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Abstract—Automatic pain detection is an important challenge
in health computing. In this paper we report on our efforts
to develop a real-time, real-world pain detection system from
human facial expressions. Although many studies addressed
this challenge, most of them use the same dataset for training
and testing. There is no cross-check with other datasets or
implementation in real-time to check performance on new data.
This is problematic, as evidenced in this paper, because the
classifiers overtrain on dataset-specific features. This limits real-
time, real-world usage. In this paper, we investigate different
methods of real-time pain detection. The training data uses a
combination of pain and emotion datasets, unlike other papers.
The best model shows an accuracy of 88.4% on a dataset
including pain and 7 non-pain emotional expressions. Results
suggest that convolutional neural networks (CNN) are not the
best methods in some cases as they easily overtrain if the dataset
is biased. Finally we implemented our pain detection method
on a humanoid robot for physiotherapy. Our work highlights
the importance of cross-corpus evaluation & real-time testing, as
well as the need for a well balanced and ecologically valid pain
dataset.

Index Terms—Pain detection, classification, generalization,
cross validation, health

I. INTRODUCTION

It has been shown that there is an increasing demand for
rehabilitation services and therapeutic robotics due to the
shortage of therapists and the increasing number of patients
[1]. For example, the lifetime prevalence of frozen shoulder is
about 2 to 5 percent of the general population [2]. With the use
of therapeutic robotics, it is possible to increase the efficiency
of resource use and give more patients therapy sessions at the
right time. There is already much development in robotics
for this purpose. For instance, Klevin et al. [3] developed
robot-assisted rehabilitation of hand function, Burgar et al.
[4] proposed three robot systems for post-stroke therapy, Lum
et al. [5] compared robot-assisted rehabilitation of upper-
limb motor function with conventional therapy. Most of these
systems focus on the functionality of the robot and motor-
related rehabilitation. The patients’ feelings and demands are
often neglected. Pain is an important feeling, also for recovery.
In some cases, the patient can be demotivated about the
therapy due to the fear of pain which limits the effect of
rehabilitation [6]. Patients without pain catastrophizing (i.e.,
interpreting pain as threatening) usually lead to faster recovery
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[7]. Professional therapists would give motivating feedback
to patients based on their behavior during therapy [8]. For
diseases like chronic pain, it requires long term treatment,
and even with successful treatment patients need to do self-
management afterwards [9]. Therefore, a robotic system with
pain detection and the ability to give proper feedback during
therapy (like chronic pain) is needed.

By definition, pain is a distressing experience associated
with actual or potential tissue damage with sensory, emotional,
cognitive and social components [10]. In practice, it is hard
for health-care providers to directly measure a patient’s pain
intensity. Usually, this is done by the patient’s self-report
[11]. Since it has been shown that facial expressions are
related to pain intensity [12], many have proposed machine
learning methods to detect pain from facial expressions. For
example, Sourav el at. [13] report 87.23% accuracy for the
detection of pain at the frame level, Reza el at. [14] reported
87.2% accuracy for pain detection, and Pau et at. [15] use an
LSTM network and report a 93.3 for area under curve (AUC)
score. However, most papers on pain detection from facial
expression use the same dataset (UNBC-McMaster Shoulder
Pain expression archive database [16]) for training and testing,
and there is no cross-corpus evaluation (testing with other pain
datasets), and no implementation for real-time pain detection
to validate the model.

In this work, we first show that this focus on one specific
dataset limits generalisation of the trained models, and results
in models that learned to detect dataset specific features. Then
we show how mixing datasets can partly resolve this. Different
training datasets are used to ensure optimal performance for
real-time detection. A cross-corpus test is performed to test
the model’s pain prediction ability on other datasets. We also
experiment with both facial action unit (AU) based (feature-
based) methods and non-AU based (end-to-end) methods to
predict pain in real-time. Finally we implement our method
on a robot for frozen shoulder therapy demonstration.

