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Abstract. In this paper we address the field that computationally
studies the relation between adaptive behavior and emotion. This
field studies how affective phenomena emerge from simulated adap-
tive agents and how these agents and their human interaction partners
can benefit from this. In particular, we focus on four major challenges
when adaptive behavior is operationalized as an agent that learns to
solve a task using reinforcement learning (RL) and affect is a signal
that is derived from RL primitives and emerges during the interaction
of the agent with its environment. For example, learned state utility,
V (s), is a signal that resembles fear (negative) and hope (positive),
because these emotions signal the anticipation of loss or gain. The
four challenges resolve around the following questions: why would a
particular signal be labeled as an emotion; is there a generic structure
in humans to how mood, emotion and appraisal influence reinforce-
ment learning and action selection; what should benchmark tests look
like if we want to investigate the plausibility and effectiveness of an
emotional instrumentation of RL; are there other benefits to emo-
tion instrumentation than increased adaptive potential for artificial
agents?

1 INTRODUCTION

In this paper we address four major challenges in the field that stud-
ies the relation between emotion and Reinforcement Learning (RL).
However, we first motivate why it is useful in the first place to study
how emotions emerge from a mechanism for adapting behavior. Of
course there is a theoretical benefit for psychology and behavioral
science to gaining insight into the relation between emotion and
adaptive behavior through computational modelling, but there are
certainly also applied benefits. First, affective signals can enhance
the adaptive potential of an artificial agent by influencing the learn-
ing process and action selection [56, 57, 38, 8, 10, 30, 55]. Second,
if emotions emerge from RL during interaction with an environment,
then any RL-based adaptive agent automatically possesses a compu-
tational model of emotion, which reduces the need to design a spe-
cific emotion model for that particular agent. Third, a solid grounding
of emotion in adaptive behavior makes the expression of that emotion
by a Virtual Agent or Robot intrinsically meaningful to humans, be-
cause we can relate to why the emotional signal arises. Having emo-
tions emerge from RL variables would solve the grounding problem
of emotion in RL-based artificial agents [17, 33], i.e., what does an
emotion mean in terms of the functioning of the agent. Solving this
problem might seem an abstract and theoretical goal, but this is far
from the truth. For example, an adaptive robot that shows fear that is
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grounded in its learning mechanisms will be much easier to under-
stand for humans, simply because we humans know what it means
to have fear when learning to adapt to an environment. So, solving
the grounding problem directly helps human-robot and human-agent
interaction. This means that for an emotional instrumentation to be
useful, adaptive benefit per se is not a requirement. Even if the emo-
tion is purely an epiphenomenon, it is still useful for human-agent
interaction and for understanding the fundamentals of how emotion
emerges from adaptive behavior.

The underlying hypothesis in this field is that if (a) emotion and
feedback-based adaptation of behavior is intimately connected in nat-
ural agents, and, (b) RL is a model for feedback-based adaptation of
behavior in animals, then (c) this connection should be apparent in
computational models of emotion for artificial agents that use RL to
adapt their behavior. In this introduction we provide evidence for (a)
and (b), which leads us to conclude that indeed it makes sense to
computationally study the relation between emotion and reinforce-
ment learning. Then we discuss computational attempts at modeling
this relation and present the four major challenges.

We first investigate the premise that emotion and feedback-based
adaptation of behavior is intimately connected in natural agents. A
broadly agreed-upon function of emotion in humans and other ani-
mals is to provide a complex feedback signal for a(n) (synthetic) or-
ganism to adapt its behavior [25, 34, 44, 49, 51, 52, 13]. Important for
the current discussion is that emotion provides feedback and that this
feedback ultimately influences behavior, otherwise we can not talk
about the adaptation of behavior. Behavior can be conceptualized as
a sequence of actions. So, the generation of behavior eventually boils
down to selecting appropriate next actions, a process called action
selection [14, 47]. Brain mechanisms have been identified to be re-
sponsible for, or at the very least involved in, this process [6, 31]. An
important signal that influences action selection in humans is how
alternative actions feel. In neuroscience and psychology this signal
is often referred to as somatic marker [18], affective value [53] or
preference [65]. Another way in which emotion influences action se-
lection is through emotion-specific action tendencies [25], such as
the tendency to flee or startle when afraid. Emotion and feedback-
based adaption seem to be intimately connected in natural agents via
the process called action selection.

