 8.79 12.29 11.54 15.57 

15 deg [0 45] 6.68 -0.80 6.79 10.11 10.10 14.51 7.37 -0.65 8.54 10.84 11.23 14.99 

18 bin θ  7.84 8.49 8.20 11.96 12.34 13.29 8.62 9.21 9.01 12.74 12.82 14.00 

9 bin θ 6.12 7.55 4.44 8.51 11.72 12.56 7.01 8.09 5.70 9.14 12.23 13.17 

6 bin θ  5.91 7.88 7.06 8.69 9.96 10.03 7.09 8.63 7.61 9.22 10.47 10.37 

18 bin θ 72 bin φ 6.83 8.35 8.11 10.46 11.67 12.70 8.31 9.34 9.53 11.85 12.19 13.76 

9 bin θ 36 bin φ 6.56 7.39 6.83 10.36 10.67 12.65 8.18 7.93 8.15 11.40 11.22 13.57 

6 bin θ 24 bin φ 6.85 8.07 7.01 10.01 9.25 10.30 7.97 8.84 7.96 10.66 9.78 10.72 

I 1.77 7.61 7.11 2.08 10.75 11.79 3.83 8.30 8.25 3.77 11.11 13.17 

II  0.53 6.99 6.91 0.72 11.43 11.87 2.70 8.37 8.04 2.43 11.81 13.21 

III  -0.56 7.20 6.68 -0.54 9.24 11.88 1.67 7.93 7.90 1.21 9.57 13.19 

IV 6.57 -0.74 6.95 10.35 9.91 12.43 7.79 -0.55 8.55 11.87 10.49 13.98 

V 6.61 -1.59 7.59 9.99 11.18 13.78 7.62 -1.41 8.67 11.49 11.60 14.97 

 
Table 21: SNR values for all the fitted data sets for blue metallic paint data 
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outperforms the 1 lobe model in most cases, though the difference is not very large. 

The only difference in ranking, between the SNR and SNR’ measures, occurs in 

manual set II, which is ranked significantly higher under the SNR’ measure than 

under the SNR measure. 

A more interesting comparison, however, should be the SNR for the reduced range of 

data, since this represents the visual area we are interested in. Figures 24 and 26 

display the unsorted SNR and SNR’ values, while figures 25 and 27 show the values 

sorted to the Ashikhmin model. Using the reduced set of directions, the difference 

between the Lafortune model and Ashikhmin model becomes more obvious. Where 

the Ashikhmin model outperformed the Lafortune model over the full range of 

viewing directions, the 2 lobe Lafortune model outperforms the Ashikhmin model for 

all sampling sets, and the single lobe model also gets the better of it for most of the 

exponentially mapped data sets, and all of the output range limited sets.. 

The performance of the Ashikhmin model has become more stable, as the sorted 

figures show. There are no severe dips in the SNR values for the 2 lobe Lafortune 

model either, but the single lobe model fails for the manual data sets I, II and III, as 

the fitting image in figure 18 had led us to believe. 

Overall the conclusions that can be drawn are that the Ashikhmin model is very 

sensitive to the values around the grazing angles. It will outperform the Lafortune 

model if they are included in the fitting, indicating a better fitting of the reflection 

around these angles. Absence of these angles during the fitting process, however, 

leads to low values for the SNR. The Lafortune model, on the other hand is much less 

sensitive to the extreme angles, and is surprisingly consistent for even low sample 

density. If calculated using the reduced set of measurements, the SNR values of the 2 

lobe model are consistently higher than the values of the Ashikhmin model. It also 

consistently outperforms the single lobe model. 
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Conclusions 
As a result of the experiments performed we can answer the questions that prompted 

this investigation. These were that we wanted to know which model was better suited 

to data fitting and what sampling scheme should be used to gather samples for our 

measurement. These questions will be answered in this section. 

