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Abstract A component-based generic agent architecture for multi-attribute (inte-
grative) negotiation is introduced and its application is described in a prototype system
for negotiation about cars, developed in cooperation with, among others, Dutch Tele-
com KPN. The approach can be characterized as cooperative one-to-one multi-crite-
ria negotiation in which the privacy of both parties is protected as much as desired.
We model a mechanism in which agents are able to use any amount of incomplete
preference information revealed by the negotiation partner in order to improve the
efficiency of the reached agreements. Moreover, we show that the outcome of such a
negotiation can be further improved by incorporating a “guessing” heuristic, by which
an agent uses the history of the opponent’s bids to predict his preferences. Experimen-
tal evaluation shows that the combination of these two strategies leads to agreement
points close to or on the Pareto-efficient frontier. The main original contribution of
this paper is that it shows that it is possible for parties in a cooperative negotiation to
reveal only a limited amount of preference information to each other, but still obtain
significant joint gains in the outcome.
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1 Introduction

Recent years have shown a surge of interest in negotiation technologies, seen as a
key coordination mechanism for the interaction of providers and consumers in future
electronic markets that transcend the selling of uniform goods [20,31]. Suggested
applications range from modeling interactions between customers and merchants in
retail electronic commerce [13], to the online sale of information goods [24], or reduc-
ing operational procurement costs of large companies [1]. Such technologies could
prove especially useful in the case of multi-attribute negotiations, where the agents
have an incentive to cooperate in order to search for an outcome that brings joint
gains for both parties. As shown by Ref. [28], such negotiations represent non-zero
sum games, where “as values shift along multiple directions it is possible for both
parties to be better off”. In these settings, agents often care about equity and social
welfare, and not only about their own individual utility [10]. Examples where such
cases may arise are: business process management involving agents within the same
organization [10] or e-commerce negotiations where the seller is interested in having
a satisfied buyer [13].

Gutman and Maes [13] discuss the difference between competitive and coopera-
tive negotiation models. They show that the competitive negotiations in retail markets
are unnecessarily hostile to customers and offer no long-term benefits to merchants.
Essentially, in competitive negotiations the merchant is pitted against the customer in
price-tug-of-wars. They conclude that merchants often care less about profit on any
given transaction and care more about long-term profitability, which implies customer
satisfaction and long-term customer relationships. Their analysis makes a strong case
for cooperative negotiation for the retail market.

Regarding the problem from a game-theoretic perspective, the main problem that
arises is that cooperative game theory generally assumes that complete information
of both parties is available in order to compute optimal outcomes. This does not hold
for many applications, where only a limited degree of trust exists between parties
in sharing preference information. The reasons for this may be endogenous to the
negotiation (e.g. fear that the other may abuse this information to get a better deal)
or exogenous (e.g. privacy concerns).

In classical multi-attribute-utility theory (see e.g. [19,25,26]), the solution proposed
is the use of an independent mediator, which both parties can trust to reveal their
preferences. The problem with this approach in an electronic or open system setting
is that it can be difficult to establish whether a mediator is indeed impartial or more
trustworthy than the negotiation partner himself. For example, an agent may have
no way of knowing if the solutions proposed by the mediator are not biased towards
the other or that his preference information will not be stored and used for other
purposes. By contrast, our approach is to use a distributed design, in which each agent
computes its own bids, using the information available about the preferences of the
opponent. We take into account two different types of (incomplete) information:

• Partial profile information, which is communicated by the negotiation partner her-
self in the beginning of the negotiation.
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• Profile information which can be deduced (learned) from successive bids during the
negotiation itself. Here we start from the assumption that the way the negotiation
partner is bidding may reveal something about his preferences. For this mechanism
we use the term “guessing” to clearly show it is a heuristic.

In our work we preferred the heuristic approach to designing automated negotia-
tion, since we feel this allows more flexibility. This position is supported, among others,
by Ref. [10] who clearly show that “what is required are agent architectures that imple-
ment different search mechanisms, capable of exploring the set of possible outcomes
under both limited information and computation assumptions”. However, this does
not mean we ignore the results from game theory: they are present in both measuring
the efficiency of reached agreements (e.g. Pareto-efficiency) and in analyzing some
properties of our mechanism.

The rest of this paper is organized as follows. Section 2 discusses multi-attribute
negotiation in the more general framework of processes in which such a negotiation
occurs. The section also describes a general system that incorporates the negotiation
model as introduced in this paper. The general system is a brokering system in which
consumers and providers are matched together given the demands from the consum-
ers and possible offers from the providers. Section 3 presents the formal design of the
negotiation model. Experimental validation of the negotiation model is the topic of
Sect. 4. Section 5 discusses the results of our model and compares it other approaches
in literature. The conclusion is presented in Sect. 6.

2 Brokering and negotiation

In this section, the topic of negotiation is placed within the greater context of the
consumer buying behaviour model (CBB) of Gutman and Maes [13]. The second part
of this section describes a generic brokering model that covers the first stages of the
CBB model, with negotiation being the last stage covered.

2.1 Modeling consumer behavior with agents

The process of brokering as often occurs in electronic commerce involves a number of
agents. A user offering products may be supported by a provider agent that provides
information about the products to other (human or computer) agents. A user looking
for products may be supported by a personal assistant agent that takes its user’s queries
and contacts other agents or looks at the Web directly to find information on products
within the user’s scope of interest. Such a personal assistant agent may contact either
provider agents immediately, or mediating agents, which in turn have contact with
provider agents, or other mediating agents. Depending on the application, the chain
of agents involved may include zero or more mediating agents.

The Consumer buying behaviour model (CBB) (see [13]) consists of six main
stages: Need Identification, Product Brokering, Merchant Brokering, Negotiation,
Purchase and Delivery, and Service and Evaluation. The model discussed in this
paper addresses the first four of these stages, where the product brokering is an inte-
grated part of the entire brokering process and overlaps with the need identification.
This is in line with normal procedures, as “CBB stages often overlap and migration
from one to another is sometimes non-linear and iterative”. The buyer contacts the
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broker agent, the broker agent provides the buyer with forms in order to determine
the wishes of the buyer. Then the broker matches products and suppliers against
the wishes of the buyer presenting him with the best three options. The buyer can
then select one of these proposals. A special buyer representative agent negotiates
with the representative agent of the supplier to obtain the best configuration of the
selected option. The different attributes of the object under negotiation, the possible
values for each of those attributes, and the different wishes (profiles) of consumer and
provider, allow for cooperative negotiation: cooperative negotiation can be seen as
a decision-making process of resolving a conflict involving two or more parties over
multiple interdependent, but non-mutually exclusive goals, cf. [22].

2.2 A Brokering System

In Ref. [16], a design for a generic multi-agent model for brokering is introduced
based on a Generic Agent Model GAM that was developed using the component-
based agent design method DESIRE (see [4]).

The multi-agent system in which the negotiation models can and have been applied
consists of the following types of agents, see Fig. 1: Human Buyers, Human Dealers,
Buyer Representative agents, Dealer Representative agents, Broker agent. More-
over, to model retrieval of information from databases, a number of components is
used; one of them is the External World from which Buyer Representative agents can
retrieve third party information (the actual third party chosen depends on the type
of items being brokered like consumer organizations and the Land registry office).
Furthermore, specific Seller-dependent databases are included, from which the Seller
Representative agent can retrieve additional information about the item offered.

The generic agent architecture for multi-attribute negotiation and for the broker
agent was designed and formally specified using DESIRE, as a refinement of the
Generic Agent Model, GAM, see Ref. [4]. The processes modeled within the generic
agent model are depicted in Figs. 2 and 3. The processes involved in controlling an
agent (e.g. determining, monitoring and evaluating its own goals and plans) but also
the processes of maintaining a self-model are the task of the component Own Process
Control. The processes involved in managing communication with other agents are
the task of the component Agent Interaction Management. Maintaining knowledge
of other agents’ abilities and knowledge is the task of the component Maintenance

Consumer Seller 
Organization Representative Database 

Buyer 
Representative Broker 

Seller 
Buyer Representative Database 

Fig. 1 The Brokering System
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Fig. 2 Processes at the two highest process abstraction levels within the agent

of Agent Information. Comparably, the processes involved in managing interaction
with the external (material) world are the task of the component World Interaction
Management. Maintaining knowledge of the external (material) world is the task of
the component Maintenance of World Information. The specific task for which an
agent is designed (for example: design, diagnosis, information retrieval), is modeled
in the component Agent Specific Task. Existing (generic) task models may be used
to further structure this component. In addition, a component Cooperation Manage-
ment may be distinguished for all tasks related to social processes such as cooperation
in a project, or negotiation. This component is discussed in the next section.