We now investigate our second premise; is there any support for
RL being a plausible model of natural feedback-based learning? In
RL an (artificial) organism learns, through experience, estimated util-
ity of situated actions. It does so by solving the credit assignment
problem, i.e., how to assign a value to an action in a particular state
so that this value is predictive of the total expected reward (and
punishment) that follows this action. After learning, the action se-
lection process of the organism uses these learned situated action



values to select actions that optimize reward (and minimize punish-
ment) over time. Here we refer to situated action value as utility. In
RL, reward, utility, and utility updates are the basic elements based
on which action selection is influenced. These basic elements have
been identified in the animal brain including the encoding of util-
ity [62], changes in utility [29], and reward and motivational action
value [3, 4, 5, 62]. In these studies it is argued that these processes re-
late to instrumental conditioning, in particular to the more elaborate
computational model for instrumental conditioning called, indeed,
Reinforcement Learning [19, 43]. It seems RL is a plausible model
for feedback-based adaptation of behavior in animals.

So, the hypothesis that emotion and RL are intimately connected
in animals is supported by the converging evidence that both RL and
emotion seem to influence action selection using a utility-like sig-
nal. In neuroscience the connection between emotion, or affective
signals in general, and reinforcement learning is confirmed by the
large amount of work showing a relation between the orbitofrontal
cortex, reward representation, and (subjective) affective value (for
review see [53]). This connection can be studied computationally us-
ing RL-based adaptive agents. For example, different groups have
shown that in some cases a mood-like signal emerging from the in-
teraction between the agent and its environment can be used to op-
timize search behavior of an adaptive agent [8, 10, 30, 55] by ma-
nipulating the amount of randomness in the action selection process.
Other groups have shown that explicit relations exist between emo-
tion and the (prediction of) utility according to human subjects [28].
It has also been shown that adaptive agents that use their emotion as
a feedback signal for learning, where that emotion itself is emergent
from RL variables (such as reward, utility, and utility change) are in
some tasks more adaptive then standard RL agents [56, 57] or learn
faster [38]. Furthermore, already in 1999 an exhaustive attempt has
been made to investigate different ways in which both emotion and
RL can jointly influence action selection [27]. However, such studies
face 4 major challenges that will be introduced in the next section.

2 CHALLENGES

First, it is a point of debate which and why particular signals coming
from the RL variables or the agent’s interaction with the environ-
ment should be labeled as ”emotion”, ”mood”, or ”appraisal”, which
are the three affect-related situation dependent phenomena, let alone
why a particular signal should be labeled as, e.g., ”fear”. For exam-
ple, why is the amount of control (an appraisal as per [22]) equal
to the difference between the utility of an agent’s current situation
minus the utility of the next situation, which represents the com-
pleteness of a learned interaction model [56] but not equal to the
difference between the highest and lowest utility of the next situa-
tion, which represents the freedom of choice one has. Both instru-
mentations of control are equally plausible. Another example is the
modeling of joy. Relations between specific emotions and RL-related
signals seem to exist, e.g., the relation between joy and the temporal
difference signal in RL. The temporal difference error is correlated
with dopamine signaling in the brain [61] on the one hand, and a
correlation between dopamine signaling and euphoria exists on the
other [21]. Joy reactions habituate upon repeated exposure to jokes
[16] and computationally the temporal difference signal for a particu-
lar situation habituates upon repeated exposure [63], and both joy and
the temporal difference signal are modulated by expectation of the re-
ward. Does that mean that joy equals the temporal difference signal?
The challenge is thus to come up with testable hypotheses about how
emotion, mood and appraisal emerge from or are even equal to RL-

based adaption-related signals. These hypotheses should be based on
cognitive and behavioral theories describing eliciting conditions for
emotions such as OCC [44] and [52].

