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Abstract

This paper studies the potential of the return
distribution for exploration in deterministic rein-
forcement learning (RL) environments. We study
network losses and propagation mechanisms for
Gaussian, Categorical and Gaussian mixture dis-
tributions. Combined with exploration policies
that leverage this return distribution, we solve, for
example, a randomized Chain task of length 100,
which has not been reported before when learning
with neural networks.

1. Introduction
Reinforcement learning (RL) is the dominant class of al-
gorithms to learn sequential decision-making from data.
Most RL approaches focus on learning the mean action
value Q(s, a). Recently, Bellemare et al. (2017) studied
distributional RL, where one propagates the entire return
distribution p(Z|s, a) (of which Q(s, a) is the expectation)
through the Bellman equation. Bellemare et al. (2017) show
increased performance in a variety of RL tasks.

However, Bellemare et al. (2017) did not yet leverage the
return distribution for exploration. In the present paper, we
identify the potential of the return distribution for informed
exploration. The return distribution may be induced by
two sources of stochasticity: 1) our stochastic policy and
2) a stochastic environment. For this work we assume a
deterministic environment, which makes the return distribu-
tion entirely induced by the stochastic policy. Thereby, we
may actually act optimistically with respect to this distribu-
tion.1 The present paper explores this idea, in the context of
neural networks and for different propagation distributions
(Gaussian, Categorical and Gaussian mixture). Results show
vastly improved learning in a challenging exploration task,
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1In Section 7, we more thoroughly discuss the different types
of uncertainty present in sequential decision making.

which had not been solved with neural networks before. We
also provide extensive visual illustration of the process of
return-based exploration, which shows a natural shift from
exploration to exploitation.

2. Distributional Reinforcement Learning
We adopt a Markov Decision Process (MDP) (Sutton &
Barto, 1998) given by the tuple {S,A, P,R, γ}. For
this work, we assume a discrete action space and deter-
ministic transition and reward functions. At every time-
step t we observe a state st ∈ S and pick an action
at ∈ A = {1, 2, .., |A|}. The MDP follows the transi-
tion dynamics st+1 = P (st, at) ∈ S and returns rewards
rt(s, a) = R(st, at) ∈ R. We act in the MDP according to
a stochastic policy π(·|s) ∈ P(A). The (discounted) return
Zπ(s, a) from a state-action pair (s, a) is a random process
given by

Zπ(s, a) =

∞∑
t=0

γtrt (1)

where st+1 = P (st, at), at+1 ∼ π(·|st+1), s0 = s, a0 = a.
The return Zπ is a random variable, where the distribution
of Zπ is induced by the stochastic policy (as we assume a
deterministic environment). Eq. 1 can be unwritten in re-
cursive form, known as the distributional Bellman equation
(Bellemare et al., 2017) (omitting the π superscript from
now on):

Z(s, a)
d
= r(s, a) + γEA′ [Z(s′, A′)] (2)

where d
= denotes distributional equality (Engel et al., 2005).

The state action value Q(s, a) = EZ [Z(s, a)] is the expec-
tation of the return distribution. Applying this expectation
to Eq. 2 gives

Q(s, a) = r(s, a) + γEA′∼π(·|s′)[Q(s′, A′)], (3)

s′ = P (·|s, a), which is known as the Bellman equation
(Sutton & Barto, 1998). Most RL algorithms learn this
mean action value Q(s, a), and explore by some random
perturbation of these means.
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3. Distributional Perspective on Exploration
As mentioned in the introduction, the return distribution
may be induced by two sources of stochasticity: 1) our
stochastic policy and 2) a stochastic environment. There-
fore, if we assume a deterministic environment, then the
return distribution is entirely induced by our own policy. As
we may modify our policy, it actually makes sense to act
optimistically with respect to the return distribution.

As an illustration, consider a state-action pair with partic-
ular mean value estimate Q(s, a). It matters whether this
average originates from a highly varying return or from con-
sistently the same return. It matters because our policy may
influence the shape of this distribution, i.e. for the highly
varying returns we may actively transform the distribution
towards the good returns. In other words, what we really
care about in deterministic domains is the best return, or
the upper end of the return distribution, because it is an
indication of what we may achieve once we have figured
out how to act in the future. By starting from broad distribu-
tion initializations that gradually narrow when subpolicies
converge, we observe a natural shift from exploration to
exploitation.