The rest of this section describes, in greater details, the internal design of the broker
agent, for the highest internal level of composition see Fig. 3. Here specific broker
capabilities are modelled within the components cooperation Management and Agent
Specific Tasks.

At the highest abstraction level within an agent, a number of processes can be
distinguished that support interaction with the other agents. First, a process that man-
ages communication with other agents, modeled by the component Agent Interaction
management in Fig. 3. This component analyses incoming information and deter-
mines which other processes within the agent need the communicated information.
Moreover, outgoing communication is prepared. Next, the agent needs to maintain
information on the other agents with which it cooperates: Maintenance of Agent
Information. The component Maintenance of World Information is included to store
the information on world information (e.g. information on attributes of products).
The component Own Process Control defines different characteristics of the agent
and determines foci for behavior. The component World Interaction Management
is included to model interaction with the world. The negotiation capabilities of the
agent (which are the main focus of this paper) are, in the current model, placed in the
component Cooperation Management.

In the remainder of this paper, we will focus our attention on a part of this large bro-
kering framework, namely on modeling the bilateral negotiation between the Buyer
Representative and Seller Representative agents. Other aspects of this framework
have been considered, but they have been presented and discussed in further detail
elsewhere (e.g. [4,16]).

3 The negotiation model

The negotiation considered follows an alternating-offers protocol; for more informa-
tion on protocols for negotiation, see Ref. [20]. A bid in such a negotiation has the
form of values assigned to a number of attributes. If the negotiation is about the
sale of a car, the relevant attributes considered are, for example: CD player, extra
speakers, airco, tow hedge, price and then a bid consists of an indication of which CD
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Fig. 3 Top level composition of the broker agent

player is meant, which extra speakers, airco and tow hedge, and what the price of
the offer is. Although the examples and discussion provided in this paper are based
on this domain, our negotiation model is a generic one and this section provides a
generic formal description of the model. Instantiations in other domains are possible
and have been considered.1

To assess a bid of the other party, it is important to have evaluation methods. Eval-
uation can be done at two levels: the level of each of the specific attributes (attribute
evaluation), and the level of the bid as a whole (overall bid utility). Taking this into
account, some characteristics of the multi-attribute negotiation model presented here
are:

• explicit reasoning about the negotiation strategy and coordination of the negotia-
tion process

1 For example, modeling negotiations between employer and employee regarding work shifts and
overtime pay (work performed in collaboration with Almende B.V., Rotterdam).
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• evaluation of a bid takes into account both the attributes separately and the overall
utility of the bid

• planning of a new bid takes into account both the overall utility level and the level
of attributes separately

In particular, in the model it is possible to work on two levels: the level of the overall
bid, and the level of each of the attributes separately. The negotiation model has been
specified as a compositional structure within the component Cooperation Manage-
ment of the GAM, see Sect. 2. Globally speaking, the process runs as follows:

• For each negotiation round, first evaluations of the attributes of the previous bids
are determined.

• Then these evaluations are aggregated and the overall utilities are computed, both
for the own previous bid of the agent and the proposed bid, received from the
opponent in the previous negotiation step.

• Next, the concession step to be made in the next bid is determined, w.r.t the utilites
of the previous bids. Thus, the agent determines the overall target utility for the
next bid to be proposed to the opponent.

• To obtain the next bid, given the target utility, first according to some distribution
over attributes, target attribute evaluation values are determined (chosen in such
a manner that they aggregate exactly to the target utility)

• Finally, for each of these target attribute evaluation values, an attribute value is
chosen that has an evaluation value as close as possible to the target evaluation
value for the attribute.

In the last step, if only discrete attribute values exist, it may be the case that the
target utility is not reached. However, if at least one of the attributes has continu-
ous values, then this attribute can be chosen to compensate for differences that are
created due to the mapping to discrete values for the other attributes. In our appli-
cation, the price attribute is such a continuous attribute, and chosen to compensate
for differences. In this manner bids are created that exactly match the target utilities.
To realize the compositional process structure sketched above, at its top level the
component Cooperation Management is composed of the five components in Fig. 4:
Negotiation Coordination, Attribute Evaluation, Bid Utility Determination, Utility
Planning, and Attribute Planning. In the rest of Sect. 3, the presentation will follow
this design structure and that of the Attribute Planning sub-component, which can be
further composed as shown in Figs. 5 and 6.

3.1 Negotiation coordination

Within the component Negotiation Coordination the negotiation process state is ana-
lyzed (component Process Analysis) and the process is controlled (component Process
Control). Process Analysis determines which of the following are true and which are
false:

(a) Repetition of steps takes place: steps without enough progress (depending on the
impatience factor (π) which specifies the acceptable number of steps in which
nothing changes)

(b) A utility gap (larger than some threshold ω) remains; i.e. a significant difference
between the utility of the own bid and that of the other agent’s bid.
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Fig. 6 Internal composition of Attribute Planning sub-component, in case modeling of opponent
preferences is used

(c) A configuration mismatch (larger than some threshold ν) remains between the
own bid and the other agent’s bid.

Here a configuration mismatch means that for at least one attribute, between the two
values (in the two bids) a significant difference exists. Depending on the outcome of
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the analysis within component Process Control the following actions can be decided
upon:

1. Start a next negotiation round
2. Contact the user to discuss whether the concession factor (γ ) can be changed.
3. Contact the user to discuss whether the configuration tolerance (τ ) can be changed.
4. Communicate to the user that an agreement has been reached.
5. Communicate to the user that the negotiation has failed (only when the user is

unwilling to change the characteristics).

3.2 Attribute evaluation

The evaluation functions for each attribute take either a table form or another specific
function description. A table form is used for discrete attributes such as accessories.
Specific function descriptions are used for continuous attributes such as mileage or
price. The form of specific function descriptions are of a type such as ‘linear’, or
‘uphill’. For the attributes for which a specific (non-table) type of evaluation func-
tion is given, depending on this type, knowledge is specified to obtain the object
evaluations. Currently, only specific function types are used that consist of linear
parts, cut-off between 0 and 1: linear function, normal distribution function, downhill
function, uphill function.

If desired, in all evaluations and utilities, the model supports that two aspects can be
modeled separately and integrated: ease evaluation and ease utility EU and financial
evaluation and financial utility FU. The latter aspect covers the financial rationality in
the agent’s behavior. The former aspect models all other aspects within the decision
making such as a resistance against more complicated transactions (even if in terms
of economic gain they are more favorable).

From a utility function perspective, the above definition means that utility functions
of the agents in our model are not assumed to be quasi-linear, i.e. there is not implicit
assumption that a utility value can be mapped directly into an amount of money (as
a number of other negotiation and auction models do). In our model, the utility of a
multi-attribute contract is always mapped to a value between 0 and 1. Thus, both the
configuration of the attributes (in our case the quality of the car accessories offered)
and the price (amount to be paid or received for the car) are evaluated, by mapping
them to a value between 0 and 1. The balance between these two aspects within the
overall evaluations is defined by the financial rationality factor ρ. If this factor is 1,
then only the financial utility is taken into account (i.e. the agent is completely finan-
cially driven), if it is 0, only the ease utility (completely ease driven). Any factor in
between 0 and 1 defines the relative weight of the economic aspect compared to the
ease aspect in the decision making.

We acknowledge that mapping a sum of money through a utility function is not
a standard choice in all negotiation models (though it is not unusual, since we fol-
low the seminal work on multi-attribute negotiation of Raiffa [25]). This allows us
more modeling flexibility. In the car dealership example, some buyers (with a bet-
ter financial position) do not assign such a high utility to an additional amount of
money for accessories, while others assign a much larger utility to the money than to
ease/convenience. Similarly, some the sellers (i.e. car dealers) assign a higher utility
to the difficulty of procuring installing the accessories required by the buyer (the ease
factor), while for others this is not such an important consideration. In the following,
we formalize these intuitions and give more formal definition of utility functions.
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3.3 Bid utility determination

This section introduces the utility model used and formally defines the utility func-
tions. The computing (of the utility value of each bid) is performed in the Bid Utility
Determination sub-component of the model (c.f. Fig. 4).

The model proposed here is symmetrical for both parties, i.e. both buyer and seller
use the same type (i.e. mathematical form) of linear utility functions, as defined below.
However, the actual utility function and parameters are different for buyer and seller
(and are specified by the human owners of the agents through a software interface,
before the negotiation begins)2 and are private information for each party during the
negotiation. Thus, unless otherwise described, an agent can only be assumed to know
its own utility parameters, which in the general case, may be very different from the
parameters of the negotiation partner (these remain private information).

