Experience in the Applying Design Patterns http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

Mapping Visual to Textual Representation of Knowledge in
DESIRE

Catholijn J onkerz, Rob Kremer! , Pim van Leeuwenz, Dong Pan! ,Jan Treur?

IDepartment of Computer Science 2Department of Computer Science, Vrije
University of Calgary 2500 University Universiteit, Amsterdam, De Boelelaan 1081 a,
Dr. N.W., AB T2N IN4, Canada. 1081 HV Amsterdam, The Netherlands. Email:
Email: {kremer, {jonker pvleeuw treur} @cs.vu.nl
pand}@cpsc.ucalgary.ca

Abstract

In this paper, graphical representations for knowledge structures in DESIRE (Brazier Dunin-
Keplicz, Jennings & Treur 1995; Brazier, Treur, Wijngaards & Willems 1996) are presented,
together with a graphical editor based on the Constraint Graph environment (Kremer, 1997).
Moreover, a translator will be described which translates these graphical representations to
textual representations in DESIRE. The strength of the combined environment is a powerful
-- yet easy-to-use -- framework to support the development of knowledge based and multi-
agent systems.

1 Introduction

Most languages for knowledge acquisition, elicitation, and reasoning are in pure text format.
Text presentation is easier for a computer program to process. However, text form
presentation is not an easily understandable form, especially for those domain experts who
are not familiar with computer programming. Visual representation of knowledge relies on
graphics rather than text. Visual representations are more understandable and transparent than
textual representations (Nosek & Roth, 1990).

DESIRE (DEsign and Specification of Interacting REasoning components) (Brazier, Dunin-
Keplicz, Jennings, Treur, 1995; Brazier, Treur, Wijngaards, Willems, 1996) is a development
method used for the design of knowledge-based or multi-agent systems. DESIRE supports
designers during the entire design process: from knowledge acquisition to automated
prototype generation. DESIRE uses composition of processes and of knowledge composition
to enhance transparency of the system and the knowledge used therein.

Originally, a textual knowledge representation language was used in DESIRE. Recently, as a
continuation of the work represented in (Moeller, Willems, 1995) a graphical representation
method for knowledge structures has been developed. A description of both graphical and
textual representation of knowledge is given in Section 2.

Constraint Graphs (Kremer, 1997) is a concept mapping "meta-language" that allows one to
visually define any number of target concept mapping languages. Once a target language is
defined (for example, the DESIRE's graphical representation language) the constraint graphs
program can emulate a graphical editor for the language as though it were custom build for
the target language. This "custom" graphical editor can prevent the user from making
syntactically illegal constructs and dynamically constraint user choices to those allowed by
the syntax.

Constraint Graph's graphical environment is used to represent knowledge in a way that
corresponds closely to the graphical representation language for knowledge that is used in

1 of 22 6/13/19,2:55 PM



Experience in the Applying Design Patterns

20f22

DESIRE. A translator is described that bridges the gap between the graphical representation
and the syntax of the textual representation language used in DESIRE.

2 Graphical Knowledge Representation in DESIRE

In this section both graphical and textual representations are presented for the specification of
knowledge structures in DESIRE (Brazier, Dunin-Keplicz, Jennings & Treur 1995).
Knowledge structures in DESIRE consist of information types and knowledge bases. In
Sections 2.1 and 2.2 graphical and textual representations of information types are discussed.
In Section 2.3 representations of knowledge bases are discussed.

Information types (also called signatures) provide the ontology for the languages used in
components of the system, knowledge bases and information links between components.

sont defined in another
information type

object {:} meta-description

son

function information type

relation

00 < [

Figure 1 Information types: Legend
In information type specifications the following concepts are used: sorts, sub-sorts,objects,
relations, functions, references, and meta-descriptions. For the graphical specification of
information types, the icons in Figure 1 are used.

2.1 Basic concepts in information types

A sort can be viewed as a representation of a part of the domain. The set of sorts categorizes
the objects and terms of the domain into groups. All objects used in a specification have to be
typed, i.e., assigned to a sort. Terms are either objects, variables, or function applications.
Each term belongs to a certain sort. The specification of a function consists of a name and
information regarding the sorts that form the domain and the sort that forms the co-domain of
the function. The function name in combination with instantiated function arguments forms a
term. The term is of the sort that forms the co-domain of the function. Relations are the
concepts needed to make statements. Relations are defined on a list of arguments that belong
to certain sorts. If the list is empty, the relation is a nullary relation, also called a propositional
atom. The information type birds is an example information type specifying sorts, objects,
functions and atoms with which some knowledge concerning birds can be specified. The
information type is specified graphically in Figure 2, and textually in Example 1.