4. Distributional Policy Evaluation
Following Bellemare et al. (2017), we introduce a neural
network to model the return distribution pφ(Z|s, a). For
this work we will consider three parametric distributions
pφ(Z) to approximate the return distribution: Gaussian, Cat-
egorical (as previously studied by Bellemare et al. (2017)),
and Gaussian mixture.

To perform policy evaluation, we need to discuss two topics:

1. How to propagate the distribution through the Bellman
equation (based on newly observed data). We will
denote the propagated distribution as q(Z).

2. A loss function between the current network predic-
tions and the new target: L(pφ(Z), q(z)).

Due to space restrictions, we will only show the propagation
and loss for the Gaussian case. For the Categorical and
Gaussian mixture outcome we specify the distributional loss
in Appendix A.1 and the Bellman propagation in Appendix
A.2.

Distribution propagation Define the distributional Bell-
man back-up operator T as the recursive application of Eq.
2 to Z(s, a). For a Gaussian network output, pφ(Z|s, a) =
N (Z|µφ(s, a), σφ(s, a)), we need to propagate both the
mean and variance through the Bellman equation.

µq(s, a) = EZ

[
T Z(s, a)

]
= EZ

[
r(s, a) + γEA′Z(s′, A′)

]
= r(s, a) + γEA′µφ(s′, A′) (4)

σq(s, a) = Sd
[
T Z(s, a)

]
= Sd

[
r(s, a) + γEA′Z(s′, A′)

]
= γSd

[
EA′Z(s′, A′)

]
= γEA′σφ(s′, A′) (5)

because γ ≥ 0, π(a′|s′) ≥ 0, and we assume the next
state distributions are independent so we may ignore the
covariances.2

In practice, we approximate the expectation over the pol-
icy probabilities at the next state a′ by sampling a next
state once (either on- or off-policy). This is the most
common solution in RL, and will be right in expecta-
tion over multiple traces. The 1-step bootstrap distribu-
tion estimate then becomes q(Z|s, a) = N (Z|r(s, a) +
γµφ(s′, a′), γσφ(s′, a′)).

Loss Next, we want to move our current network pre-
dictions pφ(Z|s, a) closer to the new target q(Z|s, a), for
which we will use a distributional distance. A well-known
choice in machine learning is the cross-entropy H(q, p):

LCE(φ) = H(q(Z), pφ(Z)) = Eq(Z)

[
− log pφ(Z)

]
. (6)

For both the Gaussian and Categorical output distributions
we can derive closed-form expressions for the cross-entropy
H , see Appendix A.1. However, for the Gaussian mixture
outcome we do not have a closed-form cross-entropy ex-
pression, and we instead minimize the L2 distance. See
Appendix A.1 for details as well.

In practice, we store a database of transition tuples
{s, a, r, s′, a′}, where a′ can also be computed either on- or
off-policy, and minimize:

LCE(φ) = E{s,a,r,s′,a′}∈D

[
Eq(Z|s,a)[− log pφ(Z|s, a)]

]
(7)

where q(Z) = f(r, s′, a′) is computed based on Bellman
propagation. This completes the policy evaluation step for
the Gaussian case.

2For random variables X,Y and scalar constants a, b, c we
have: E[a+ bX + cY ] = a+ bE[X] + cE[Y ] and Var[a+ bX +
cY ] = b2 Var[X] + c2 Var[Y ] + 2bc Cov[X,Y ].



Double Uncertain Exploration

Figure 1. Gaussian distribution propagation. Left: Example 2-step MDP. Learning process for the state-action pairs in the dotted box
is shown on the right. Right: Three (a-c) return exploration phases for the left half of the MDP. Each plot also displays the mean (µ),
standard deviation (σ), and policy probabilities under Thompson (tho) sampling and UCB (ucb).

5. Distributional Exploration (Policy
Improvement)

Our real interest is usually not in policy evaluation only, as
we want to gradually improve our policy as well. The major
benefit of probabilistic policy evaluation (previous section)
is that we have additional information to balance explo-
ration and exploitation. We will treat the return distribution
as something against which we can act optimistically. Ex-
ploration under uncertainty has been extensively studied in
the bandit literature. Two of the most successful algorithms,
which we both consider in this work, are

1. Thompson sampling (Thompson, 1933), which takes
a sample za ∼ p(Z|s, a) for each action and picks the
action with the highest draw.