From the point of view of notation, all parameters defined in this section could be
further indexed with the subscripts “buyer” and “seller” (or, from the perspective of
each agent, they could be indexed with “own” and “other”). However, in computing
its own utility value for a bid, only the own utility parameters of the agent are needed
(the opponent’s utility parameters are not known and actually not needed, since the
agent only uses its own utility function). Therefore, in this section we do not use an
index identifying the agent for all the parameters. However, in further sections, when
computing how to make attribute-specific concessions, the agent will need to approx-
imate the opponent’s preference weights, and thus we will introduce an additional
index to distinguish between the self/opponent parameters.

As mentioned, the utility of one bid is divided into computing the ease utility and
the financial utility, and we discuss these in different sections.

3.3.1 Ease utility determination

The ease utility is computed for all the attributes, except the price, and it reflects a
subjective preference of each of the agents. Within the model, the ease utility EUB
of a bid B is taken as a weighted sum of the attribute evaluation values EB,j for the
different negotiant attributes denoted by j.

EUB = �jwjEB, j (1)

The parameters EB,j are specified by the human user of the agent, through an inter-
face, with values between 0 and 100 (which are taken as values between 0 and 1, in
the model, by division by 100).

The weights wj are relative importance factors based on the importance factors pk
for the different attributes:

wj = pj/�kpk (2)

The importance factors for each attribute pj (between 0 and 100) are also specified by
the user (owner) of the agent through an interface. Formula (2) insures that the sum
of the attribute importance weights for one agent is always normalized to be equal to
one, regardless of the inputs of the human user, i.e. �kwk = 1.

2 A site with screen shoots of the software tool used to input these values (initially prepared for
a software demonstration at the AAMAS’04 conference), is available online at: http://homepag-
es.cwi.nl/∼robu/aamas/aamas_demo.html
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The rationale for defining the preference weights this way (indirectly, through
importance factors) is that we found that it is more intuitive for human users of the
system to specify a number between 0 and 100 through an interface, without worrying
about having the values add up to 1 (or respectively 100), and allow the agent to do
the normalizations automatically.

To illustrate, in the car dealership domain, there are 4 discrete attributes taken into
consideration: Airco, CD player, Tow Hedge and Extra Speakers. Each of these can
take 5 quality levels (denoted by EB,j in the Formula 1) as: none, meagre, standard,
good, very good. Each of these is assigned, for each attribute by both Buyer and Seller,
through their private interface, a value from 0 to 100 (taken as between 0 and 1). Each
attribute is also assigned an importance factor, from which a weight is computed such
that the sum of weight normalizes to add up to 1. Thus, from these values the ease
utility between 0 and 1 can be computed for any bid or contract combination, from
the perspective of each agent.

3.3.2 Financial utility determination

If a financial utility is used separately, then the above utility (called the ease utility
EUB) is determined on the basis of all attributes except price. Financial utility FUB is
based on the financial balance gB for a given bid B:

gB = pB − b − aB (3)

where b denotes the basic costs (the cost of the object without additional accessories)
and aB denotes the additional costs of bid B, and pB price within bid B.

aB = �jFEB,j (4)

that is based on the financial evaluations (FEB,j) of the values of the different attributes
j. However, to be able to relate FUB to the ease utility EUB, FUB is the normalization
of the financial balance to a number between 0 and 1:

FUB,j = gB/δb (5)

The fraction δ is the fraction of the basic cost that is maximally additionally (to be)
earned (e.g. .3, a maximum margin of 30%). Some notes can be made.

• The financial utility FU is defined on the interval between 0 and 1 in such a manner
that financial utility 1 means cost price plus maximal margin (b + δb + aB ).

• Let B0 be the initial bid of the seller, then by taking price pB0 = b + δb + aB0 , the
financial utility of this bid is

FUB0 = (pB0 − b − aB0)/δb = 1. (6)

• By setting δ properly, the seller makes sure that (s)he is not asking unrealistic
prices.

• The financial utility is defined on the interval between 0 and 1 in such a manner
that FUB = 0 implies pB = b + aB , i.e. the cost price. So, if a buyer makes a bid B
with pB < b + aB , then FUB < 0 from the perspective of the seller.

Thus, we specify the financial utility function as a linear, continuous, function between
two cut-off points: a maximum and a minimum financial margin (also called “mark-
up”), over the costs (see also end of Sect. 3.4). This choice fits the business model of
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many sellers operating in retail commerce: they receive the goods at a certain cost
and have a minimum profit margin (below which it is unprofitable to run the business)
and a maximum profit margin they expect to make on the sale of good. (the particular
example considered in this paper is about the sale of a car, but this holds for many
other retail domains). In our model, selling at the cost price corresponds to receiving
zero financial utility, while selling it with a maximum expected profit corresponds to
a financial utility of 1.

The seller agent is designed to start the negotiation by asking a price corresponding
to the maximal expected margin. However, it will not concede on a price that falls
below a minimum acceptable financial utility margin, denoted by ε (see Sect. 3.4 for
a formal presentation of the concession model).

On the basis of the ease utility and the financial utility, the overall utility is deter-
mined as a weighted sum. Here the weights are based on the financial rationality
factor ρ (part of the dealer profile).

UB = ρFUB + (1 − ρ)EUB (7)

3.4 Utility planning

For determination of the target utility TU the following formula is used within the
model:

TU = UBS + CS (8)

with UBS the utility of the own bid, and the concession step CS determined by

CS = β(1 − µ/UBS)(UBO − UBS) (9)

In the above formula, UBS and UBO represent the utilities of the agent’s own (or
self-bid), respectively the utility of the other’s bid, in the immediately previous nego-
tiation step. The factor UBO − UBS expresses the current utility gap. It is important to
note that in Eq. 9 both utilities are computed with respect to the agent’s own utility
function. Thus, if the utility of the self (own) bid is the actual, true utility value, the
utility of the opponent’s bid is only an approximation, since the true utility of the
other remains unknown. This illustrates a key aspect of negotiations with incomplete
preference information (i.e. where the utility function of the opponent is unknown):
the perceived remaining utility gap between the own and other’s offer may be very
from the perspectives of the two parties. A concession made by one agent (in the way
of decreasing his own utility function) may be perceived as no concession at all (even
a retraction) by the other party. Similarly, an agent can make no concession (or a very
small concession), but the opponent perceives this concession as very considerable.
It is precisely this type of concessions that must be achieved in multi-attribute nego-
tiations, since it means the new offer is closer to the Pareto-efficient frontier. Such
concessions can only be achieved by finding suitable concession trade-off between the
issues.

The factor (1 − µ/UBS) expresses that the concession step will decrease to 0 if the
UBS approximates the minimal utility µ. This ensures UBS ≥ µ. The factor β stands for
the negotiation speed. The minimal utility is taken as µ = 1 − γ with γ the concession
factor, expressing a measure in how far concessions can be made.

The concession factor plays the role of a reservation utility (i.e. the amount of
utility, compared to the maximum expected utility (which in our model is 1), which
the agent is willing to forgo or concede in a negotiation. The rationale for this is that,
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in human negotiations, often the players do not know their true or absolute cut-off
value (minimal utility), but start working from a higher value. If it turns out that
with that somewhat higher minimal value, they cannot close the deal, humans tend
to adjust this minimal value closer to their true cut-off value. This aspect is modeled
by us through the concession factor: if the automated negotiation does not lead to a
deal, the human user (if one is present) is asked if he wants to lower the cut-off value
by adjusting the concession factor.

Determination of the target utility can also address the ease and financial aspect
separately indicated by E or F added to the parameters, while subscripts BS and BO
continue to denote the self (own) bid and the other’s bid, respectively. For the ease
aspect the following formula is used:

TEU = EUBS + ECS (10)

ECS = βE(1 − µE/EUBS)(EUBO − EUBS) (11)

In this formula βE is the negotiation speed factor for the ease part, and µE is the
minimal ease utility. It is important to point out that this is the overall target ease
utility for the entire bid. The concession is not evenly distributed across the attributes:
in some attributes larger concessions are made, while in others little or no concessions
occur. The method for computing concession in each attribute is presented in Sect.
3.5. For the financial aspect the target utility is:

TFU = FUBS + FCS (12)

FCS = βF(1 − µF/FUBS)(FUBO − FUBS) (13)

The speed factors βE for ease and βF for financial parts are based on the negotiation
speed factor β and the financial rationality factor ρ as follows

βE = (1 − ρ)β βF = ρβ (14)

The minimal ease utility is taken as µE = 1 − γ . The minimal financial utility is taken
as µF = ε/δ where ε is the minimal financial margin. The explanation is as follows. If
the minimal margin is achieved, then the price minP is

minP = εb + b + aB (15)

Given minP, the minimal acceptable financial utility can be calculated as follows:

µF = (minP − b − aB)/δb = εb/δb = ε/δ (16)

For example, if δ = .2 (20%) and ε = .1 (10%), then µF = .5, i.e. the dealer is not
willing to sell with a financial utility lower than half of its maximal financial utility
(based on the maximal margin); a financial utility of 0 means selling against the cost
price, i.e. no margin at all, a financial utility of 1 means selling with a margin of 20%
on the cost price. As shown in Sect. 3.3, this is a natural choice in the business domain
we consider.