II. DATASETS

A. UNBC-McMaster Shoulder Pain Dataset

The UNBC-McMaster Shoulder Pain dataset [16] contains
200 video sequences of 25 subjects with spontaneous facial
expressions who are suffering from shoulder pain. It has in



total 48,398 FACS (Facial Action Coding System) [17] coded
frames. The dataset also contains pain scores for each frame
based on PSPI (Prkachin and Solomon pain intensity) scale
[18]. The PSPI scale is defined in 17 levels with the help of
FACS. The calculation is shown in below equation:

PSPI = AU4+ (AU6 or AUT) + (AU9 or AU10) + AU43

The PSPI score is the sum of AU4, AU6 or AU7 (whichever
is higher in intensity), AU9 or AU10 (whichever is higher
in intensity) and AU43. The AUs are: brow-lowering (AU4),
cheek-raising (AU6), eyelid tightening (AU7), nose wrinkling
(AU9), upper-lip raising (AU10) and eye-closure (AU43).
Apart from AU43(0 = absent, 1 = present), each AU is coded in
6 level intensity(0 = absent, 5 = maximum). Figure 1 shows an
example of the same face with different PSPI levels. According
to the results from [13], the detection for strong pain(PSPI>3)
would give a more stable result, therefore, the pain dataset
is pre-processed into a NO-PAIN(PSPI=0) and PAIN(PSPI>3)
subset. For the PAIN subset, there are about 3000 images
from 25 subjects, for the NO-PAIN subset, there are about 40k
images in total.
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Fig. 1. Example of faces with different PSPI levels from UNBC-McMaster
dataset [16]

B. BioVid Heat Pain Dataset

The BioVid Heat Pain [19] uses heat as the source for
induced pain with 4 intensities. The temperatures for the heat
are adjusted based on each subject’s pain threshold and pain
tolerance. In this report, part A of the dataset is used. For this
part of the dataset, there are 87 subjects, 5 classes (baseline,
pain level 1, pain level 2, pain level 3 and pain level 4). Each
class of a subject has 20 samples, the average length of a
sample is about 5 seconds. Figure 2 shows the pattern of the
heat stimuli, all the heat stimuli last for 4s and connect with
an 8-12s pause.

C. Facial Expression Recognition 2013 Dataset (FER-2013)

Because we want to investigate the mixing of face datasets
in order to enhance pain detection reliability, we also use
2 facial affect datasets. The first is the FER-2013 dataset
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Fig. 2. Pattern of the heat stimuli in BioVid Heat Pain dataset [20]
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[21], it is part of the ICML 2013 workshop “Challenges
in Representation Learning”. It consists of 35887 gray-scale
images of faces(48x48 pixel), with 4953 ‘Anger’ images,
547 ‘Disgust’ images, 5121 ‘Fear’ images, 8989 ‘Happiness’
images, 6077 ‘Sadness’ images, 4002 ‘Surprise’ images, and
6198 ‘Neutral’ images. Since the dataset was created using
the Google image search API to search for images of faces,
image labels contain errors, and human accuracy on the dataset
is 65%. Figure 3 shows some example faces in FER-2013
dataset.

Fig. 3. Examples of some faces in FER-2013 dataset.

D. AffectNet Dataset

The second facial affect dataset used is AffectNet [22], it is
a dataset containing images of facial expressions in the wild,
and it contains about 1 million high-resolution facial images
collected from the Internet by querying three major search
engines(Google, Bing, and Yahoo). About half of the retrieved
images (~440K) were manually annotated for the presence of
seven discrete facial expressions (neutral, happy, sad, surprise,
fear, disgust and anger).

III. RESEARCH QUESTIONS

We investigate if state-of-the-art machine learning in com-
bination with frequently used pain datasets can result in real-
time real-world performance. In more detail we focus on the
following issues:

o How do models trained on just one pain dataset general-
ize?

o What is the effect of mixing affect and pain datasets on
model generalization?



e What is the best method for real-time pain detection,
given current dataset limitations?

IV. EXPERIMENTS

The method, result, and discussion for each experiment
will be presented in this section. Finally, a cross-check is
performed on a different pain dataset to check generalization
of the model. All experiments are conducted on a laptop
configuration consisting of a 2.3 GHz Intel Core i5 and 16
GB memory. The real-time detection is tested on the laptop’s
camera with several subjects. In this paper, 5 new datasets are
made for different experiments. Their composition is shown
in Table L.