2. Upper Confidence Bounds (UCB) (Auer et al., 2002),
which picks the action with the highest upper confi-
dence bound µZ + c · σZ for some constant c ∈ R+.
Analytic expressions for σ for the different output dis-
tributions are provided in Appendix A.3.

6. Experiments
We now show several results of return-based exploration on
a Toy example, Chain domain and OpenAI Gym task. Fig.
1, left shows an example 2-step MDP to illustrate the con-
cept of return-based exploration. On the right of Fig. 1 we
display three phases of learning in this MDP for a Gaussian
pφ(Z). Due to space constraints we only visualize the distri-
butions for the left half of the MDP, the full learning process
is shown in Figure 5 (Appendix). In Fig. 1a we just initial-
ized the network, and both Thompson sampling and UCB
follow almost uniform policies. After some training (Fig.
1b) the second state (s1) distributions start converging, but
the uncertainty at s0 still remains broader (as it generalizes
over the sometimes explored inferior a1 in s1). Thompson
sampling and UCB gradually start to prefer a0 in the root

state s0 now. Finally, after some additional episodes (Fig.
1c) the distribution estimates have converged on the optimal
state-action values, and both Thompson sampling and UCB
have automatically converged on the optimal policy.

We next consider the Chain domain (Appendix C, Figure 4),
which has been previously studied in RL literature (Osband
et al., 2016). The domain consists of a chain of states of
length N , with two available actions at each state. The
only trace giving a positive, non-zero reward is to select the
‘correct’ action at every step, which is randomly picked at
domain initialization. The domain has a strong exploration
challenge, which grows exponentially with the length of the
chain for undirected exploration methods (see Appendix C).

Figure 2 show the learning curves of return-based explo-
ration for different types of output distributions, and com-
pares the results to ε-greedy exploration. The plots progress
row-wise to longer chain lengths. First of all, we note that
ε-greedy learns slowly in the short chain, and does not learn
at all in the longer chains. However, the methods with return
uncertainty do learn, and consistently solve the domain even
for the long chain of length 100. Note that this is a very
challenging exploration problem, as we need to take 100
steps correctly while there is no structure in the domain at
all (i.e., the correct action randomly changes at each depth
in the chain, so a function approximator with local gener-
alization is more harmful than beneficial). The mixture of
Gaussians (mog) return distribution performs less stable
than the Gaussian and categorical. This might be due to the
L2-loss used for the Gaussian mixture, which is different
from the cross-entropy losses used for the Gaussian and
categorical distributional loss (see Appendix A). In Figure
6 we provide a full illustration of how exploration based on
a Categorical return d A detailed illustration of the learning
process for the categorical return distribution is shown in
Figure 6 (Appendix).

In Figure 3 we show the results of return-based exploration
on a task from the OpenAI Gym repository: FrozenLake.
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Figure 2. Learning curves on Chain domain for different types of return distributions. Plots progress row-wise for increased depth of the
Chain, i.e. increased exploration difficulty. Exploration uses a UCB policy with constant ca ∼ Uniform(1.7, 2.3) for each a (this induces
slight randomness in the otherwise deterministic UCB decision). Results averaged over 10 repetitions.

Figure 3. Return-based exploration versus ε-greedy on
FrozenLake-v1. The return-based exploration methods
use Thompson sampling. Compared to the OpenAI Gym imple-
mentation, we modify the environment to be fully deterministic
(by removing the random ‘slipping’ effect of the task). Results
averaged over 5 repetitions.

Again, we observe that the return based exploration methods
learn better than ε-greedy. These experiments use Thomp-
son sampling for exploration, which shows that return-based
exploration can be employed with both UCB or Thompson
exploration.

7. Discussion
We shortly discuss why return-based exploration seems to
work so well in the challenging exploration task of the Chain.
It turns out that the return distributions really narrow when
a certain action terminates the episode. In such cases, we
bootstrap a very narrow next state distribution around 0 (be-
cause the reward function is assumed deterministic). On the
Chain, we see that all the terminating actions very quickly
narrow, while the trace along the full path keeps some addi-
tional uncertainty. It appears as if the return distribution in
this implementation identifies a specific type of uncertainty
related to the termination probabilities and asymmetry in
the domain search tree, which relates our work to ideas from
Monte Carlo Tree Search (Moerland et al., 2018) as well.