3.5 Attribute planning

The Attribute Planning process uses as input the target utility and determines as
output the configuration for the next (own) bid in the following two main steps:

• First, within the component Target Evaluation Determination, for each attribute
a target evaluation is determined.
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• Next, given these target evaluations per attribute, within the component
Configuration Determination, a configuration for the next bid is determined.

We identify two possible negotiation strategy choices, corresponding to two possible
designs of the internal designs of the Attribute Planning sub-component:

• Attribute Planning without explicit Opponent Modeling
• Attribute Planning with Opponent Modeling.

In the classification above, by “opponent modeling” it is meant that the seller agent
maintains an estimation of the preference weights that the buyer assigns to different
attributes and takes them into account in computing the target evaluations.

The case without opponent modeling is suitable for perfectly closed negotiations,
when no information about the weight of any of the attributes is shared between
parties and when the negotiations are too short to reliably deduce (“guess”) this
information.

The second option, in which the seller does use opponent modeling was intro-
duced [27] in order to improve the Pareto-efficiency of the reached agreements (this
is presented in Sect. 3.9). In this case, the Opponent’s (i.e. negotiation partner’s) pref-
erence weights are taken into account in computing the target evaluation for differ-
ent attributes and determining the configuration of the next bid. We implemented
and experimentally compared the two cases: one in which opponent modeling is not
attempted and one with opponent modeling (i.e. guessing his preferences between bid
history). We show that, for the experimental setting we considered, the model which
uses guessing succeeds in improving the Pareto-efficiency of the reached agreements
over the model in which no guessing is attempted. This is especially true for the case
there is at least some partial preference information disclosed before the negotiation
and the trace of the negotiation so far is reveals the opponent’s preferences for some
of the values.

3.6 Attribute planning without opponent modeling

If the Attribute Planning is done without trying to estimate the opponent’s (i.e. nego-
tiation partner’s) preference weights, then the process takes only 2 main steps:

• Determining, for each attribute, a target evaluation the attribute should have in the
next bid (task assigned to the Target Evaluation Determination sub-component)

• Determining the actual configuration of the next bid, by assigning values to the
discrete attributes (task assigned to the Configuration Determination sub-compo-
nent)

The internal composition of this component in this case is given in Fig. 5. Following,
we discuss the operations performed in each of the shown components.

3.7 Target evaluation determination

Target evaluations per attribute TEj are determined in the model in two steps. First
a basic target evaluation per attribute BTEj is determined in such a way that �j wj
BTEj = TU. Then the target evaluations TEj are combinations of the BTEj with the
evaluations of the attributes in the bid of the negotiation partner. The basic target
evaluation per attribute BTEj is determined according to the following format:

BTEj = EBS,j + (αj/N)(TU − UBS) (17)
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Here the αj represent the concession speed per attribute and N is a normalization
factor. Factor N is defined as the weighted sum of the α’s with the relative importance
factors as weights: N = �jwjαj. Due to this normalization factor, the utility determined
as a combination of the target evaluations leads to exactly the target utility:

�jwjBTEj = �jwj(EBS,j + (αj/N)(TU − UBS))

= �jwjEBS,j + �jwj(αj/N)(TU − UBS)

= UBS + 1/N �jwjαj(TU − UBS)

= UBS + 1/N ∗ N ∗ (TU − UBS)

= TU

The choice for the α’s is made as: αj = (1 − wj) (1 − EBS,j). The first factor expresses
the influence of the user’s own importance factors and is chosen as an inverse to the
agent’s preference weights (similar to the choice made in Ref. [1]); the second factor
takes care that the target evaluation values remain scaled in the interval between
0 and 1. Besides the influence on the target attribute evaluations as described, also
a concession to the opponent’s attribute evaluations is made. This depends on the
configuration tolerance τ , as follows:

TEj = (1 − τ)BTEj + τEBO,j (18)

If the configuration tolerance is 0, then only the user’s importance factors are taken
into account. If the configuration tolerance is 1, then with respect to the configura-
tion maximal concession to the negotiation partner is made. Note that in this case,
although the preferences expressed in the partner’s last bid are taken into account,
the concession rate only takes into account the agent’s own weights — and does not
try to predict anything about the preferences of her opponent. More crucially, the
configuration tolerance τ is the same for all attributes, which leads to a relatively
uniform concession rate.

When information about the opponent’s preferences is available, the concession
towards the values from the other’s previous bids can be made more asymmetric for
different attributes, as shown in Sect. 3.9.

3.8 Configuration determination

To determine a configuration for the next bid the following three steps are made.

• First, for each attribute, given the target evaluation, attribute values are deter-
mined with an evaluation that is as close as possible to the target evaluation value.

• Next, a partial configuration (price attribute not yet filled) is determined based on
these closest values.

• Finally, to complete the configuration for the next bid, the price attribute value is
determined.

The partial configuration is selected from the closest attribute values. If more than
one choice with closest value is possible, then, if it is among the options, the value in
the opponent’s bid is chosen, otherwise the choice is made in a random manner. The
partial configuration is completed by determining the price attribute value in such a
manner that the overall target utility is achieved.

Within the Dealer Representative (Seller) agent a simple possibility would be to
take the target financial utility as the aim to be exactly achieved. However, due to



236 Auton Agent Multi-Agent Syst (2007) 15:221–252

the discrete values of the accessory attributes, the ease utility can probably not be
exactly achieved. The choice has been made that this difference is compensated in the
financial utility. For example, if the ease utility of the partial configuration is lower
than the target ease utility, then the seller agent aims at a financial utility which is (in
proportion) higher than the target financial utility.

First the ease utility of the partial configuration is determined. Next the financial
utility that has to be achieved (AFU) is determined, as the (weighted) difference
between overall target utility and the realized ease utility:

AFU = TU − (1 − ρ)UP,E/ρ (19)

where UP,E is the ease utility of the partial configuration P.
Finally, the price attribute value is determined, as the sum of all costs and the

fraction of the maximum margin given by the financial utility aimed for:

price = b + aP + AFUδb (20)

3.9 Attribute planning with opponent modeling

In this section, we consider the situation when, in order to make better directed con-
cessions, in planning the target evaluation for each attribute we take into account not
only the own preference weight of the agent, but also the weight of the opponent. The
adapted process composition is presented in Fig. 6. If the opponent is not willing to
reveal her preference weight for some (or maybe all) attributes, an estimation of these
weights is computed in component Estimation of Opponent’s Parameters. The role of
the component Guess Coefficients is to analyze the way the opponent is bidding and
to provide some extra information to be used for estimating these private preference
weights. In the following we discuss these components in separate sections.

3.10 Target evaluation planning

This component outputs a target evaluation for each attribute in the next bid, based on
the bid target utility value. The target attribute evaluation is determined in two steps.
First a basic target attribute evaluation for each attribute is computed according to
Eq. 17 from Sect. 3.7, for the case when no opponent modeling is attempted. The basic
target evaluation (c.f. Eq. 17) considers only the own attribute preference weights of
the agent. It represents a concession, compared to the utility offered in the own,
immediately previous bid, but it can be a poorly directed concession. Using only this
value works in general, but it can lead to sub-optimal results, since the preferences of
the other are not considered in any way when making concessions. To improve on this,
the following solution was implemented. For each attribute j ∈ A (where A denotes
the set of all attributes) a Preference Difference Coefficient δj is computed as:

δj = (Wother,j − Wown,j)/(Wother,j + Wown,j) (21)

This coefficient (scaled between −1 and 1) expresses how different the preferences of
the two parties for each attribute are. Positive values for δj denote a stronger prefer-
ence of the negotiation partner for attribute j, while negative values denote a stronger
own preference for this attribute. Note that the weights of the other for all the attri-
butes in the above formula are not generally known quantities. The opponent may
reveal (some of) his weights — but for all attributes whose weights are not known,
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these will need to be heuristically approximated. This will be discussed in Sect. 3.11.
The concession to be made in each attribute j ∈ A depends on a parameter called
configuration tolerance, denoted as τj ∈ [0, 1]. The tolerance parameter is chosen to be
attribute-specific, in order to better differentiate the amount of concessions between
attributes. Therefore, for each attribute j ∈ A, the configuration tolerance depends
on the preference difference coefficient of that attribute, according to the following
formula:

τj = τgen ∗ (1 + δj) (22)

Here the parameter τgen represents the general tolerance, used by the agent for all
attributes j. The general tolerance is always chosen between 0 and .5 and also gives a
measure of how fast the agent is willing to make concessions. Values closer to 0 will
denote an agent who is less willing to make concessions, while values closer to .5 will
denote an agent who is interested to reach a deal quickly.