http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

6/13/19,2:55 PM



Experience in the Applying Design Patterns

30f22

birds

BIRD TYPE

BIRD | | DIET WAY OF MOYING | HABITAT | IBIRDWPE

1

Figure 2 birds

tweety
hot
coastal areas

CAaMmivore
vegetarian

information type birds
sorts BIRD, DIET, WAY_OF_MOVING, HABITAT, BIRD_TYPE;

objects tweety : BIRD; carnivore, omnivore, vegetarian : DIET;

flying, swimming, running : WAY_OF_MOVING;

cold, hot, coastal_areas : HABITAT;
functions type : DIET * WAY_OF_MOVING * HABITAT -> BIRD_TYPE;
relations flies, penguin : BIRD;

has_type : BIRD * BIRD_TYPE;
end information type

Example 1

2.2 Compositionality of information types

Compositionality of knowledge structures is important for the transparency and reusability of
specifications. In DESIRE two features enable compositionality with respect to information
types: information type references, and meta-descriptions. By means of information type
references it is possible to import one (or more) information type(s) into another. Referencing
is useful as it enables the definition of a generic relation on a sort (for which objects may not
have been specified) in one information type, and the addition of objects, functions, relations,
and sub-sorts to the sort in another information type. For example, information type birds

http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

6/13/19,2:55 PM



Experience in the Applying Design Patterns

4 of 22

above can be used in an information type that specifies a language for objects that might fly.
Suppose that flying objects are either flying birds, flying insects, or flying machines. Given
the information types birds, insects, and machines the more complex information type flying objects
presented in Figure 3 and Example 2, can be constructed using information type references.
Note that the sorts BIRD, INSECT, and MACHINE are specified to be sub-sorts of sort WORLD

OBJECT.

http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

flying objects

BIRD

C_flies_:) (:balloon:) <z_eppel£1>

| woRLD oBUECT |

<hindenb urg

INSECT

| | mecHine

atane 5

Figure 3 flying objects

end information type

pingu : BIRD;

information type flying_objects

sorts WORLD_OBIJECT;

objects ariane_5 : MACHINE;

information types birds, insects, machines;

sub-sorts BIRD, INSECT, MACHINE : WORLD_OBIJECT;

hindenburg : WORLD_OBIJECT;

relations zeppelin, balloon, flies : WORLD_OBJECT;

Example 2
The second feature supporting compositional design of information types is the meta-
description mechanism. The value of distinguishing meta-level knowledge from object level
knowledge is well recognized. For meta-level reasoning a meta-language needs to be
specified. Using the above constructs it is possible to specify information types that describe
the meta-language of already existing languages. As an example, a meta-information type,
called about birds, is constructed using a meta-description of the information type birds (see
Figure 4). The meta-description of information type birds connected to sort BIRD ATOM
ensures that every atom of information type birds is available as a term of sort BIRD ATOM.
The textual specification of information type about birds is presented in Example 3.

6/13/19,2:55 PM



Experience in the Applying Design Patterns

50f22

about birds

¢ Tobe discovered ¢."has been discovered "

1 2

| BIRD ATOM SIGN

Figure 4 about birds

information type about_birds
sorts BIRD_ATOM, SIGN;
meta-descriptions birds : BIRD_ATOM,;
objects pos, neg : SIGN;
relations has_been_discovered : BIRD_ATOM * SIGN;

to_be_discovered : BIRD_ATOM;

end information type

Example 3

2.3 Knowledge bases

Knowledge bases express relationships between, for example, domain specific concepts.
Reasoning processes use these relationships to derive explicit additional information.
Consider information type compare birds.

information type compare_birds
information types birds;

relations same_type: BIRD * BIRD;

end information type

The knowledge base birds kbs specified in Example 4 expresses which birds are of the same
type, and which birds fly. The first rule is graphically represented in Figure 5.

knowledge base birds_kbs

information types compare_birds;

contents
if has_type(X: BIRD, Y: BIRD_TYPE)
and has_type(Z: BIRD, Y: BIRD_TYPE)

Example 4

http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

6/13/19,2:55 PM



Experience in the Applying Design Patterns http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

then same_type(X: BIRD, Z: BIRD);

if has_type(X: BIRD, type(Y: DIET, flying, Z: HABITAT)
then flies(X: BIRD);
has_type(tweety, type(vegetarian, flying, hot));

end knowledge bas

term of
ANTECEDENT

Figure 5 Graphical representation of a rule
Finally, compositionality also can be used for knowledge bases. One knowledge base can
reference several other knowledge bases. The knowledge base elements of knowledge bases
to which the specification refers are also used to deduce information. An Example of the
graphical representation of knowledge base referencing is presented in Figure 6.

6 of 22 6/13/19,2:55 PM



Experience in the Applying Design Patterns

7 of 22

W

walking birds kbs

birds kbs

Figure 6 Relations between Knowledge
bases
In Figure 7 an example is given of the graphical representation of relations between
knowledge bases and information types.

Figure 7 Relations between Information types
and Knowledge bases

3 Constraint Graphs

Constraint graphs is a concept mapping "meta-language" that allows one to visually define
any number of target concept mapping languages. Once a target language is defined (for
example, the DESIRE knowledge representation language) the constraint graphs program can
emulate a graphical editor for the language as though it were custom build for the target
language. This "custom" graphical editor can prevent the user making synactically illegal
constructs and dynamically constraint user choices to those allowed by the syntax.