The benefit of exploration based on uncertainty is that policy
improvement almost comes for free. The only thing that we
propagate are full distributions, which we initialize wide,

and then gradually converge when the distributions behind
it start converging. This creates a more natural transition
from the exploration to the exploitation phase, a trait which
most undirected methods (ε-greedy, Boltzmann) lack.

An important direction for future work is to connect the
policy-dependent return uncertainty, as studied in this pa-
per, to the statistical (or epistemic) uncertainty of the mean
action-value, which is a function of the local number of
visits to a state. The return distribution mechanism in this
paper clearly identifies a different aspect of (future policy)
uncertainty, which may be related to the termination struc-
ture of subtrees, or to the fact that uncertainty in an MDP
should propagate over steps as well (Dearden et al., 1998).
In any case, due to the sequential nature of MDPs there
appear to be more aspects to epistemic/reducible (Osband
et al., 2018) uncertainty, and these distinctions have yet to
be properly identified. Finally, another important extension
is to stochastic environments (Depeweg et al., 2016; Moer-
land et al., 2017b), i.e., separating which part of the return
distribution originates from our own policy uncertainty (for
which we can be optimistic) and which part originates from
the stochastic environment (for which we want to act on the
expectation).

8. Conclusion
This paper identified the potential of the return distribution
for targeted exploration. In deterministic domains, the return
distribution is induced by our own policy, and since we
may modify this policy ourselves, it makes sense to act
optimistically with respect to this distribution. Exploration
based on the return distribution, especially for the Gaussian
and Categorical case, manages to solve the ‘randomized’
Chain of length 100 with function approximation, which
we believe has not been reported before. Moreover, it also
performs well in another task from the OpenAI Gym. Future
work should expand these ideas to stochastic environments,
and identify the connections to exploration based on the
statistical uncertainty of the mean action value.
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A. Distributional Details
The current network distributions are denote by pφ(Z|s, a),
which we want to update with a newly calculated target
distribution q(Z|s, a). For readability, we will omit the
dependency on s, a in the remainder of this section. We
study three types of network output distributions:

1. Gaussian: p(Z) = N (Z|µ, σ)

2. Categorical: p(Z) parametrized by the number of bins
N ∈ N and edges Zmin, Zmax ∈ R. Define the set of
bins as {zi = Zmin+0.5∆z+ i∆z : 0 ≤ i < N}, for
∆z := Zmax−Zmin

N . Each bin has associated density
p(zi), with

∑N
i=1 p(zi) = 1.

3. Gaussian mixture: p(Z) =
∑M
i=1 piN (Z|µi, σi), for

M mixtures. Here pi denotes the weight of the i-th
mixture component,

∑
i pi = 1.

We now detail the loss, Bellman propagation and analytic
standard deviation (as used in the UCB policy) for each of
these output distributions.

A.1. Loss

Gaussian The main text already introduced the cross-
entropy loss LCE = H(q, p) used for Gaussian pφ(Z).
Here we derive the analytical expression of this cross-
entropy:

H(q, p) = Eq(Z)[− log p(Z)]

= −
∫
q(Z) log

1√
2πσ2

p

exp(
−(Z − µp)2

2σ2
p

)dZ.

(8)

Bringing everything that does not depend on Z out of the
integral and taking the logarithm:

H(q, p) =
1

2
log(2πσ2

p)+
1

2σ2
p

∫
q(Z)(Z−µp)2)dZ (9)

Which can be rewritten as

H(q, p) =
1

2
log(2πσ2

p) +
1

2σ2
p

[
Eq(Z)[Z

2]

− Eq(Z)[Zµp] + Eq(Z)[µ
2
p]

]
(10)

We can rewrite the second moment Eq(Z)[Z
2] in terms of

the mean and variance of Z:

Eq(Z)[Z
2] = σ2

q + µ2
q. (11)

Therefore, we can simplify the full expression to

H(q, p) =
1

2
log(2πσ2

p) +
1

2σ2
p

(σ2
q + µ2

q − 2µqµp + µ2
p)

=
1

2
log(2πσ2

p) +
σ2
q + (µq − µp)2

2σ2
p

(12)

which is used as the closed-form loss for the Gaussian exper-
iments (Eq. 6) in this paper. Note that we also experimented
with (other) closed form distributional losses for Gaussians,
such as the Bhattacharyya distance and Hellinger distance,
but these did not significantly improve performance.