Finally, the target evaluation for each attribute j is computed. This is done by tak-
ing into account both the basic target attribute evaluation (as described above) and
a concession to the attribute evaluation from the previous bid of negotiation partner,
as follows:

TEj = (1 − τj)BTEj + τjEBO,j (23)

Here BTEj is the basic attribute evaluation for attribute j and EBO,j is the evaluation
for attribute j from the opponent’s previous bid. From the above formula, one can see
that values of the configuration tolerance τj close to 0 signify that mostly the user’s
own importance factors are taken into account, while values close to 1 shows that max-
imum possible concession is made towards the other’s value. And since τj depends
directly on δj, it is the difference in preference for each attribute that determines how
much concession should be made.

By choosing τgen ∈[0, .5], we ensure that always τj ∈ [0,1] (the attribute-specific
tolerance is always scaled between 0 and 1), and thus the target evaluation per each
attribute is a linear combination between the own valuation and the opponent’s val-
uation for each attribute. This can be easily shown as follows.

From Eq. 21, we see that the attribute specific delta δj takes a minimum value of
−1 (when Wown,j = 1 and W,other,j = 0). This means the agent assigns a maximal
value to attribute j (its weight is equal to the maximum of 1), while the opponent is
indifferent to the value in this attribute. Consequently, in this case, from Eq. 22 we get
τj = τgen ∗ (1 − 1) = 0. Applying Eq. 23 will mean that TEj = BTEj, i.e. no concession
will be made toward the valuation of the opponent in this attribute.

The opposite case in Eq. 21 occurs when Wown,j = 0 and Wother,j = 1, and thus
the delta value for this attribute is maximal δj = 1 (i.e. the agent is indifferent to an
attribute, but the opponent assigns a maximal value to it). In this case, the attribute
specific tolerance is τj = 2 ∗ τgen. Since τgen ∈ [0, .5], this means that τj can take
a maximum value of 1, which after applying Eq. 23 results in TEj = EBO,j, i.e. a
complete concession is made towards the value of the opponent in this attribute. In
general, however, τgen is chosen as less than .5, such that the resulting concession is
more gradual. This is actually an advantage, because the evaluation of the opponent
is an approximation, so a too fast concession may mean giving up too quickly in the
agent’s own utility, without significantly increasing the opponent’s utility. A value
of τgen above .5 is never justified, since it may result in τj for some attributes being
greater than 1 (i.e. more concession is made in those attributes than is even asked by
the negotiation partner), which is not realistic.
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Because, in our model both the sum of the agent’s own weights and sum of the
opponent’s weights are always scaled to 1, the above mechanism leads to a situation
where greater concessions in some attributes (more important to the opponent) will
always be balanced by smaller concessions in other attributes (more important to the
agent itself). Such an asymmetric concession system allows both negotiating parties
to reach greater utility quicker.

In this component we took the opponent’s preference weights for each attribute
as known. However, if the other is not willing to share his weights for some (or all)
attributes, then they will need to be estimated. This is discussed in the following
sections.

3.11 Estimation of opponent’s parameters

This component determines, for those attributes for which the opponent was not
willing to reveal his preference weights, an estimation of those weights.

We denote by Aknown the set of attributes for which the opponent was willing to
reveal his importance weights in the beginning of the negotiation and by Aunknown the
attributes whose preference weights are kept private. Since all preference weights are
normalized (see Sect. 3.1), the sum of weights for the private attributes is computed
as:

�j∈Aunknown Wj = 1 − �k∈Aknown Wk (24)

For attributes with private weights, the remaining weight �j∈Aunknown Wj has to be
divided between them. For this purpose we assign a parameter called the Remaining
Weight Distribution Coefficient Rj to each attribute j ∈ Aunknown.

These attributes can be further classified into two sub-sets:

• Attributes for which a reliable guess about the preference of the opponent can be
made based on her previous bids (we denote this class by A(G)). These attributes
will be assigned a coefficient Rj in the component Guess Coefficients (as described
in Sect. 3.12).

• Attributes for which no reliable information about the preference weights of the
opponent can be made from his previous bids (denoted by A(NG)). These attri-
butes are assigned a default value Rj = 2, which is empirically chosen between
the values for attributes for which there is an indication they are important to the
opponent (from her past bids) and those attributes which are less important to her
(see Table 1). After establishing the value of this parameter, the estimation of the
actual weight is computed as follows:

Wj = (Rj/�k∈Aunkown Rk) ∗ �k∈Aknown Wk (25)

The rationale for this choice is to insure that the sum of all weights remains (unknown
and known) remains normalized to 1, without the weight distribution coefficients
having necessarily add up to 1. This is useful, because in this context, the values of
the weight distribution coefficients are empirically chosen. In our domain and prob-
lem setting, the values that produced the best results are reported in Table 6 below.
However, if applying our negotiation model to other domains and/or problem settings
(e.g. increasing the number of attributes, having a higher/lower number of discrete
values etc.) other values of this coefficient may work best. This allows the user of
the system to experiment with different heuristic values, while Formula (22) and (23)
nevertheless ensure that the weights estimated remain normalized to 1.
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Table 1 Action decision table Action Repetition Utility gap Configuration
match

Next round No No
Discuss concession Yes Yes No
factor
Discuss configuration Yes No No
tolerance
Report success No Yes
Report failure Yes No

It is also possible that no reliable information can be obtained from the opponent’s
past bids for any of the attributes. Then all distribution coefficients will be equal
and applying the above formula results in equal distribution of the remaining weight
between private attributes, formally expressed as: Aunknown = A(NG) => ∀j, k ∈
Aunknown, Wj = Wk.

3.12 Guess coefficients

This component analyses the opponent’s bids and, for those attributes for which a
trend is reliable detected, returns a value for the remaining weigh distribution coeffi-
cient.

In the current model the explicit assumption used in guessing (for the Seller’s side
only) is that, everything else being equal, a human Buyer would prefer a better qual-
ity item to a poorer quality one. Otherwise stated there exists a (partial) ordering of
the attribute values such as: evaluation(good) > evaluation(fairly good) > evaluation
(standard) > evaluation(meager) > evaluation(none). We define the Attribute Value
Distance AVTj for each attribute j ∈ A as the distance between values for an attribute
in two successive bids, on an ordinal scale. For example, given the above ordering,
the distance between good and fairly good is 1, while the difference between good
and standard is 2. It is important to show that this attribute value distance does NOT
depend on the exact values the opponent assigns to these labels — since in the current
model this information is private (not disclosed to the other). After running a consid-
erable number of experiments we observed that such a simple ordering information
can lead to a reasonably good heuristic. Partial ordering information is usually suffi-
cient to make a good prediction about the opponent’s preferences in the negotiation
(i.e. if this distance is known only for some labels, this is enough).

Next we need a mapping of the detected concession distances to the remaining
weight distribution coefficients introduced in Sect. 3.4 (see Table 2). The values for
the above coefficients were determined experimentally as follows: first between each
two different labels (representing quality levels) an initial value was computed by
subtracting their distance value from 4 (the maximum distance). Then the parameters
were adjusted to provide a best linear fit for the results over a large number of tests.
This mapping is domain-specific, meaning it led to good results in the tests we per-
formed, for our specific application. Therefore this parameter mapping may need to
be adjusted by the system designer/agent owner upon application in other domains,
but our model is generic enough to allow this flexibility.

Another issue to be discussed is how many successive bids in the negotiation trace
need to be analyzed in order to make a prediction for Rj. From our empirical tests we
observed that in most cases it is sufficient to adjust the Rj parameter based only on
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Table 2 Remaining weight
distribution coefficients
assigned to attribute value
distances for attrib. j∈ A(G)

Attribute value distance(j) R(j)

0 6
1 4
2 3
3 1
4 .5

the first 3 bids. This can be explained by the fact that our model, being cooperative,
agreement over the attributes with discrete values occurs in the first rounds of the
negotiation — and usually the last rounds can be characterized as “haggling” over the
only continuous attribute, the price.

4 Implementation and experimental validation

The model introduced in Sect. 2 was implemented in the DESIRE agent platform,
build at the Vrije Universiteit, Amsterdam [4]. However, the conceptual negotiation
model presented in Sect. 2 is platform independent. In fact, after the publication of our
original research [15,17], a negotiation model conceptually very similar to ours, but
implemented in the more commercial Java Aglets platform was presented in Ref. [29].