In order to accomodate a large number
of visual languages, constraint graphs
must make as few assumptions about /
concept mapping languages as possible.
To this end, constraint graphs defines
only four base components: node, arc,
context, and isa (see Figure 8). Nodes \ /
and arcs are mutually exclusive, where A f
nodes are the vertices from graph theory,
and arcs interconnect other components,
and are analogous to edges in graph
theory. Both nodes and arcs may (or
may not) be labeled, typed, and visual

http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

Figure 8 The base type lattice for constraint

distinguished by color, shape, style, etc.
graphs

Contexts are a subtype of node and may
contain a partition of the graph. Isa arcs are a subtype of arc and are used by the system to
define the subtype relation: one defines one component to the be a subtype of another
component merely by drawing an isa arc from the subtype to the supertype.

Futhermore, the generality requirement of constraint graphs dictates that arcs are not always
binary, but may also be unary or of any arbitrary arity greater than 1 (i.e., trinary and n-ary
arcs are allowed). For example, the between relation puts a trinary arc to good use. Constraint
graphs arcs may interconnect not only nodes but other arcs as well. This is not only useful,
but necessary because all subtype and instance-of relations are defined using an isa arc, arcs
between arcs are required to define the type of any arc. Finally, constraint graphs does not

6/13/19,2:55 PM



Experience in the Applying Design Patterns

8 of 22

make hard distinctions between types and instances, but rather, follows the object-delegation
model (Abadi & Cardelli 1996) where any object can function as a class or type. (Constraint
graphs can prevent a component from acting as a type using ad-hoc constraints (Kremer
1997), but that is beyond the scope of this paper.)

To illustrate some of the above points,
Figure 9 shows a simple definition. Here, the
red, directed arcs are the constraint graphs isa
arcs and define carnivore and vegetarian to
be subtypes of animal, wolf as a subtype (or
instance-of) of carnivore, and rabbit as a I
subtype (or instance-of) of vegetarian.

Furthermore the eat binary arc (or relation) is

defined and starts on carnivore and terminates

on animal. These terminals are important: the ™ Fijgure 9 An example constraint graphs
components at the terminals constrain all definition.

subtypes of eat to also terminate at some

subtype of carnivore and animal respectively. The second eat arc is defined (by the red isa
arc between it's label and the first eat arc's label) to be a subtype of the first eat arc. It is
therefore legally drawn between wolf and rabbit, but the editor would refuse to let it be drawn
in the reverse direction: the ear definition says that rabbits can't eat wolves.

animal

carnivore vegetarian

4. The Translator

4.1 Specifying the graphical notations in Constraint Graphs

In Constraint Graphs, three basic types of objects exist: nodes, arcs and contexts. The
elements of the language to be expressed in the Constraint Graphs' environment therefore
need to be mapped onto these basic types. Table 1 below shows the mapping between
DESIRE's knowledge elements and nodes, arcs and contexts.

‘ ‘Object Sort ||Subsort deslc:/r[iept‘f;on Function [Relation Inf(i?;:tion Knl(;\:llslzdge
[ Nobe | x x| - | - | - | -0 - | -
| AaRC || - - x | x | x | X | - [ -
I[CONTEXT | - |[- | - || - - - | o x | X

http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

Table 1: Mapping between DESIRE and Contraint Graphs

Constraint Graphs allows the user to further constrain the language definition in Constraint
Graphs by, for example, restricting the shapes and connector types of the nodes and arcs the
language elements are mapped onto. In our case, we restrict the shape of node Sort to a
rectangle, and the shape of Object to a diamond. Furthermore, sub-sorts, meta-descriptions
and relations will be represented as directed labeled arcs, where the label takes the shape of
an ellipse. Moreover, functions will be depicted as directed labeled arcs as well, but the label
will be a parallelogram. Finally, information types and knowledge bases are mapped onto
contexts, and the shape of these contexts will be the default: a rectangle. Although these
shapes do not correspond to the shapes of the graphical representation language used in
DESIRE, no confusion is expected.

Figure 10 below gives an impression of a specification of the DESIRE information type birds
(compare to Figure 2) in Constraint Graphs.

6/13/19,2:55 PM



Experience in the Applying Design Patterns

9 of 22

SIG: birds_sig
|B|RD DIET WAY OF_MOVING HABITAT BIRD_TYPE
- . ; immi |
eety redator> Y€getaria lyin — S S o

Figure 10 Example of a specification of DESIRE in Constraint Graphs

4.2 Implementation of the Translator

Every mature engineering discipline has handbooks to describe successful solutions for
known problems. There now exists a software design patterns literature (beginning with a
book by Gamma et al (Gamma, Helm, Johnson, and Vlissides, 1994)) describing successful
solutions to common software problems. Industrial experience has proven that patterns are a
valuable technique in software engineering problem-solving discipline. Not only do patterns
capture successful experience, they also help improve communication among designers. They
can help new developers avoid traps and pitfalls that traditionally can only learned by costly
experience. Patterns do more than just describe solutions, they help reason deep rationale of
the solutions. This section uses patterns to detail some aspects of the translator
implementation.

The translator was implemented with Borland C++ under Windows NT. To make the program
more portable, only ANSI C++ syntax is used. The implementation details that do not relate
to design patterns are omitted here.