Second, in order to test the validity of these hypotheses, we need
benchmark scenarios that specify the emergence of affective phe-
nomena during adaptation of behavior. Such benchmark scenarios
do not exist. This is a serious issue because (a) researchers re-invent
similar scenarios with different names [8, 27, 56] without replicat-
ing results of others first, and, (b) small differences in scenarios can
have major influences [30, 8, 55]. The underlying issue is that we
do not know how individual elements of the scenario such as the ex-
trinsic reward function (stochastic or not), the problem to be learned
(Markovian or not, stochastic or not), the learning mechanism (e.g.,
Q-learning versus TD(1)), and policy dependency (on-policy versus
off-policy) influence the emergence of emotion for a particular RL
instrumentation. This means that it is unclear if emergence of an
emotional phenomenon may be generalized. To give an example, fear
extinction is a phenomenon any fear instrumentation should be able
to show. However, what kind of learning task (e.g., foraging task,
partially observable, stochastic reward function) is needed to test for
fear extinction after an initial negative encounter? The challenge is
therefore to device benchmark scenarios that can be used to test for
the replication of affective phenomena in computo, such as habitu-
ation and fear extinction. The goal for these scenarios is to test the
plausibility of hypotheses about emergence of emotion, mood and
appraisal, e.g., to test the validity of a claim such as ”the utility of the
current state equals hope/fear”.

Third, it is unclear how emotion, mood and appraisal influence
action selection in the RL architecture. Action selection can be influ-
enced in roughly three ways [56]: directly by changing action values,
indirectly by changing action-selection parameters, or indirectly by
influencing what is called the intrinsic reward function (the intrin-
sic reward is the signal used for learning, while the extrinsic reward
is the feedback signal from the environment). Mood, appraisal and
emotion can therefore influence action selection each in three dif-
ferent ways. The question is why one way of influencing is more
plausible or useful than another. For example, why would mood in-
fluence action selection meta parameters [8] but not action values? Is
this computationally easier? Is this more effective in terms of adap-
tion benefit? Is it biologically more plausible? The challenge is to
formulate testable hypotheses about how affective phenomena influ-
ence action selection. These hypotheses should, again, be based on
existing research on affective influences on cognition and behavior.

Fourth, it is unclear what kind of adaptive benefits and human-
agent interaction benefits can be expected and in what tasks these
benefits should be observed. Usually research that investigates the
role of emotion in RL-based adaptive agents focuses on increasing
adaptive potential. In the majority of the cases the average (or fi-
nal) fitness is the outcome measure to optimize. However, this is a
one-dimensional approach to the role of emotion in adaptation. For
example, fear can be used to influence intrinsic reward or random-
ness in action selection, and then it might serve the agent on average
over the course of its lifetime. This instrumentation of fear forgoes
the biological function of the fear response, which is to influence ac-
tion selection immediately: fear makes an organism flee or wait (star-
tle), and, for example, waiting simply stalls action selection to gain
more time to absorb information. In scenarios where waiting makes
sense, the effect of the latter fear instrumentation will thus be differ-
ent compared to scenarios where waiting has no function (e.g., when
the agent is the only actor that triggers state changes). In addition to
adaptive benefits there are human-agent interaction benefits, as men-



tioned in the introduction. The challenge is thus to define benchmark
scenarios in which particular adaptive or interaction benefits can ap-
pear. These scenarios can be different from the ones aimed for in
challenge two, and need not be psychologically or biologically in-
spired per se.