Categorical For the categorical target distribution q(Z)
we again minimize the cross-entropy H with pφ(Z):

LCE = H(q(Z), pφ(Z)) = −
∑
i

q(Zi) log pφ(Zi).

(13)

Gaussian Mixture There is no closed form expression for
the KL-divergence or cross-entropy between two Gaussian
mixtures. We could of course approximate such a loss
by repeated sampling, but this will strongly increase the
computational burden. Therefore, we instead searched for a
distance measure between Gaussian mixtures that does have
a closed form expression, which is the L2-distance:
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LL2(q(Z), pφ(Z)) =

∫ (
q(Z)− p(Z;φ)

)2
dZ

=
∑
i,i′

qiqi′

∫
qi(Z)qi′(Z)dZ

+
∑
j,j′

pjpj′

∫
pi(Z)pi′(Z)dZ

− 2
∑
i,j

qipj

∫
qi(Z)pj(Z)dZ. (14)

We may simplify the remaining integrals in this expression,
since for any two Gaussians N1 and N2 we have (Petersen
et al., 2008):

∫
N1(Z|µ1, σ1)N2(Z|µ2, σ2)dZ = N (µ1|µ2, σ1 + σ2),

(15)

Therefore, Eq. 14 simplies to

LL2(q(Z), pφ(Z)) =
∑
i,i′

qiqi′N (µqi |µ
q
i′ , σ

q
i + σqi′)

+
∑
j,j′

pjpj′N (µpj |µ
p
j′ , σ

p
j + σpj′)

− 2
∑
i,j

qipjN (µqi |µ
p
j , σ

q
i + σpj ),

(16)

which can be evaluated in O(M2) time for M mixture com-
ponents.

Sample-based loss For some output distributions we ei-
ther do not have a density (like some deep generative
models) or the available analytic distributional loss per-
forms suboptimal. However, we can always sample from
our model. For example, for a 1-step Q-learning update,
we can (repeatedly) sample from our network at the next
timestep Z ′k ∼ p(Z|s′, a′), transform these through the
Bellman equation, and then train our model on a negative
log-likelihood loss:

LNLL = Eq(Z)[− log pφ(Z)]

≈ −
∑
k

log pφ(r + γ · Z ′k), Z ′k ∼ p(Z|s′, a′)

(17)

Results of this approach are not shown, but were comparable
to the results with approximate return propagation shown in

the Results section. However, this approach is clearly more
computationally expensive.

A.2. Bellman Propagation

Given a data tuple {s, a, r, s′, a′}, where a′ may either be on-
or off-policy, and a bootstrapped distribution pφ(z′|s′, a′),
we want to calculate the one-step Bellman transformed dis-
tribution T p(z|s, a).

Categorical For the categorical distribution, we may Bell-
man transform each individual atom/bin, and then project
the probabilities of the transformed means back on the atoms
(denoted by operator Ψ). This procedure follows Bellemare
et al. (2017):

q(Zi) =
(

ΨT Z
)
i

=

N∑
j=1

pφ†(Z ′j) ·
[
1−

[r + γZ ′j ]
Zmax

Zmin
− Zi

∆Z

]1
0

(18)

Gaussian mixture For the Gaussian mixture case, we
have

q(Z) = T Z(s, a)

= r(s, a) + γEa′∼π(·|s′)[Z
′]

= r(s, a) + γEa′∼π(·|s′)[
∑
i

piZ
′
i]

=
∑
i

pi

[
r(s, a) + γEa′∼π(·|s′)[Zi]

]
(19)

This implies that we may propagate each Gaussian mixture
component individually, as discussed in Section 4, keeping
each mixture weight the same.

A.3. Standard Deviation

For UCB exploration, we require fast (i.e., analytic) access
to the distribution standard deviation, to prevent repeatedly
having to sample. Clearly, for the Gaussian output we di-
rectly have the standard deviation available.