4.2.1 Interpreter Pattern

The intent of the Interpreter pattern is to represent the grammar of a language and interpret
sentences in the language (Gamma, Helm, Johnson, and Vlissides, 1994, pp 243-255). The
Interpret pattern represents each grammar rule as a class. Symbols on the right-hand side of
grammar rule are instance variables of the class. The TerminalExpression implements an
Interpret method associated with terminal symbol in the grammar. The
NonterminalExpression implements the Interpret method for nonterminal symbol in the
grammar. Typically the Interpret method of NonterminalExpression is implemented by
calling the Interpret methods of its subexpressions. The Interpret method takes Context as an
argument. The Context provides information global to the interpreter. What the Context
should contain totally depends on what the Interpret method intends to do.

For the translator, the class hierarchy for the Interpreter Expression
pattern has a common abstract class Expression. Expression Iaterprer(Context)
declares a pure virtual Interpret method which will be A

. . . . [ ]
inherited and implemented by all its concrete subclass. It has Map Expression | | DesiveExpression

two direct subclasses: MapExpression and DesireExpression. | huerpret{Context) | | uterpret{Context)
These two classes are also abstract classes. They act as the

base classes of Constraint Graph and DESIRE object hierarchies respectively. All Constraint
Graph expression nodes are subclasses of MapExpression; all DESIRE expression nodes are

http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

6/13/19,2:55 PM



Experience in the Applying Design Patterns http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

subclasses of DesireExpression.
Terminal Expression

For TerminalExpression, the implementation of the representing class is simple and
straightforward. Besides the attributes and methods needed for normal functioning, it must
implement the virtual Interpret method inherited from base class. The Interpret method will
interpret the corresponding terminal symbol that the class represents. For example, DESIRE
has a grammar rule defining variables:

<variable> ::= <variable name> <sort_name>

This is a terminal expression. This grammar rule was modeled as class DesireVariable shown
in Listing 2.

class DesirevVariable : public DesireExpression {

public:

int Interpret(Context);

protected:
String varName;
String sortName;

}i

Listing 2: Class Definition of DesireVariable
This class has two instance variables, variable_name and sort_name, which correspond to the
symbols appearing on the right-hand side of its grammar rule. It also implements the
Interpret method declared in its parent class. The Interpret method checks whether an
expression is valid according to the Context. For variables, a variable is legal if the sort is
defined. Through the Context, one can check whether a symbol is defined and the type of the
symbol. The Interpret method can be defined as:

int DesireVariable::Interpret(Context c)
{
if(c.defined(sortName) && c.typeOf(sortName) == "sorts")
return 1;
else
return 0;
}

Listing 3: Interpret Method of DesireVariable Class
In the above code, defined and typeOf are methods defined in Context that checks whether a
symbol is defined and what its type is.

Nonterminal Expression

10 of 22

6/13/19,2:55 PM



Experience in the Applying Design Patterns http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

For NonterminalExperssion, as described in Gamma, et al:

« "one such class is required for each rule R::=R|Rj...R;, in the grammar".

« "maintains an instance variable of type AbstractExpression for each of the symbols R
through R, in the grammar".

« "implements an Interpret operation for nonterminal symbols in the grammar. Interpret
typically calls itself recursively on the variables representing R through R," (Gamma,
Helm, Johnson, and Vlissides, 1994, p. 246).

The second point, maintains an instance variable of type AbstractExpression for each of the
symbols R through Ry, in the grammar, deserves further explanation. At the first glance, the
sentence may seem that the authors were advocating using class AbstractExpression as

instance variables types. But further investigating shows that is not what the authors means.

Note the use of the word fype, instead of class before AbstractExpression. This should be
taken to imply that the instance variable is some subtype of AbstractExpression, not precisely
AbstractExpression. In class-based languages (e.g., C++), subclassing is subtyping (Abadi
and Cardelli, 1996). By subsumption, a value of type A can be viewed as a value of a
supertype B. So, if c¢' is a subclass of ¢, then an instance of class c' is an instance of class c. A
subtype can be used in any place where a supertype can be used. Since any subclass type is of
its base class type, the instance variables type can be the type of any subclasses of
AbstractExpression.

For example, consider the following grammar rule of DESIRE.

knowledge base::= knowledge base <kb_ name>
[knowledge base_ interface]
[knowledge base reference]
knowledge_base_ contents

end knowledge base.

Listing 4: Grammar Rule of Knowledge Base in
DESIRE

Knowledge_base_interface has been modeled as class DesireKBlInterface .
Knowledge_base_reference has been modeled as DesireKBRef. And
Knowledge_base_contents has been modeled as DesireKBContent. How does one model
Knowledge_base?? Of course, all the instance variables can be subsumed to DesireExpression,
one could use the DesireExpression class as the type of all instance variables. Doing so has
no run-time effect. But it has the consequence of reducing static knowledge about the true
type of objects. So subtypes are used as the instance variable types if the instance type
information is evident from the grammar syntax. The above grammar rule is implemented as
in Listing 5.

class DesireKB : public DesireExpression {

public:

Interpret(Context);

Listing 5: Class Definition of DesireKB

11 of 22 6/13/19,2:55 PM



Experience in the Applying Design Patterns http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

protected:
string name;
DesireKBInterface* kbInterface;
DesireKBReference* kbReference;

DesireKBContent kbContent;

}i

Each Ry, Ry, ..., Ry, in the grammar rule is maintained as an instance variable of a specific
subclasse type. These can be treated as type DesireExpression or Expression by subsumption
if necessary. This approach is advantageous for the following reasons:

 The static object types of symbols in NonterminalExpression are made obvious. It is
easier to relate classes to grammar rules.