3 APPROACH
We propose to tackle these challenges as follows. First, as a commu-
nity we need an overview of specific adaptive and interaction benefits
that can be expected from emotion, mood and appraisal in an RL set-
ting. Examples include increased overall fitness (higher average re-
ward), faster learning convergence, quicker recovery from changes in
the environment, and increased human understanding of the robot’s
current state in the learning process. For more information on this
topic see the review [40]. Second, we need a publicly available set
of benchmark scenarios to test these benefits, as explained above.
Third, to test individual hypotheses about how (or if) emotion, mood
and appraisal emerge from RL, benchmark scenarios need to be de-
veloped by behavioral scientists, emotion psychologists and RL re-
searchers interested in the role of emotion in adaptive behavior. Each
scenario should involve a RL task, a prediction of which affective
phenomenon emerges when over the course of learning to adapt to
the task, and finally a set of experimental variables of which varia-
tion has a, in psychology and behavioral science, well-known effect
on the affective phenomena. The last step to address involves the
development of a shared simulation environment, analogous to the
agent negotiation community, which successfully launched a shared
test bed for agent-agent negotiation [36]. One important benefit of
this is that differences in results between groups of researchers can-
not be attributed to implementation differences. This is the last step,
as the requirements for this simulation environment should be de-
rived from the benchmark scenarios and expected adaptive and in-
teraction benefit. These steps require collaboration, coordination and
the building of a community, and funding is necessary for this to
happen effectively and efficiently.

The final step involves goodwill and patience. If we accept the va-
lidity of our benchmark scenarios and simulation environment, then
we should accept results that (do not) support a hypothesis that a par-
ticular RL signal should indeed be labeled as a particular emotion.
Only then can we, in a structured way, investigate these hypotheses
and build support for them, or reject them after careful consideration.
If others do not agree with the affective label we gave to a particular
RL-based signal, then our first reaction should be to investigate why
this research passed the benchmark tests. As argued in [40] a more
solid approach is essential for better shared definitions of affective
signals in RL agents.

4 FIRST STEPS
Preliminary investigation [9, 32] suggests three computational (or
cognitive) requirements to model emotions in terms of adaptation-
related signals. The first concerns the element of novelty. Novelty
covers concepts such as predictability, familiarity and suddenness,
which are important factors in many emotions [2, 45, 37, 48, 54],
in particular fear and surprise. Adaptive systems can only represent
novelty if some form of prediction is present in the system. For ex-
ample, if a model contains likelihoods of next states then this al-
lows the derivation of novelty where less likely states are assumed
novel. The second requirement concerns situated adaptation inten-
sity. By this we mean that the intensity of an adaptation-related sig-

nal varies based on the desirability of the situation that causes the
adaptation-related signal [26]. For example, humans differentiate be-
tween important and less important events, resulting in strong and
weak emotions respectively. The third requirement is the existence
of some order of development of signals. In early childhood, humans
develop their emotions in order, from simple to complex, where the
more complex emotions seem to depend on the existence of simple
emotions [35, 34]. An adaptive system inherently lacking such an or-
der of development in its adaptation-related signals cannot have these
mapped correctly (time-wise) onto complex emotions. For example,
fear (the worrying form, not the startle form) in humans occurs later
in development than distress, and for an RL algorithm to model this
there must be some adaption-related signal that only becomes rele-
vant after some initial learning has occurred. This set of requirements
strongly limits the number of available RL algorithms, but there are
still many that meet them all (e.g., all model-based RL).