A. AU based methods

For the purpose of automatic facial action unit recognition,
OpenFace 2.0 is utilized [23] [24]. This toolkit is the only
recent free software that provides facial action unit recognition
for both real-time video and a single image according to the
author’s knowledge. According to [23], the average detection
accuracy for Action Units is about 60%.

The general steps for the AU based method are shown
in Figure 4. The datasets that have been tried include the
McMaster Pain dataset alone or in combination with FER-
2013/AffectNet. The first step is to use OpenFace on all the
frames in the dataset. The output would be a CSV file with
information for each frame, like frame id, the success of face
detection, and values for each AU. Before further processing,
frames in which no face was detected by OpenFace were
deleted. To train the dataset using a support vector machine
(SVM), the labels for each frame are extracted. Therefore, the
inputs for SVM are 6 AU intensity values with a label of 1 or
O(pain/no-pain). Table II shows an example of the inputs and
label for the SVM.

Dataset

i

OpenFace

|

frames + AUs
annotation

Fig. 4. Flowchart for general steps of AU based methods.

1) Dataset 1 using SVM: Since most papers about pain
detection using facial expression only train and test the result
on the McMaster Shoulder Pain dataset, it is reasonable to
first check how the proposed method works on this dataset as
the baseline. Considering this dataset is extremely uneven in
its distribution between pain and non-pain frames (3k frames
of pain vs 40k frames of non-pain), the same number of no-
pain frames are randomly retrieved from PSPI=0 images. Then

the no-pain frames and pain frames are combined as a new
balanced Dataset 1. OpenFace is then used to detect AU4,
AU6, AU7, AU9, AUI0 and AU45 values for each frame
(AU43 eye-closure is not supported so we use AU45, the eye-
blink instead). These AUs values are used as input for a SVM
with 8:2 train-test ratio, 5 fold cross-validation and default
parameter setting from Scikit-learn library ("C’: 1.0, ’class
weight’: None, gamma’: ’auto’, ’kernel’: ’rbf’). We did not
control for unseen subjects in the different folds, i.e., each
folds might contain all subjects.

The final result on the test set is 85% accuracy, which is
comparable with other papers’ result of about 88% accuracy.
However, when this model is used in real time to detect posed
pain by the experimenters as a pilot, it classifies all frames
that contain facial movements as pain. Since the training data
only has pain faces and no-pain faces, and the no-pain faces in
this dataset are neutral faces without any facial movement, the
model will not be able to differentiate pain faces from other
faces that have facial activity. This means that the high level
of accuracy reported in many other papers is probably not
pain detection accuracy but movement detection. In a real-
life scenario, a patient would have more facial expressions
than just pain and no-pain, so using only the McMaster
shoulder pain dataset as training data will not work for real-
time detection.

2) Dataset 2 using SVM: In order to make the detection
model more robust to normal facial movements, the AffectNet
dataset is used to increase the variation of training data. 3k
images are randomly retrieved from each of the 7 emotions
in AffectNet (neural, happy, sad, surprise, fear, disgust and
angry) and then combined with 3k pain faces from McMaster
to form Dataset 2 (in total 24k images). The AUs values are
extracted by OpenFace and used as input features for SVM
like baseline test. But this time SVM is using grid search for
finding the best parameters.

The final result is shown in Figure 5, the parameters found
from the grid search are: ("C’: 245.82510572851524, ’class
weight’: None, ’gamma’: 0.23273590717450615, ’kernel’:
'rtbf’). The average accuracy for this model is only 40%, but
the purpose of this model is not to differentiate these emotions,
the aim is to separate pain from other emotions. If only looking
at the precision for pain, it’s about 88.4% and reaches the same
level for only pain/no-pain detection. In real-time detection, we
used a binary output (pain or no-pain): if any of the 7 emotions
are detected instead of pain then the output is mapped to no-
pain. This model appeared more robust than the previous in
pilot tests with posed pain faces.

B. Non AU based methods

Recently, many state-of-the-art methods in computer vi-
sion have utilized Convolutional Neural Networks (CNN) to
achieve great results in face-detection and emotion classifica-
tion. CNN'’s are able to extract features from the training set
without manual feature construction, but need high number of
examples.