It is more type-safe. Since the type of instance variables are all specific subclasses type,
not the generic AbstractExpression, there are no need to get the instance types at run
time. While using these instance variables, there are no need to use dynamic_cast<> to
get their actual types dynamically.

« Statically specifying instance variable's type can also ensure objects of the wrong type
cannot be set/added to the NonterminalExpression. Therefore, the instance of
NonterminalExpression will not contain wrong types of instance variables. The
creation of NonterminalExpressions will be less error-prone.

The Interpret method for NonterminalExpression calls the Interpret method of instance
variables representing R through R;,. For example, to check whether a symbol is valid, the

Interpret method of class DesireKB can be implemented as in Listing 6.

int DesireKB::Interpret(Context c)
{
int ret = 1;
if (kbInterface)
ret = ret && kbInterface->Interpret(c);
if (kbReference)
ret = ret && kbReference->Interpret(c);
ret = ret && kbContent.Interpret(c);
return ret;
}

Listing 6: Interpret Method of DesireKB
Class Structure
The class structure of the implementation is shown in Figure 11.

12 of 22

6/13/19,2:55 PM



Experience in the Applying Design Patterns

13 of 22

http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

—,—. Context

Client » AbstractExpression
Inferpref(Confext)
Expression 1 Expression 2 Expression k Nonterminal Expression
Interpret(Context) Interpret(Context) ©77 | Interpret(Context) Expressionl R1
Expression2 R2
Expressionk Rk

Yy ¥ ¥

Figure 11 Structure of Implemented Interpret Pattern
In Figure 11, Expressionl , Expression2, Expressionk can be either TerminalExpression or
NonterminalExpression. If it is NonterminalExpression, their structures will be similar to the
one shown in the figure.

Context

Context provides information that is global to the Interpreter. The kind of attributes and
methods that class Context should have depend on what kind of operation the Interpret
method intends to do. One Interpret method of Constraint Graph is to draw the graphics. So
the Context class provides the device handle of the drawing, and the drawing position, as
shown in Listing 7.

class Context {
public:
Context();
virtual ~Context();
void SetPointl(TPoint&);
void SetPoint2(TPointé&);
void SetDevice(DEVICE);
TPoint GetPointl();
TPoint GetPoint2();
DEVICE GetDevice();
protected:
TPoint pl;
TPoint p2;

DEVICE Device;

Listing 7: Class Definition of
Context

6/13/19,2:55 PM



Experience in the Applying Design Patterns

14 of 22

}i

The grammar of both languages is not likely to have major changes; at most they will
undergo minor changes. Therefore, it is preferable that the classes of Interpreter class
structures can be kept unchanged unless the grammar of the language changes. In the mean
time, new ways of interpreting the languages should be convenient to add. How can new
interpretation operations be added without changing classes of the class structure?

The Interpreter pattern distributes the Interpret method over the whole class structure. Every
class in the class structure needs to be modified if another kind of interpretation is needed,
i.e., new Interpret methods must be added into each class. When there are many classes in the
class structure, it will be very time-consuming and error-prone to make such changes.

The Visitor pattern represents an operation to be performed on the elements of a class
structure (Gamma, Helm, Johnson, and Vlissides, 1994, pp 331-344). Each Visitor is a set of
related operations that can be performed on the elements of the class structure. New
operations can be introduced without changing the classes of the elements on which it
operates. The Visitor pattern deals with two class hierarchies: the Visitor, and the Elements on
which the Visitor operates. For each concrete class in the Element class hierarchy, a visit
method is defined in the Visitor class. Each class of the Element hierarchy defines an Accept
method which introduces Visifor into the class hierarchy. Element class sends a request to
Visitor by calling the Accept method which takes an object of the Visitor class as its
argument. The Accept method invokes the visit method defined in the Visitor class and passes
the object itself as the argument to the visit method.

The Elements of current system are the class hierarchy of the Interpreter pattern
implementations. The subsection below describes the implementation of the Visitor.

Visitor

An abstract Visitor class is defined so that more than one operation can be defined. Each kind
of operation can be defined as a concrete subclass of the abstract Visitor class. In the abstract
Visitor class, a pure virtual method visit is defined for each TerminalExpression class;
however, for NonterminalExpression, two visit methods, visit and postVisit, are defined. The
visit method visits the element before visiting its composing components. The postVisit
method visits the element after visiting its composing components.

The reason for defining two visit methods for NonterminalExpression is due to its inherent
structure. NonterminalExpression is composed of other expressions. No presumption can be
made about when Visifor should "visit" its composing components, either before or after
visiting itself. In addition, such nodes may need some pre-processing before they process
their constituent components, and some post-processing after they have processed their
constituent components. Defining two visit methods for NonterminalExpression classes
solves both problems.

Element

Each element defines an Accept method which takes Visitor as an argument. By calling
Accept, the element sends a request to Visifor, and passes itself as the argument. The Visitor
will then perform the desired operation for the element. Listing 8 shows the Accept method of
DesireVariable class.