Categorical For a categorical output distribution with cat-
egories zi and associated probabilities p(zi), we have the
standard deviation as:

Sd[Z] =
∑
i

p(Zi)(Zi − E[Z])2 (20)

where E[Z] =
∑
i Zi · p(Zi).
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Gaussian mixture For a Gaussian mixture model with
mixture weights pi, mixture means µi and mixture standard
deviation σi, we start from:

Var[y] = Ep(Z)[Z
2]− (Ep(Z)[Z])2

=
∑
i

pi · Ep(Zi)[Z
2
i ]− (

∑
i

pi · µi)2 (21)

Now we may again use Eq. 11 to rewrite the second mo-
ments of the mixture components in terms of their means
and variances, i.e. Ep(Zi)[Z

2
i ] = σ2

i + (µi)
2. Plugging this

expression into Eq. 21 gives:

Var[y] =
∑
i

pi ·
(
σ2
i + (µi)

2
)
− (
∑
i

pi · µi)2

=
∑
i

pi · σ2
i +

∑
i

pi(µi)
2 − (

∑
i

pi · µi)2 (22)

This last expression gives the variance of the mixture in
terms of the weight, mean and variance of the mixture com-
ponents.

B. Related Work
Return Uncertainty While the distributional Bellman
equation (Eq. 2) is certainly not new (Sobel, 1982; White,
1988), nearly all RL research has focussed on the mean
action-value. Most papers that do study the underlying re-
turn distribution study the ’variance of the return’. Engel
et al. (2005) learned the distribution of the return with Gaus-
sian Processes, but did not use it for exploration. Tamar et al.
(2016) studied the variance of the return with linear function
approximation. Mannor & Tsitsiklis (2011) theoretically
studies policies that bound the variance of the return.

The variance of the return has actually primarily been in the
context of risk-sensitive RL. In several scenarios we may
want to avoid incidental large negative pay-offs, which can
e.g. be disastrous for a real-world robot, or in a financial
portfolio. Morimura et al. (2012) studied parametric return
distribution propagation as well. They do risk-sensitive ex-
ploration by softmax exploration over quantile Q-functions
(also known as the Value-at-Risk (VaR) in financial man-
agement literature). Their distribution losses are based on
KL-divergences (including Normal, Laplace and skewed
Laplace distributions), but their implementations do remain
in the tabular setting.

Bellemare et al. (2017) was the first to theoretically study
the distributional Bellman operator, and also implement a
distributional policy evaluation algorithm in the context of
neural networks. Thereby, there work can be considered

the basis of our work, where we present an extension that
uses the return distribution for exploration. Concurrently
with our work, Tang & Agrawal (2018); Tang & Kucukelbir
(2017) interpreted the return distribution from a variational
perspective and leveraged it for exploration as well. Moer-
land et al. (2017a) also provided initial work on the return
distribution for exploration. Our present paper is more ex-
tensive on the theoretical side, for example specifying full
distributional loss functions and comparing different types
of network output distributions. However, Moerland et al.
(2017a) does try to connect the concept of return distribution
to the statistical uncertainty of the mean action value as well,
which both seem plausible quantities for exploration.

Another branch of related work is from the Tree Search
community. Various papers have focussed on propagating
distributions within the tree, e.g. Tesauro et al. (2012) and
Kaufmann & Koolen (2017). The tree search approach by
Moerland et al. (2018) does not explicitly propagate distri-
butions (only σ-like estimates), but their idea (the remaining
uncertainty should also incorporate the remaining uncer-
tainty in the subtree below an action) is observable in the
return-based exploration and learning visualizations of this
paper as well.

Other Uncertainty-based exploration methods There
exists a long history of work on the statistical uncertainty of
the mean action value for exploration, in the context of func-
tion approximation for example by Osband et al. (2016), Gal
et al. (2016) and more recently Azizzadenesheli et al. (2017),
Henderson et al. (2017) and Jeong & Lee (2017). Moreover,
the uncertainty theme for exploration also appears in count-
based exploration approaches (Bellemare et al., 2016) and
model-based RL (Guez et al., 2012; Moerland et al., 2017b).

C. Randomized Chain

Figure 4. Chain domain. Example MDP where undirected explo-
ration is highly inefficient. Based on Osband et al. (2014).

We here present the randomized Chain, which we believe is
the correct implementation of a well-known RL task known
as the Chain (Osband et al., 2014) (Fig. 4). The domain illus-
trates the difficulty of exploration with sparse rewards.The
MDP consists of a chain of states S = {1, 2..., N}. At each
time step the agent has two available actions: a1 (‘left’)
and a2 (‘right’). At every step, one of both actions is the
‘correct’ one, which deterministically moves the agent one
step further in the chain. The wrong action terminates the
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episode. All states have zero reward except the final chain
state N , which has r = 1.