TABLE I
COMPOSITIONS OF 5 NEW DATASETS

Composition
Dataset 1 | McMaster (3k pain + 3k no-pain)
Dataset 2 | McMaster (3k pain) + AffectNet (3k neutral, 3k happy, 3k sad, 3k surprise, 3k fear, 3k disgust and 3k angry)
Dataset 3 | McMaster (3k pain) + FER-2013 (3k neutral, 3k happy, 3k sad, 3k surprise, 3k fear, 3k disgust and 3k angry)
Dataset 4 | AffectNet (3k neutral, 3k happy, 3k sad, 3k surprise, 3k fear, 3k disgust and 3k angry)
Dataset 5 | McMaster (3k pain+ 3k no-pain) + AffectNet (3k happy, 3k sad, 3k surprise, 3k fear, 3k disgust and 3k angry)

TABLE I
EXAMPLE OF THE INPUTS AND LABEL FOR SVM
AU4 | AU6 | AU7 | AU9 | AUI0 | AU45 | Label
2.10 | 0.81 1.16 | 0.49 | 0.65 0.66 0
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Fig. 5. Confusion matrix for pain + AffectNet 7 emotions(numbers in matrix
are absolute numbers)

Considering that a pain face is also a facial expression, it
is worthwhile to try a CNN that performs well at emotion
classification on pain detection. The chosen CNN model [25]
contains 4 residual depth-wise separable convolutions (com-
bination of residual modules [26] and depth-wise separable
convolutions [27]). It achieves on average about 63% on
classifying the 7 facial expressions on the FER-2013 dataset.
Figure 6 shows the CNN architecture.

1) Dataset 3 using CNN: Since the CNN architecture
mentioned above achieved a good result on the FER-2013
dataset, and since pain detection in real time needs a more
varied dataset than just pain/no pain faces, it is reasonable
to first try the combination of FER-2013 with pain frames
from McMaster. For this purpose, in total, about 21k images
are retrieved from FER-2013 dataset with an even distribution
among the 7 emotions (neural, happy, sad, surprise, fear,
disgust and angry) as no-pain faces and then combined with
3k pain faces from McMaster to form Dataset 3. By using 5
fold cross-validation, the final accuracy is about 97%. But in
a real-time detection pilot (output is again binary, if any of
the 7 emotions are detected then output no-pain), all posed
emotional faces (including posed pain face) are classified as
no-pain with 0.9 confidence. This result suggests that the pain
features the CNN learned from the dataset are very specific for

Global Avg. Pooling 2D

Conv2D / BatchNorm

Conv2D / BatchNorm

Conv2D / BatchNorm

Fig. 6. The architecture of CNN [25]

the individuals in the dataset, i.e. the CNN learned to recognize
the difference between pain faces in McMaster and emotional
faces in AffectNet.

2) Dataset 4 using CNN: In the AU based method, the
combination of pain frames + AffectNet dataset gives good
results(Section IV-A2). We now compare the result of the CNN
architecture with the AU based method reported above and
investigate whether the combination of pain frames + FER-
2013 dataset caused the problem or not. This CNN structure
is first validated on the AffectNet dataset alone, with 3000
images randomly retrieved from each of the 7 emotions in
AffectNet to form a new Dataset 4. Then this dataset is trained
with 5 fold cross-validation, and the final result is shown
in Figure 7. The average accuracy is about 54%, for the 7
emotions classification (without pain), it performs better than
the AU based method.

3) Dataset 2 using CNN: In order to check whether the
CNN’s performance on the FER/McMaster combined dataset
is dataset specific, we trained the model on Dataset 2 (Af-
fectNet/McMaster). The results are shown in Figure 8. The
precision for pain detection is about 99%, but in real time all
posed pain faces are again classified as no-pain with 0.9 confi-
dence, just like FER-2013+ McMaster pain frames. This result
confirms the CNN indeed learned to detect subject-specific (or
dataset specific) features that identify the difference between
the two datasets.
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Fig. 8. Confusion matrix for pain + AffectNet 7 emotions using CNN