As mentioned above, no presumptions can be made about when its composing components
should be visited for NonterminalExpression, the Accept method of such nodes must send
requests to Visitor twice: one before visiting its composing components, the visit function

http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

6/13/19,2:55 PM



Experience in the Applying Design Patterns http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/
call, and again after visiting its composing components, the postvisit function call, as
shown in Listing 9.
Sample Code

Below is some code segments of the pretty printing visitor pattern used in the translator.

void DesireVariable::Accept(DesireVisitor& v)
{
v.Visit(this);

}

void DPrettyPrintVisitor::visit(DesireVariable* v)

{
if (needComma) out << ',';
else needComma = 1;
out << v->GetName() << ":" << v->GetSort();
currentCol += (v->GetName().length() + v->GetSort().length() + 1);
needComma = 1;
}

Listing 8: Pretty Printing Visitor for class DesireVariable
In the above code, out, needComma, currentCol are instance variables defined in class
DPrettyPrintVisitor. They support and control the behavior of the DPrettyPrintVisitor.
numberOfTabs is also an instance variable of class DPrettyPrintVisitor to control the position
of printing.

void DesireKB: :Accept(DesireVisitor& v)
{
v.Visit(this);
if (kbInterface)
kbInterface->Accept(v);
if (kbReference)
kbReference->Accept (V) ;
kbContent.Accept(v);
v.postVisit(this);
}
void DPrettyPrintVisitor::visit(DesireKB* kb)

{

if (currentCol)

Listing 9: Pretty Printing Visitor for DesireKB

15 of 22 6/13/19,2:55 PM



Experience in the Applying Design Patterns

16 of 22

out << endl;
numberOfTabs = 1;
out << "knowledge base

currentCol = 0;

}

{

if (currentCol)

out << endl;

numberOfTabs = 0;

currentCol = 0;

void DPrettyPrintVisitor:

http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

" << kb->GetName() << endl;

:postVisit (DesireKB¥*)

out << "end knowledge base." << endl << endl;

Class Structure

The class structure of the implemented Visitor pattern is shown in Figure 12.

6/13/19,2:55 PM



Experience in the Applying Design Patterns http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

Client I Visitor

visif{ampleElement)
visifcomposifeBlement)
postVisiffcomposife Element)

A
| |

Concrete Visitorl Concrete Visitor2
visit(simple Element) visit(simple Ele ment)
visit(compositeElement) visit(compositeElement)
postVisit{compositeElement) post¥isit(compositeElement)

»| ObjectStructure o Element
AcceptiVistor)
| |
Simple Ele ment Composite Ele ment

Accept(Visitorv) ¢

Accept(Visitorv) ¢

w—>visit(this) “ w—>visit(this)

for each of its component n
n->Accept(Visitor v)

v—>postVisit(this)

Figure 12 Structure of Implemented Visitor Pattern

5. Relation to Conceptual Graphs

In this paper, graphical notations for knowledge in DESIRE are presented, as well as a
translator which translates specifications of these notations in a graphical environment called
Constraint Graphs to the original textual DESIRE language. Having this graphical interface
brings the knowledge modelling in DESIRE closer to other well-known knowledge
representation languages, such as Conceptual Graphs (Sowa, 1984). A conceptual graph is a
finite, connected, bipartite graph, which consists of two kinds of nodes: concepts and
conceptual relations (Sowa, 1984, p. 73). Concepts are denoted by a rectangle, with the name
of the concept within this rectangle, and a conceptual relation is represented as an ellipse,
with one or more arcs, each of which must be linked to some concept. Figure 13 below shows
an example conceptual graph, representing the episodic knowledge that a girl, Sue, is eating

pie fast.

17 of 22 6/13/19,2:55 PM



Experience in the Applying Design Patterns

18 of 22

GRL:Sue  |=— < EAT — FAST
O] PE

Figure 13 An example conceptual graph
When comparing conceptual graphs with the graphical notations for DESIRE, many
similarities become apparent. For instance, DESIRE's relations are denoted by ellipses, like
conceptual relations, and sorts appear as rectangles, like concept. Other elements however,
such as objects, functions or arcs between various elements are harder to translate to a
Conceptual Graph notation. Below the mapping of graphical DESIRE elements to a
Conceptual Graphs equivalent is discussed in some detail. Table 2 summarizes this
discussion, providing an overview of the translation of DESIRE elements to Conceptual
Graphs.

Sorts: Sorts conform to generic concepts in Conceptual Graphs. The notations are the same.

Objects: Objects are instances of a sort in the real world. Sowa (1984, p. 85) denotes these
instances with individual concepts, concepts with an individual marker following the concept
name: [BIRD: tweety]. This notation is short for the following: [BIRD]->(NAME)->
["tweety"]. The objects-diamond in DESIRE can be mapped to an individual marker in
Conceptual Graphs, and the instance_of arrow in the graphical notation can be compared to
the conceptual relation NAME. In the case of an anonymous individual, the graphical
DESIRE notation is comparable to the notation in Conceptual Graphs: if one knows that an
individual of type BIRD exists, but it is unknown which individual, then this information is
represented as [BIRD: *x].