Variants of these problem have been studied more frequently
in RL (Osband et al., 2014). In the ‘ordered’ implementa-
tion, the correct action is always the same (e.g. a2), and the
optimal policy is to always walk right. This is the variant
illustrated in Fig. 4 as well. However, in our ‘randomized’
Chain implementation the correct action is randomly picked
at domain initialization. The problem with the ordered ver-
sion is that it introduced a systematic bias which is easily
exploited when learning with neural networks. Due to the
generalization of neural networks, it relatively easily pre-
dicts to always take action a2, and then suddenly solves the
entire chain. With the randomized version, there is actually
no structure in the domain at all, and learning with a neural
network only makes the domain more complicated. The
‘randomized’ version therefore gives the true exponential
complexity, as reported before (Osband et al., 2014; Moer-
land et al., 2017a), when learning with neural networks.

D. Implementation Details
Network architecture consists of a 3 layer neural network
per discrete action with 256 nodes in each hidden layer and
ELU activations. Learning rates were 0.0005 on all experi-
ments. Optimization is performed with stochastic gradient
descent on minibatches of size 32 using Adam updates in
Tensorflow. We use a replay database of size 50.000. After
collecting a new (set of) roll-outs, we randomly sample an
equal amount of data from the replay for processing. All new
collected data is processed on-policy, while all replay data
is processed off-policy. The maximum length per episode
is 200. We use discount factor γ = 0.995. All ε-greedy
experiments have ε fixed at 0.05 throughout learning.

For the categorical outcome we put the bin edges slightly
above and below the highest and lowest expected reward
in the domain. In the chain we use N = 7 bins, on the
other domains we use N = 31 bins. For the Gaussian
output we add an initialization bias of 1 to the standard
deviation at initialization. For the Gaussian mixture output
we use M = 5 mixture components, where we spread out
the mixture means upon initialization. Due to the logarithm
appearing in the Gaussian cross-entropy loss we see that the
gradient may explode when the standard deviation strongly
narrows. We mitigate this problem by clipping gradients.

Thompson sampling is best implemented in an ‘episode-
wise’ fashion, where we sample from a posterior distribu-
tion over parameters once at the beginning of a new episode
(Russo et al., 2017). This ensures deep exploration. How-
ever, for the return based uncertainty we directly sample in
the network output space per action, and we cannot imple-
ment this correlated form of Thompson sampling.

Full code is available from https://github.com/
tmoer/return_distribution_exploration.
git.

https://github.com/tmoer/return_distribution_exploration.git
https://github.com/tmoer/return_distribution_exploration.git
https://github.com/tmoer/return_distribution_exploration.git
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Figure 5. Example of Gaussian distribution propagation on the Toy example of Fig.1. a) Return distributions at initialization. Both
Thompson sampling and UCB have largely uniform policies. b) Distributions after training for 64 episodes. The terminal state distributions
start gradually converging, while the distributions at state s0 remain broader. The terminal node decisions are already greedy, while the
first node already starts to assign higher probability to the optimal action a0. c) Converged distributions after training for some additional
time. Both UCB and Thompson sampling now deterministically sample the optimal policy.
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Figure 6. Example of return distribution-based exploration on the Chain of length 7. Each plot (a-c) shows successive states (left-to-right)
and both actions (up and down). The correct action at each step (randomly drawn at domain initialization) is indicated by a green box
around the plot. We use a categorical p(Z) with 7 atoms between −0.2 and 1.2. a). Return distributions after 2 episodes. The distributions
are almost uniform, which makes the policy fully exploratory. b). Return distributions after 28 episodes. Both the correct and wrong
action have propagated mass towards 0. However, the distributions of the wrong actions converge faster, because the correct actions
propagate the remaining uncertainty at the next timestep. The correct action in the last state already started to move towards a value of 1.
c). Converged return distributions after 68 episodes. All the correct actions have now backpropagated the return from the end of the chain.
The policy now consistently exploits. Note that some of the wrong actions (red boxes) put some mass at a return of 1 as well. This is due
to the generalization from neighboring states (which are treated as continuous in the network input), but disappears with enough data.