4) Dataset 5 using CNN: At this point, there are two pos-
sible explanations for the lack of real-time pilot performance.
First, according to the behaviors of the model for Dataset 2
and Dataset 3 with the CNN, it is possible that the CNN
learned to classify the 25 subjects in the McMaster dataset
as pain, based on subject/dataset characteristic rather than
pain characteristics. Second, it is possible that it learns to
detect a hierarchically higher class due to specific differences
in the images and then learned to classify for that subclass
whether or not the participant expressed pain (e.g. based on
movement again). To tear apart the two possible explanations,
we construct a new dataset as follows. We combine 3000
pain frames + 3000 no-pain frames from McMaster and 3000
images randomly retrieved for each of the 6 emotions (happy,
sad, surprise, fear, disgust and angry) in AffectNet. The 3000
no-pain frames are used as neutral faces. The result of this
dataset is shown in Figure 9. If the CNN does learn 25 subjects
face instead of pain faces, now the neutral face would be
misclassified as pain. But there is no misclassified neutral to
pain as seen in the confusion matrix.

In a real-time pilot we found that this model classifies all
posed facial expressions including posed pain to the no-pain
category. As such, the only possible explanation is that this

CNN is too ‘clever’ and indeed learned to recognize pain
expression for 25 specific subjects. The extreme result for pain
classification is therefore produced by a combination of dataset
features and subject specific pain expression. This is a classical
example of over training due to dataset bias and size, there is
not enough variation in individuals for the pain dataset, and
as a result the network learns to predict pain for the specific
individuals in that dataset. In this dataset images for the 6
emotions are from different people and pain images are from
only 25 subjects. Therefore, by using this dataset, the CNN
learned 25 specific pain faces. To fix this problem, a CNN
with fewer layers could be used, or one could build a pain
dataset with more subjects and different variations of facial
expressions. Using a different split for the folds will not help
that much as the number of subjects is simply not large enough
for generalization to unseen subjects based on image data. It
shows the importance of cross-checking with other datasets &
real-time testing, as well as the need for a well balanced and
ecologically valid pain dataset.
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Fig. 9. Confusion matrix for pain + no-pain + AffectNet 6 emotions using
CNN

C. Cross checking with the Biovid dataset

The only model that was able to classify real-time pain
expressions in our pilots is the AU-based method(Section
IV-A2) trained on Dataset 2 (AffectNet/McMaster). To test the
performance of this pain detection model on novel data, the
Biovid dataset is used for cross-corpus evaluation. 20 subjects
are randomly chosen out of 87 in part A of the dataset. In
total, there are 2000 video sequences of about 5 seconds. As
the pain label is on video sequence level, all the frames in all
videos are checked for the existence of pain using the method
in Section IV-A2. To determine if one video sequence is pain
or not, we can set a threshold M. If there are M consecutive
frames of detected pain, then that video sequence is classified
as containing pain. Figure 10 shows an example when M=5.
Table III shows the result of AU based method on the 20
subjects from Biovid with different values for M.

With the increase of M, the accuracy for baseline (neutral)
increases while the accuracy for all pain levels decreases. To
further investigate the details on these 20 subject, we plotted
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Fig. 10. An example for M=5, the video sequence A will not be classified
as pain if it doesn’t contain 5 consecutive pain frames, but video sequence B
will be classified as pain

TABLE III
ACCURACY FOR M=1-5 AT DIFFERENT CLASSES. BL IS BASELINE, PA 1S
PAIN LEVEL. TAKING THE EXAMPLE OF PAIN LEVEL 4 WITH A 5 FRAME
DETECTION WINDOW, THE TABLE READS AS FOLLOWS: 38,5 PERCENT OF
THE CASES LABELED WITH PAIN=4 IN THE BIOVID DATASET WERE
CLASSIFIED CORRECTLY AS PAIN, THE OTHER 61,5 WAS CLASSIFIED AS

NO PAIN.
BL PA1 PA2 PA3 PA4
M=1 | 58.50% | 41.25% | 43.50% | 47.00% | 56.75%
M=2 | 64.50% | 34.75% | 38.25% | 41.25% | 53.25%
M=3 | 68.25% | 31.50% | 34.75% | 38.50% | 47.75%
M=4 | 70.75% | 29.00% | 30.75% | 33.75% | 43.50%
M=5 | 72.50% | 26.25% | 27.75% | 31.50% | 38.50%

a class accuracy (not shown) for all the subjects. From this
we learned that performance is subject specific and for some
subjects there is zero accuracy for 4 different pain levels and
some have near zero accuracy for the baseline.