Functions: In DESIRE, functions group sorts together by mapping them onto another sort.
Functions can be regarded to be subtypes of a general concept FUNCTION, which takes one
or more arguments and produces a result. Function SQRT, for example, can be defined as
follows (Sowa, 1984, p. 415):

[ NUMBER ] <- (ARG ) <-[ SQRT ] -> (RSLT ) -> [ NUMBER |

In this graph, SQRT is a subtype of FUNCTION, taking one argument of type NUMBER
and producing a result of type NUMBER. In DESIRE, functions do not calculate a number
based on another number or other numbers, but functions act as a named placeholder for an
object of its result, in which the argument(s) and the name of the function ensure the
placeholder's uniqueness. Function mileage_function, for example, maps a car to a number
and could be represented as the following Conceptual Graph:

[CAR]<-(ARG)<-[MILEAGE FUNCTION]->(RSLT)->[NUMBER].

This function can be used in constructions such as smaller(mileage(R: RENAULT), 30),
stating that the mileage of a Renault is smaller than 30.

Relations: Relations can be classified according to their arity. This arity determines the
mapping to Conceptual Graphs. 0-ary relations in DESIRE will have to be translated to
concepts; concepts in Conceptual Graphs form a graph in itself, like relations form a DESIRE
atom in DESIRE. Relations with an arity greater than zero can be translated into either a
conceptual relation with the same arity or a combination of a concept and (an)other

http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

6/13/19,2:55 PM



Experience in the Applying Design Patterns

19 of 22

conceptual relation(s). For example, the relation between: space * brick * brick in DESIRE
could be translated into the following Conceptual Graph:

[ SPACE ]-> (BETW)->[ BRICK]

->[BRICK]

This graph is a triadic relation, which could be read as "a space is between a brick and a
brick". Relation travel: person * origin * destination however should be translated into the
graph

[TRAVEL] -
(AGNT)->[ PERSON |
(ORG)->[ORIGIN]

(DEST)->[DESTINATION ]

In Conceptual Graphs, TRAVEL is regarded to be a concept and not a conceptual relation.
This is why relation fravel in DESIRE is translated into a concept TRAVEL, connected to
person, origin and destination by conceptual relations that specify the role these concepts

play in the TRAVEL-graph.

Sub-sorts: Sub-sorts in DESIRE correspond to the type hierarchy of concepts in Conceptual
Graphs. In Conceptual Graphs, hierarchies of both concepts and conceptual relations are
possible, but these hierarchical is-a relations are kept in a separate semantic net from other
relations that exist in the domain. In DESIRE, hierarchical relations between sorts are
allowed; the sub-sort-relation is one of the many relations that may exist between sorts in a
domain.

Information types, knowledge bases, antecedents, consequents and not-boxes: DESIRE's
information types, knowledge bases, antecedents, consequents and not-contexts can be
regarded as contexts in Conceptual Graphs. Although the graphical DESIRE notation uses a
different icons to represent these contexts, these contexts can be represented by labelled
rectangles in Conceptual Graphs, where the labels of these rectangles denote the type of the
context (information type, knowledge base, antecedents, consequents, and not-boxes).

Information type and knowledge base references: In DESIRE, mechanisms exist to enable
compositionality of information types and knowledge bases: information type- and
knowledge base references, see Figures 3 and 6. In Conceptual Graphs, contexts that contain
other contexts represent this contain-relation by enclosing context-boxes in other context-
boxes. Therefore, the graphical DESIRE notations for this compositionality can be translated
to Conceptual Graphs notation by placing information types in information types and
knowledge bases in knowledge bases.

Meta-descriptions: Another, different relation exists between information types: the meta-
description. A information type A in DESIRE is said to contain a meta-description of a
information type B if information type A can be used to specify as terms the atoms that can
be specified using the vocabulary of information type B. This means that information type A
allows for expressing statements that are at a meta-level with respect to the language defined
in information type B. The meta-description relationship is expressed in the graphical
notation as a connection, between the meta-described information type B to a sort in the
meta-level information type A. This object-meta-level relation between information types is
very specific to DESIRE. In Conceptual Graphs, this relationship between information types
A and B could be expressed as the conceptual relation [Information type
B]->(METALEVEL)->[Information type A], with the intended meaning that information
type A is at a meta-level with respect to information type B.

http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

6/13/19,2:55 PM



Experience in the Applying Design Patterns http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

Knowledge base to information type reference: The graphical DESIRE notation for a
knowledge base referencing an information type is a connection from the knowledge base to
that information type. This connection indicates that the knowledge base, which contains
facts and rules that hold in the application domain, uses that information type as the
vocabulary to express those facts and rules. One could argue that a information type can be
compared to the first three parts of a cannon (Sowa, 1984, p.96), which is a set of four
components used to derive canonical graphs: a type hierarchy (sorts and sub-sorts), a set of
individual markers (objects), a conformity relation (the sorts the objects belong to) and a
finite set of conceptual graphs (the graphs that are true in the domain). The knowledge
expressed in knowledge bases would then conform to the fourth component of the canon: the
set of graphs that are true in the domain.