There are are also emotion-theoretical requirements for RL-based
models of emotion. With regards to the order of development of emo-
tions in infants, humans start with a small number of distinguishable
emotions that increases during development. In the first months of
infancy, children exhibit a narrow range of emotions consisting of
distress and pleasure [59]. Joy and sadness emerge by 3 months,
anger around 4 to 6 months with fear usually reported first at 7 or
8 months [59]. We propose to start by modeling the elicitation of
the emotions of joy, distress, hope, fear, relief, disappointment and
boredom. This set of emotions is meaningful with respect to learning
[46], represents actual feedback, anticipated feedback and reflective
feedback, and is realistically modeled with RL because these emo-
tions depend mainly on novelty detection and goal congruence [50]
(note that agent-directed emotions pride, shame and anger, are more
difficult because this needs the concept of agency, something not in-
herently present in RL-agents). In line with this effort we have re-
cently proposed that joy and distress can be modeled by the temporal
difference signal [9] and that RL agents that learn to walk a slip-
pery cliff best simulate the emotions of hope and fear by taking their
model-based predictions of future temporal difference signals [41].
These findings are in congruence with the cognitive emotion theory
by Reisenzein [49].

Important characteristics of emotions that should be present in
benchmark scenarios include emotion intensity, habituation and ex-
tinction. Habituation is the decrease in intensity of the response to a
reinforced stimulus resulting from that stimulus-reinforcer pair being
repeatedly received, while extinction is the decrease in intensity of a
response when a previously conditioned stimulus is no longer rein-
forced [42, 7, 23, 64]. A model of emotion based on adaption-related
signals should be consistent with habituation and extinction, and in
particular fear extinction as this is a well-studied phenomenon [42].
For example, learning to walk a slippery slope should always involve
some fear, though the intensity should gradually decrease after each
successful passage.

Affect and cognition are also related on a deeper more implicit
level. Mood influences cognition. For example, a positive versus a
slightly negative mood is known to make humans focus on the big
picture or on detail respectively [24]. By artificially biasing the up-
date signal (TD error) toward the positive or negative side, we can
investigate if this effect can be replicated, e.g., by showing that the
agent tends to perform respectively big-picture behavior in the form
of exploration in the first case (and feel more joy) versus detail behav-
ior in the form of exploitation in the second (and feel less joy). Cog-
nition also influences mood. For example, humans employ a system
that determines the balance between evaluating immediate versus



delayed rewards, which is usually attributed to particular dopamine
neurons [39]. That is, long term thinking involves a larger influence
of future rewards, meaning the intensity of emotions linked to ex-
pectation (such as hope) can be expected to be higher for long-term
thinkers. This could be modeled with the lambda in Reinforcement
Learning. Lambda is a learning parameter that influences the effect
of future rewards on the current state. Thus, by varying learning
parameters, we should be able to replicate effects on behavior and
emotion resulting from deeper relations between cognition and af-
fect. Such simulations have been performed by us [11, 12] and others
[15, 20, 55], but never in relation to the occurring emotions.

5 OUTLOOK

We have argued for the need to systematically study emotions in re-
lation to reinforcement learning. We have listed 4 main challenges
and taken first steps at how to attack these. However, we feel these
challenges should be dealt with by the affective computing, adap-
tive behavior, psychology and neuroscience communities together.
We also feel that the fields of reinforcement learning and emotion re-
search can benefit from each other. Both fields essentially study ani-
mal adaptation mechanisms, but from a complementary perspective.
We think that after 17 years of sporadic research in this field, some-
times explicitly referred to as investigating the link between emotion
and adaptation, sometimes implicitly, the field needs a shared ex-
perimental practice and agenda. Without this, debates will be about
the details, not about the big questions, and this will (and has) hin-
der(ed) progress. It is strange that two areas of study that deal so
explicitly with adaptation and action selection in natural and arti-
ficial agents, that are both grounded in what can easily be called
the fundamentals of animal adaption (feedback, reward, condition-
ing, anticipation, motivation, curiosity, stress, policy learning), and
that are both mature areas in and of itself, would not come up with a
program to merge insights. We feel, given recent publication activity
in the area of affect, reinforcement learning, intrinsic motivation and
neuroscience [1, 56, 58, 60, 53, 34, 9, 41], that the time to do this is
now.
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