Further investigation into these 20 subjects video sequences
showed an important finding in that most of these subjects
have different behaviors than the patients in McMaster dataset.
Among these 20 participants, many of them closed eyes
for most of the time during the experiment with no facial
movement, some even closed their eyes during the whole
experiment (see the examples in Figure 11). However, in the
McMaster dataset patients look at the camera during the whole
experiment, only close their eyes when normal blink or pain.
These different behaviors make it difficult to predict pain in
Biovid with the model trained from McMaster, and again
shows the importance of novel well-balanced datasets.

Fig. 11. Examples of participants in Biovid

V. A DEMONSTRATION ON A ROBOT FOR FROZEN
SHOULDER THERAPY

To test how the best model works in real life, a demon-
stration with a humanoid robot is illustrated. The scenario is
frozen shoulder therapy. The therapy is entirely conducted
by the robot. The robot first shows the desired shoulder
movements and asks the patient to follow it. Pain detection
is activated while the patient follows the movement. If pain is
detected from the patient’s face during movement, the robot
gives motivations by speech.

The robot used for this scenario is a Pepper(see Figure 12),
a humanoid robot manufactured by SoftBank Robotics [28].
For this implementation, the forehead camera is used as image
nput.
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Fig. 12. The Pepper humanoid robot [28]

The overall workflow for the AU based pain detection with
a robot is shown in Figure 13. During the therapy session,
the camera on the robot will keep monitoring the patient’s
face. All the frames are sent back to a local computer, where
OpenFace is utilized to detect AUs values for the face. Then, a
pre-trained model uses those AUs values as input to predict if
the corresponding face is in pain or not, and the robot decides
whether to give motivation or not based on the prediction.

human face
robot camera

Fig. 13. The overall steps for pain detection in real time with Pepper robot

The streaming frames from the robot’s camera are in the
resolution of 640*480 with about 3-4 frames per second. This
resolution is significantly lower than the images in the training
datasets (AffectNet), and due to this specific scenario’s setting
there is a certain distance between the camera and patient’s
face. The prediction for pain could be highly sensitive to noise



data. Besides dropping the frames in which no front face is
detected, a we used the majority vote over the last 6 frames to
determine if pain is currently present. This method could help
avoid misclassification from blurred images, sudden movement
from the head, and noisy data cause the wrong prediction for
1 or 2 frames. Five different participants tried this pilot setup,
participants reported a good posed-pain detection accuracy
and a more enjoyable engagement in human-robot interaction
compared to robot without pain detection. However, more
testing and research is needed into this direction.

VI. CONCLUSIONS AND FUTURE WORK

We investigated the effect of classification methods and
datasets on the generalization of pain detection. We found
important issues with current datasets that limit interpretation
of earlier found model accuracy trained on these datasets.
We also found that to achieve some level of real-time pain
detection, variations of facial expressions had to be added
to the pain/no-pain training data. We further found that the
limited number of subjects present in McMaster and BioVid
limits usability of models that are trained directly on raw data
(in our case CNNG5) as they quickly overtrain even when mixed
with other facial expression data.

Overall our results suggest that earlier work that used only
the McMaster dataset for training and testing with CNNs could
be detecting subjects facial activity rather than pain.

The best approach we found is an AU based method trained
on a combined dataset of AffectNet and McMaster. It achieves
88.4% accuracy. The real-time detection has been implemented
on a humanoid robot as part of a frozen shoulder robot therapy
pilot.

While we have used emotional faces as non-pain examples,
it is quite possible that pain is associated with certain emo-
tional expressions such as fear or distress [29]. This remains
an interesting future topic to investigate.

Our work shows the importance of cross-checking with
other datasets & real-time testing, as well as the need for a
well balanced and ecologically valid pain dataset.
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