This section first discusses the experimental set-up used in testing the model
presented in Sect. 2. Following, a full example trace is presented for the implemen-
tation. Finally the aggregate experimental results (for different test parameters) are
presented.

4.1 Experimental set-up

In order to test the robustness of the above model, we considered the following
dimensions:

• The number of attribute weights revealed
• Whether guessing is used or not
• The choice for the attribute importance factors
• The evaluations for the attribute value levels

Besides these dimensions, the model contains a number of general parameters, see
Table 3 for an overview. The space of possible parameter instantiations in this case is
very large. Therefore, after some preliminary testing, we choose to fix the parameters
at the overall bid level at a set of values. These values were chosen such that they
provide both stable behavior of the system and assure a termination property — i.e.
in most instances lead to the conclusion of the negotiation in a relatively small number
of negotiation steps (around 10–20 for most tests).

The aim of our test model is to test whether the agents are able to explore efficiently
the space of possible deals in this number of steps.

The importance factors assigned to different attributes are presented in Table 4.
Note that these were also chosen to provide a sufficient cover of the space of possible
preferences. The values presented in Table 4 are raw importance factors, which are
then normalized to add up to 1, using the formula presented in Sect. 3.
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Table 3 Values assigned to
different parameters which
concern the negotiation
strategy by the Seller and
Buyer at the overall bid level

Negotiation parameter BR DR

Negotiation speed β .5 .4
Impatience factor π 4 4
Configuration gap size in price ν 250 200
Utility gap size ω .02 .02
Concession factor γ .5 .9
Configuration tolerance τ .5 .9
Financial rationality factor ρ Not applicable .5
Minimal financial margin ε Not applicable .1
Maximal financial margin δ Not applicable .3

Table 4 Importance factors used for Buyer/Seller, for different levels of preference asymmetry

Tow hedge Airco Extra speakers CD player Price

Fully asymmetric 90/15 90/15 15/90 15/90 300/300
Partially asymmetric 53/53 90/15 15/90 53/53 300/300
Fully symmetric 53/33 53/53 53/53 53/53 300/300

Table 5 Value levels
Good/Fairly
Good/Standard/Meager/None
for each of the 4 attributes

Profile 1 Profile 2

Buyer 100/85/70/30/0 100/70/50/35/0
Seller 30/65/80/65/100 30/50/70/85/100

Next, we should check that these results hold for different possible value configu-
rations. Again the search space here is very large, so we must restrict our attention to
a few profiles combinations, which are shown in Table 5.

In our tests, we assume a business model in which the Seller prefers to sell the
car for a standard price — and not have to install extra accessories, but he is willing
to do so in order to sell it. On the buyer side, because in our model the values for
the attributes represent quality labels, the distances between utilities assigned to each
label can be interpreted as how “quality conscious” or selective that buyer is. For
example, by looking at Table 5, a buyer of profile 2 is more selective than a buyer of
profile 1, because his utility for “fairly good” and “standard” qualities drops quicker,
when compared to the optimal quality level “good”. Other choices are possible, but
in order to properly test the model the choice for the values must be asymmetrical –
meaning the two parties would like different values for each attribute. Otherwise the
parties quickly agree on the configuration (since their interests are convergent) and
the negotiation reduces to haggling about the price.

4.2 An example negotiation trace

In this section, we illustrate the model presented in Sect. 2 through an example. Here
we take the negotiation between a Buyer and Seller with totally asymmetric pref-
erences (see Table 4), where the only information revealed between parties is the
normalized weight of 1 attribute (Tow hedge). For accessories, for both Buyer and
Seller, profile 1 is used (see Table 5). For this example, we use the perspective of the
Seller, which in our case is the party using guessing. For reasons of space, we can
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illustrate only a small part of the full mathematical model, but we hope it is enough
for the reader to understand the rationale behind some of our design choices.

The attribute Tow Hedge has the following normalized preference weights (see
Table 3):

WBUYER,TowHedge = 90/(90 + 90 + 15 + 15 + 300) = .1764

WSELLER,TowHedge = 15/(90 + 90 + 15 + 15 + 300) = .0294

From the perspective of the Seller the preference Difference Coefficient for Tow
Hedge will be: δTowHedge = (WBuyer,TH − WSeller,TH)/(WBuyer,TH + WSeller,TH) =
(.1764 − .0294)/(.1764 + .0294) = .714.

A positive value close to 1 (as shown in 2.3), indicates this the attribute is more
important to the other party (the Buyer). As the general tolerance (for the Seller
side) in this case is τgen = .3, the attribute specific tolerance will be τTowHedge =
τgen ∗ (1 + δTowHedge) = .3 ∗ (1 + .714) = .514. Since τTowHedge > τgen, a larger conces-
sion than average will be made towards the Buyer’s requested value in this attribute.
This can be seen in Table 6 as a large concession, in the first round from “none” to
“fairly good”. Next we exemplify the guessing of the opponent’s weights discussed in
Sects. 2.4 and 2.5. We do this only after the first two rounds from the opponent’s bids,
though the mechanism is the same for subsequent rounds.

The Value Distances and Remaining Weight Distribution Coefficients for the un-
known attributes are (see Table 5 for the Buyer’s first 2 bids and 1 for the coefficient
mapping):
VD(Airco) = VD(good, standard) = 2 => RAirco = 3
VD(CD_player) =s VD(Speakers) = VD(good,meager) = 3
=> RCD_player = RSpeakers = 1.

Since �j∈Aunknown Wj = 1 − (15 + 300)/510 = .235, the estimated weights are:
WAIRCO = 3/(1 + 1 + 3) ∗ .235 = .141, WCD_PLAYER = 1/(1 + 1 + 3) ∗ .235 = .047

In this case, the estimations produced by the guessing are not far from the true
(non-revealed) values of the Buyer: .176 for Airco and .0294 for CD player.

Table 6 provides the complete trace of this negotiation from the perspective of the
Buyer, while Table 7 does the same from that of the Seller. The vertical columns show
the bids made by the two parties in successive rounds.

Figure 7 provides a visualization of the negotiation progress in the joint utility space
(as automatically produced by the implementation in our software environment). For
clarity, only the first 3 bids of the Buyer (marked with a “B”) and the first 2 of the

Table 6 The negotiation trace: Buyer’s perspective

Buyer 1 2 3 4 5 Closing

Bids
Price 18,000 17,450 17,968 18,047 18,083 18,083
Tow hedge Good Fairly good Fairly good Fairly good Fairly good Fairly good
Airco Good Standard Standard Standard Standard Standard
Speakers Good Meager None None None None
CD player Good Meager None None None None

Utilities
Own bid 1 .9203 .9130 .9094 .9068 .9068
Seller’s bid .7407 .8782 .8830 .8864 .8889 .8889
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Table 7 The negotiation trace: Seller’s perspective

Seller Round 1 2 3 4 5 accept:5

Bids
Price 16,900 18,468 18,404 18,359 18,325 18,083
Tow hedge None Fairly good Fairly good Fairly good Fairly good Fairly good
Airco None Standard Standard Standard Standard Standard
Speakers None None None None None None
CD player None None None None None None

Utilities
Own bid 1 .9378 .9296 .9238 .9195 .8884
Buyer’s bid .3167 .5932 .8737 .8838 .8884 .8884

Fig. 7 Utility space
corresponding to the example
trace from Tables 6 and 7
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Seller (marked “S”) are shown. The remaining offers all lie close together in the
straight line between point 3(B) of the buyer and point 2(S) of the seller. This is an
interesting effect, which we have seen in a number of negotiation traces: after estab-
lishing mutually agreeable values for the discrete-value attributes, the agents seem to
“walk” the Pareto-efficient frontier towards each other’s bid. This corresponds to the
haggling about the price from rounds 3–5 in Tables 6 and 7.

The effect is particularly remarkable, since one must keep in mind that neither
one of the agents knows exactly where the Pareto-frontier lies. They cannot compute
this information because they only have partial knowledge of the opponents utility
function (in our experiments, the position of the frontier was computed after the fact
using the full information, but only as a benchmark to measure performance — i.e.
without giving this information to the agents). This effect is surprising, since agents
in our model only model the opponent preferences, they do not try to actually pre-
dict where the frontier lies. Nevertheless, we observed that if opponent modeling is
performed efficiently, the agents “discover” the Pareto-frontier implicitly, using their
approximate opponent models.