The implies arrow: The last candidate for comparison is the labeled arrow "implies", which
connects the antecedent and consequent of a rule in the graphical DESIRE notation. This
arrow can be translated into a relation 'TMP', a logical operator denoting the implication
between propositions (Sowa, p. 147). 'IMP' is defined as follows:

relation IMP(x.y) is [*x] [*y] (NEG)->[ [*x] (NEG)->[ [*y]]].

The parameter symbols *x and *y are used to denote the coreference relations between
elements in the expression. TMP' could be read as: there exists an x and a y and it is not true
that both x is true and y is not true.

20 of 22

This concludes the brief comparison of the graphical DESIRE notations to Conceptual
Graphs. Table 2 below summarizes the mapping sketched above.

Desire Element

Graphical Equivalent in
Constraint Graphs

Equivalent in Conceptual
Graphs

| Object | diamond | individual concept
| Sort | rectangle | generic concept
rectangle connected to super- .
Sub-sort & P type hierarchy of concepts

sort by instance-of arrow

Meta-Description

dashed arrow from signature

conceptual relation

to sort ->(METALEVEL)->
| Function | parallelogram | concept FUNCTION
e [T
| Information type | context-box labeled SIG | context
| Knowledge Base | context box labeled KB | context
| Antecedent | context-box labeled ANT | context
| Consequent | context-box labeled CONS | context
| NOT-context | context-box labeled NOT | negative context

Information type Reference

arrow between information
types

context enclosed in another
context

Knowledge base Reference

arrow between knowledge
base contexts

context enclosed in another
context

6/13/19,2:55 PM



Experience in the Applying Design Patterns

http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

. arrow from kb to information|| comparable to first three and
KBusingSIG .
type last component in a canon
arrow labeled "implies" :
conceptual relation
Rule between antecedent and
->(IMP)->
consequent

Table 2 mapping the graphical DESIRE notation to Conceptual Graphs

6. Conclusion

In this paper, graphical representations for knowledge structures in DESIRE (Brazier Dunin-
Keplicz, Jennings & Treur 1995; Brazier, Treur, Wijngaards & Willems 1996) have been
presented, together with a graphical editor based on the Constraint Graph environment
(Kremer 1997). Moreover, a translator has been described which translates these graphical
representations to textual representations in DESIRE. This software environment can be
regarded as a graphical design tool for knowledge in DESIRE, an interface which offers
many advantages to a textual interface. First, Constraint Graphs can be used to specify
knowledge structures, allowing the user to work with a mouse, pull-down menu's and
windows instead of typing the specification conform the textual DESIRE syntax. Second,
Constraint Graphs offers a clear visual representation, facilitating communication between
domain expert and knowledge engineer in the development process. Third, the graphical
representations bring DESIRE closer to other knowledge representation languages, such as
Conceptual Graphs (Sowa, 1984). In conclusion, the strengths of the Constraint Graphs
environment as an easy to use representation tool in combination with the DESIRE
environment allows for a powerful framework to support the development of knowledge
based or multi-agent systems.

References

Abadi, M. and Cardelli, L. (1996). A Theory of Object, Springer, New York, 1996

Brazier, FM.T., Dunin-Keplicz, B., Jennings, N.R. and Treur, J. (1995). Formal specification
of Multi-Agent Systems: a real-world case. In: V. Lesser (Ed.), Proceedings of the First
International Conference on Multi-Agent Systems, ICMAS-95, MIT Press, Cambridge, MA,
pp- 25-32. Extended version in: International Journal of Cooperative Information Systems,
M. Huhns, M. Singh, (Eds.), special issue on Formal Methods in Cooperative Information
Systems: Multi-Agent Systems, vol. 6, 1997, pp. 67-94.

Brazier, EFM.T., Treur, J., Wijngaards, N.J.E., Willems, M. (1996) Temporal Semantics of
Complex Reasoning Tasks, In: B. Gaines, M. Musen (eds.), Proceedings of the 10th
Knowledge Acquisition Workshop, KAW'96, Banff, University of Calgary, pp. 15/1-15/17.
Extended version to appear in Data and Knowledge Engineering

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, Reading, Mass., 1994

Kremer, R. (1997). Constraint Graphs: A Constraint Graphs Meta-Language, PhD
Dissertation, Department of Computer Science, University of Calgary, 1997

Moeller J.U., Willems M. (1995). CG-DESIRE: Formal Specification Using Conceptual
Graphs; Gaines, B.R. and Musen, M.A. (eds), Proc. of the 9th Banff Knowledge Acquisition
for Knwoledge-Based Systems Workshop KAW-95, Calgary, pp. 25/1 - 25/20.

21 of 22 6/13/19,2:55 PM



Experience in the Applying Design Patterns http://ksi.cpsc.ucalgary.ca/KAW/KAWO98/jonker/

Nosek, J. T. & Roth, I. 1990. A Comparison of Formal Knowledge Representation Schemes
as Communication Tools: Predicate Logic vs. Semantic Network, International Journal of
Man-Machine Studies, 33: 227-239, 1990.

Sowa, J.F. (1984). Conceptual Structures: Information Processing in Mind and Machine,
Addison-Wesley, Reading, Mass., 1984.

22 of 22 6/13/19,2:55 PM