Models 

Though the issues of model choice and sampling scheme are directly linked, there are 

some compelling reasons that came up during the course of this investigation, that 

lead to a significant advantage of one model over the other. The Ashikhmin model has 

some issues related to it that severely hinder its use for the purpose of fitting. It had to 

be altered to be able to get decent results in fitting it to the data. Also it performed 

significantly worse than the Lafortune model for data sets that were limited around the 

grazing angles and specifically the very sparse data sets. These factors combined with 

the fact that the model is more computationally intensive (our modification added to 

this fact more) far outweigh the benefits the Ashikhmin model had, which was that it 

better modeled reflection at the grazing angles. Since we have stated these angles are 

of lesser significance than the frontal viewing angles, the choice falls on the Lafortune 

model. 

The Lafortune generalized cosine lobes are more flexible in dealing with the oddities 

in the data sets, and fit well to the frontal viewing lobes. In terms of the number of 

lobes, there is no contest. Using 2 lobes instead of 1 offers significant improvement of 

the result, which is often in the order of 3-4 dB in the SNR of the fitting. The cost of 

the increased number of lobes is not very high for lower numbers of data points. 

Sampling Scheme 

The choice of the Lafortune model was partially based on the fact that it copes better 

with relatively sparse data sets. In fact the SNR qualitative comparison shows that the 

difference in quality between fitting of the 5° regular sampled data set, which contains 

close to 70,000 samples and the sparse manual data sets is surprisingly small. Since 

the manual data sets allow for customization and simple angle positions, this has an 

advantage over the exponentially mapped sets.  

The output range limited data sets have significantly higher SNR and SNR’ values for 

the reduced comparison, especially for the high resolution data sets. This indicates 

that not excluding angles has a strong negative impact on the fitting results in the 

directions up to 60°. It is therefore likely that excluding the extreme angles for the 

fitting will improve our results in all of the sampling strategies, since the extreme 

angles will no longer influence the results.  

Taking into account the fact that limiting the output directions will improve the fitting 

results, we discard the values of the output range limited data sets. Comparisons 

between the other sampling schemes show that the difference between the sets is in 

the region of 1 dB, with a few lower outliers. The difference in sample density can be 

several thousand or tens of thousands sampling points. The cost in terms of time of 

the acquisition of such a large number of data points would be significant.  

Since the SNR values are relatively stable for the sampling strategies and the 

exclusion of extreme viewing angles improves the fitting values of directions that fall 

within the region of interest, the suggested sampling scheme should be relatively 

sparse and exclude the extreme angles. Since the manual data sets are easy to 
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customize and manage they have our preference. It should be noted that some 

important aspects that will be taken into account when designing the set, are the 

exclusion of angles greater than 60°, the inclusion of 1° measures to capture lobes 

with a breadth less than 3°, and a total number of data points smaller than 3000.



 26 

References 
[1] Heuberger J.S. Model Investigations, Delft University of Technology (2004) 
[2] Backer J. BRDF Fitting. Project Report.University of British Columbia 

Department of Computer Science. (2002) http://www.cs.ubc.ca/spider/backer/  

[3] Heuberger J.S. Analysis Report, Delft University of Technology (2005) 
[4] Matusik,W, Pfister, H,  McMillan, L., Brand, M.: MIT/Merl BRDF Database 

(2003) http://graphics.csail.mit.edu/~wojciech/BRDF 

[5] Matusik, W., Pfister, H., Brand, M., McMillan, L.: A Data-Driven Reflectance 

Model. Proc SIGGRAPH, 22, 3 (2003), 759-769. 

[6] Ward, Gregory J. Measuring and Modeling Anisotropic Reflection; 

Proceedings of SIGGRAPH 1992  

[7] Ngan, A, Durand, F. Matusik, W.: Experimental Analysis of BRDF Models, 

Eurographics Symposium on Rendering 2005.  

http://people.csail.mit.edu/addy/research/brdf/index.html 

 

 