4.3 Comparing traces from the same test set

We define a test set as the set of all negotiation traces which share the same Pareto-
efficient frontier and therefore whose outcomes are directly comparable. Between the
negotiations in the same set, the preferences of the two parties are the same: the only
difference is the amount of information shared and their willingness to use guessing.
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Test sets are distinguished from each other by two (sets of) parameters:

• The level of asymmetry in the attribute importance factors (see Table 4)
• The distances between the value labels (cf. Table 5)

Comparing the efficiency of outcomes, both within the same test set and between test
sets, is important in our setting, since, as is shown here, the efficiency of the outcomes
which can be reached depends on how asymmetric the preferences of the parties are.
In Sect. 4.3.1, we first discuss the results from a test set with maximum preference
asymmetry (this setting also corresponds to the example in Sect. 4.2 above). In Sect.
4.3.2 we discuss the results from two related test sets, but where preferences are more
asymmetric (all the results from Sects. 4.3.1 and 4.3.2 refer to the values profile 1, for
both Buyer and Seller). Finally, in Sect. 4.4 we present the aggregate results for all test
sets, across all value distance settings and preference symmetry profiles considered.

4.3.1 Test set with maximal preference asymmetry

Table 8 shows the final outcomes of negotiations involving a Buyer and Seller with
asymmetric preferences and value profiles 1, while in Fig. 8 these outcomes are plotted
w.r.t the Pareto-optimal frontier. The notation is: 1.3 denotes the number of attributes
shared and NG/G denotes whether guessing is used or not. The Pareto frontier in
Fig. 8 is the same as in Fig. 7, just scaled between different values. In fact, the outcome
reached in Fig. 7 appears as point 1G in Fig. 8. The irregular, non-convex shape of the
Pareto-efficient frontier (computed according to [26]) is typical for real-life domains,
where some attributes take discrete values and only some are continuous.

Table 8 Distribution of final outcomes for the negotiations between a Buyer with a stronger pref-
erence for the attributes Drawing Hook and Airco, and a Seller with a stronger preference for CD
player and Extra Speakers

Experimental
setting

Price Tow hedge Airco Extra CD Buyer Seller
speakers player utility utility

Closed negoti-
ation (with or
without
guessing)

19,018 Standard Standard Standard Standard .865185 .84177

One attribute
weight revealed,
without guessing

19,178 Fairly good Standard Standard Standard .86822 .84054

One attribute
weight revealed,
with guessing

18,325 Fairly good Standard None None .906815 .91946

Two attribute
weights revealed,
without guessing

18,790 Fairly good Standard None Standard .882741 .87211

Two attribute
weights revealed,
with guessing

18,325 Fairly good Standard None None .906815 .91946

Three attribute
weights revealed
(with or without
guessing)

18,428 Fairly good Fairly good None None .914 .90166
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Fig. 8 Outcomes for
negotiations between a Buyer
and Seller with asymmetric
preference weights
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From the above test set we can already make some observations. First, more attri-
bute weights shared improves the outcome, so the mechanism is able to make efficient
use of incomplete preference information. In Table 6, this is illustrated by the fact
that, as more attribute weights are shared, a better match is obtained between the
preferences of the parties, with each one obtaining its preferred values in the more
important attributes. Second observation is that the guessing heuristic may improve
the outcome, sometimes considerably. In the trace presented for 1 or 2 attribute
weights shared guessing helps bring the outcome very close to the Pareto-efficient
frontier. For 0 attribute weights shared (i.e. perfectly closed negotiation), in this par-
ticular test set guessing does not help much (however there are test sets where it
does). In the 3 attribute weights shared case the outcome without guessing is already
Pareto-efficient. Note, however, that this case is not equivalent to fully open negotia-
tion, because the evaluations for the values assigned to each quality level are still not
revealed between parties.

4.3.2 Test sets with symmetric and partially symmetric preferences

In this section we illustrate two other test cases, related to the one above, because the
distances between values for the buyer and seller are still 1 (cf. Table 5). Figure 9 plots
the outcomes from two test sets: the first one in which the preference weights of both
parties are the same across all 4 discrete-valued attributes, the second one in which
only two attributes have equal preference weight, the other two having asymmetrical
weights (see Table 4 for the exact values).

From Fig. 9, it can be observed that, in fact, for more symmetric preferences reveal-
ing more information and/or using guessing does not make too much difference (the
tables with the exact outcomes reached are not given here for lack of space, but
they point to the same conclusion). In fact, for the case with completely symmetric
preferences (Fig. 9(a)) we can see that all outcomes actually overlap. In this special
case (equal weights across all attributes), the negotiation actually becomes a zero-sum
game, since there are no mutually beneficial trade-offs between attributes, so the best
that can be achieved is to settle on the middle of the range value.



246 Auton Agent Multi-Agent Syst (2007) 15:221–252

SELLER

10.9 0.75 0.8 0.85 

SELLER

10.9 0.75 0.8 0.85 

1 

0.9 

0.75

0.8 

0.85 

0,1,2,3 
G/NG

Equal Proportion of 

B
U

Y
E

R

1

0.9

0.75 

0.8

0.85 
0-1-2NG

3NG

1-2G

0.95 

B
U

Y
E

R

Potential line

Equal Proportion of 
Potential line

Pareto-optimal
frontier

Pareto-optimal
frontier

(a) (b)

Fig. 9 (a) Outcomes of the negotiation between a buyer and seller with completely symmetric prefer-
ences (i.e. all attributes have equal weights for both parties). (b) Outcomes of the negotiation between
a buyer and seller with partially symmetric preferences (i.e. two attributes have equal weights, two
are asymmetrical — c.f. Table 4)

4.4 Comparing results from all test sets

As shown in Sect. 4.1, 96 negotiation traces were generated in order to test the validity
of our model. Due to space limitation we cannot present in the same detail all the
experimental results (the interested reader is asked to consult [27]). In Fig. 10 we
show the average utilities across all tested profiles, grouped by the level of asymmetry
in preference weight between parties. Within each group, from left to right the level
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Fig. 10 Average utilities for all profiles tested, for different cases of preference asymmetry and
openness
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of openness is varied from no attributes revealed and no guessing used to 3 attributes
weights revealed.

Based on Fig. 10, we can see that our observations from Sect. 4.3 generalize across
profiles: both sharing more information and guessing improves the utility (on aver-
age). It can be seen that the more asymmetrical the preferences of the two parties are,
the greater the scope for potential gains that can be obtained either by sharing more
information or using the guessing heuristic. For example, for all profile combinations
tested in the perfectly symmetrical preferences case, the outcome always had a 0%
improvement, either from sharing more preference weight information or by using the
guessing heuristic. By contrast in the partially symmetric preferences improvements
were of the order of 3–4%, which went up to around 10% for asymmetric preference
weights. This effect can be explained by the fact that our mechanism exploits precisely
this preference asymmetry in order to increase the efficiency of the joint outcome for
both parties.

Another important conclusion is that, if the negotiation speed (see Sect. 4.1) is
set the same for both parties, the outcomes will always lie relatively close to the
equal proportion of potential line, regardless of the guessing/openness model used.
Otherwise stated, the overall concession for the bid level are similar, even though
for each attribute may differ widely. This ensures that, if the negotiation outcome
lies on, or close to, the Pareto-efficient frontier, it will also be relatively close to the
Kalai–Smorodinsky bargaining outcome. This may be important, since some sources
(e.g. [26]) consider closeness to this point as a measure of “fairness” of the negotiation
outcome.

4.5 Human–computer experiments

The results reported in this paper refer only the automated negotiation case, i.e. the
case when both Buyer and Seller are represented in the negotiation by automated
software agents. The user (or owner of the agent) in this case, only needs to input
its preference parameters (i.e. parameters corresponding to its utility function in the
multi-attribute space, c.f. Sect. 3.3), and the software agent computes the bids/counter-
offers. We have, however, also considered the case when humans propose their own
bids against software agents — and we tested the system using an experimental eco-
nomics type of approach (also put forward in Ref. [6]). The full results are outside the
scope of this paper, and they have been comprehensively reported elsewhere [2,3].
Here we provide only a brief synopsis of the results, interested readers being asked
to refer to the above references for the full model.

The negotiation model has been tested extensively involving more than 70 stu-
dents. The students were asked to create their own profile. That profile was used in all
settings: they were asked to negotiate against our software agents and against other
students; the same profiles were used to perform agent–agent negotiations, see Refs.
[2,3]. The results show that comparing agent–agent negotiations with human-human
negotiations with the same profiles the agents usually outperformed the humans.
However, some intuitive leaps performed by humans, are lacking in the agent system.
Out of all our participants (more than 70), some 4 were bound on and successful in
manipulating the agent when against it. It is important to note, though, that all other
players just took the task of negotiation seriously without attempting to find the lim-
itations of the agent. Interestingly, when comparing human–agent negotiation with
agent–agent negotiations, the humans got somewhat better results than the agents,
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and both did clearly better than in the corresponding human–human setting. In future,
the negotiation agents using guessing will tested in the same way.

Finally, we should mention that our mechanism was designed to prevent obvious
ways of cheating, like over-stating attribute preference weights. This is because each
agent scales the sum of the preference weights declared by the opponent to 1. So
an agent has no incentive to over-state his preferences for any attribute, since this
may lead to the opponent making smaller or no concessions in other attributes. Fur-
thermore, a system was added by which an agent stops negotiating when it detects
insufficient concessions from the other in several successive bids, which should prevent
situations where one party makes all the concessions. However, in designing any dis-
tributed mechanism, the problem incentive compatibility remains a challenging one
[8] and formal proofs of the truth-revelation properties of the proposed negotiation
protocol was outside the scope of this work.

5 Discussion

In this section, we provide an overview existing work on negotiation, and, by compar-
ison, we discuss different aspects from our own model.

In Gutman and Maes [13] a number of criteria and benefits are discussed of some
different approaches to negotiation. For example, in the competitive negotiation sys-
tem Kasbah three negotiation strategies are mentioned: anxious (linear increase of
bids over time), cool-headed (quadratic), and frugal (exponential). In the model pre-
sented here, these strategies can be used to determine the negotiation speed. Another
important issue discussed in Ref. [13] is the argument for cooperative negotiation that
merchants often care less about profit on any given transaction and care more about
long-term profitability, which implies customer satisfaction and long-term customer
relationships. That argument supports the importance of the following factors in our
model for negotiation: configuration tolerance (consumer satisfaction), concession
factor (profit), minimal financial margin (profit), and financial rationality (profit).
Furthermore, the remark that cooperative negotiation is a win–win type of negotia-
tion is supported by our model in that consumers and providers both have an extensive
multi-attribute profile (importance factors, evaluation descriptions) that influence the
outcome of the negotiation aiming to satisfy both parties.

The argumentation approach to negotiation (see for e.g. [24] for an overview)
allows the agents to exchange not only bids, but also arguments that influence other
agents’ beliefs and goals, which, it is claimed, allows more flexibility. Some issues which
are usually left open in such approaches are: how do the agents’ mental states relate
to their utilities and if (or how) can the efficiency of such negotiations be measured
from game-theoretic perspective.

A main difference of our work to the work described in Benn et al. ’99 [1] is that
in our approach it is possible to specify heuristics both for the overall utilities and
for separate attributes (with their values and evaluations). In their approach no over-
all view is made; a compensation matrix is used to compensate a concession in one
attribute by other attributes. In our approach it is possible to decide about the overall
concession (in terms of the overall utility) in a negotiation step, independent of specific
concessions for separate attributes. Moreover, in their approach a neural (Hopfield)
network is used to find the compensations for attributes by an approximation process.
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In contrast, our approach uses explicit knowledge to determine the attributes of a
new bid, which makes it more transparent and better explainable.

Fatima et al. [12], present a model for bilateral multi-attribute negotiation, where
attributes are negotiated sequentially. The issue studied is the optimal agenda for such
a negotiation under both incomplete information and time constraints. However, a
central mediator is used and the issues all have continuous values. The effect of time
on the negotiation equilibrium is the main feature studied, from both a game-the-
oretic and empirical perspective. In earlier research [11] a slightly different model
is proposed, but the focus of the research is on time constraints and the effect of
deadlines on the agents’ strategies.

Lai et al. [20] propose a multi-issue negotiation strategy over continuous-valued
issues that involves choosing an offer on the iso-utility (or “indifference”) curve that
is closest to the best counter-offer made by the opponent in the previous negotiation
round. Luo et al. [23] look at the multi-issue negotiation problem in semi-cooperative
environments, and propose a solution based on fuzzy constraint reasoning. Brzostow-
ski and Kowalczyk [5] study a related problem to multi-issue negotiation: that of
selection of negotiation partners, based on possibilistic methods.

Dang and Huhns [9] study agent-mediated, multi-issue negotiation, in the con-
text of internet-based service provision. Hemaissia et al. [14] propose a multi-issue
negotiation model for another setting: that of distributed crisis management.

The line of research of Klein et al. [18] is continued in Ref. [19] for domains in
which issue dependencies influence the overall utility of a bid. Klein at al. [18] show
that there is no guaranteed efficient method that an agent can use to negotiate over
multiple issues, even if the agent tries to guess the opponent’s profile. They propose
to use a mediator who uses a computationally expensive evolutionary algorithm that
can solve non-linear optimization tasks of high dimensionality.

We argue that the most related work to ours is represented by Faratin et al. [10].
Like Faratin et al., we start from the perspective of distributed negotiation, which
eliminates the need of a central planner. As in Ref. [10], we also take the heuristic
approach and we model agents that are able to jointly explore the space of possi-
ble outcomes with a limited (incomplete) information assumption. In Ref. [10], this
is done through a trade-off mechanism, in which the agent selects the value of its
next offer based on a similarity degree with previous bids of the opponent. In our
design, we do no explicitly model trade-offs, yet the same effect is achieved through
the asymmetric concessions mechanism. An advantage of our model over [10] is that
we allow agents to take into account not only their own weights, but also those of
the opponent in order to compute the next bid. In this way agents may exchange
partial preference information for those attributes for which their owners feel this
does not violate their privacy. Also the initial domain information for the attributes
with discrete (“qualitative”) evaluation is different. In Ref. [10], this consists of fuzzy
value labels, while in our model it is a partial ordering of attribute weights.

In more recent work, Coehoorn and Jennings [7] extend the model proposed by
Faratin et al. [10], with a method to learn opponent preference weights, based on
kernel density estimation.

Somefun et al.’03 [30] propose a system for bilateral negotiation over bundles of
information goods. A novel derivative-follower Pareto search strategy is proposed,
in order to search for optimal bundles in the space of the agent’s ISO-utility lines. In
related work, Lai et al. ’06 [21] propose a system for multi-issue negotiation which is
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based on minimizing the perceived distance between the opponent’s previous offer
and the agent’s own ISO-utility line.

Finally, a paper really related to our work is Shakshuki and Abu-Driaz [29]. They
propose a peer-to-peer, agent-mediated e-commerce system, that uses multi-issue
negotiation as one of its core components. The negotiation model employed by [29]
is virtually the same as the one presented in this paper — and was inspired by it,
after the initial, conference publication of our work [15–17,27]. Indirectly, this paper
provides another validation of the conceptual negotiation model presented here, since
it represents an independent re-implementation of this model in a different domain
and software platform (in Ref. [29], the Java Aglets platform was used instead of
DESIRE).

6 Conclusions

The paper introduces a component-based generic agent architecture for integrative
multi-attribute negotiation. An application of the model is described in a prototype
system for negotiation about cars, developed in cooperation with, among others,
Dutch Telecom KPN. The model is robust against some obvious ways of cheating, and
stalling, but the dedicated opponent can manipulate our agents.

In the approach the privacy of both parties is protected. However, it also provides
both parties to reveal a limited amount of information, i.e. the weight of one or more
attributes. The model contains a mechanism in which agents use any amount of incom-
plete preference information revealed by the negotiation partner in order to improve
the efficiency of the reached agreements. Furthermore, a guessing mechanism is intro-
duced in this paper, that is shown to improve the outcome of the negotiation even
further. In this guessing heuristic the agent uses the history of the opponent’s bids to
predict his preferences. Experimental evaluation shows that the combination of these
two strategies leads to agreement points close to or on the Pareto-efficient frontier.
A point that inspires further research is our finding that if both agents use the same
value for the negotiation speed parameter, the outcome is also close to the Kalai–
Smorodinsky point. The negotiation model has also been extensively tested against
student negotiators. The results show that in general the use of agents improves the
negotiation outcome, be it in agent–agent negotiations or human–agent negotiations.

Therefore, the main original contributions of this paper are:

• The component-based generic agent architecture for integrative multi-attribute
negotiation,

• A negotiation strategy that has proved itself in experiments with humans,
• A guessing strategy that further improves the outcome of the negotiation,
• Revealing only a limited amount of preference information to each other leads to

significant joint gains in the outcome.

The negotiation model described in this paper has been designed and automatically
implemented using the DESIRE software environment, developed at Vrije Univer-
sity in Amsterdam — and is part of a larger Brokering framework, which also includes
other aspects of B2C electronic commerce, such as product search and matching (as
outlined in Sect. 2). However the applicability of the conceptual negotiation model
presented in this paper is not strictly limited to our implementation framework and
could be re-used in further research. For example, after the publication of our original
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model in Refs. [16,17], an agent-based negotiation framework, conceptually very
similar to ours, but implemented in the Java Aglets platform has been presented in
Ref. [29].
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