
Künstl Intell (2012) 26:37–45
DOI 10.1007/s13218-011-0152-5

FAC H B E I T R AG

Agreeing on Role Adoption in Open Organisations

Huib Aldewereld · Virginia Dignum ·
Catholijn M. Jonker · M. Birna van Riemsdijk

Received: 28 July 2011 / Accepted: 4 November 2011 / Published online: 24 November 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract The organisational specification of a multi-agent
system supports agents’ effectiveness in attaining their pur-
pose, or prevent certain undesired behaviour from occurring.
This requires that agents are able to find out about the or-
ganisational purpose and description and decide on its ap-
propriateness for their own objectives. Organisational mod-
eling languages are used to specify an agent system in terms
of its roles, organizational structure, norms, etc. Agents take
part in organisations by playing one or more of the specified
roles for which they have the necessary capabilities.

In this paper, we investigate the process of role adop-
tion in the context of the well-known OperA organisational
modelling language. In OperA, each organisation has a gate-
keeper role responsible for admitting agents to the organisa-
tion. Agents playing the role of gatekeeper can interact with
agents that want to enter the organisation in order to come to
agreement on role adoption. That is, negotiate which roles
they will play and under which conditions they will play
them. This is possible by evaluating capability requirements
for roles. We extend OperA to allow for the specification of
role capabilities. This approach will be illustrated using the
Blocks World for Teams (BW4T) domain.

H. Aldewereld · V. Dignum (�) · C.M. Jonker ·
M.B. van Riemsdijk
Delft University of Technology, Delft, The Netherlands
e-mail: m.v.dignum@tudelft.nl

H. Aldewereld
e-mail: h.m.aldewereld@tudelft.nl

C.M. Jonker
e-mail: c.m.jonker@tudelft.nl

M.B. van Riemsdijk
e-mail: m.b.vanriemsdijk@tudelft.nl

Keywords Agent programming · Organizational
modeling · Role enactment

1 Introduction

Agent organisations have been motivated as a suitable way
to deal with agent autonomy, especially in open multi-agent
systems (MAS) [10], where in principle any agent can enter
into the system. In open systems, agents, representing peo-
ple, groups or enterprises, are assumed to be developed and
owned by stakeholders other than the owners of the organi-
sation model. For example, consider an agent that is to help
an user locate a best deal for a product on the Web. The agent
is to access web stores, compare products and prices, nego-
tiate with the web stores and reach a good agreement for the
product at one of these web stores. Given that the web stores
are designed by other developers than this agent, the agent
must be able to understand the structure and procedures of
the webstore in order to play its role within the webstore
(i.e. depending on the webstore structure, this role may be
that of visitor, searcher or buyer). Information exchange be-
tween sources belonging to different organisations will be-
come the standard. Similarly, ad hoc organisations will need
to be formed to satisfy emerging information needs.

The development of such open organisation, must enable
the validation of its results even though the organisation’s
behaviour is dependent on the behaviour of the external
participating agents. That is, system design must consider
not only the organisational characteristics such as stability
over time, some level of predictability, and commitment to
aims and strategies, etc. but also the individual autonomy of
the participants. This requires richer organisational concepts
than those provided by most MAS models.

mailto:m.v.dignum@tudelft.nl
mailto:h.m.aldewereld@tudelft.nl
mailto:c.m.jonker@tudelft.nl
mailto:m.b.vanriemsdijk@tudelft.nl


38 Künstl Intell (2012) 26:37–45

The concept of agent organisation, supporting the speci-
fication of roles, interaction structures, and norms (see, e.g.,
[8, 13]), solves the inherent issues of coordination in open
agent systems. Agent organisation distinguishes between
the mechanisms through which the structure and global be-
haviour of the model is described and coordinated, and
the agents that populate the model enabling its animation.
Therefore, organisation frameworks should represent inter-
action in a way that (1) is independent of the internal de-
sign of the agents, and (2) is able to integrate organisational
characteristics and demands with the agent’s own goals in a
dynamic way that preserves the autonomy of the participat-
ing agents. Contracts between agent and organisation enable
the flexible instantiation of roles, to conjugate the top-down
specification of organisational structures with the autonomy
of participating agents. This abstraction, however, leads to
two separate problems.

Firstly, agents who want to enter and play roles in an or-
ganisation are expected to understand and reason about the
organisational specification, if they are to operate effectively
and flexibly in the organisation. In earlier work we have
looked at such agents capable of this organisational reason-
ing [23]. An important aspect of these organisation-aware
agents is the ability to reason about role enactment. In par-
ticular, an agent has to reason about whether it wants to play
a role and whether it has the capabilities to behave as the role
requires. In [24] we discuss reflection on role enactment and
propose an interaction protocol through which agents can
apply for enacting roles in the organisation.

Secondly, there is the issue of selecting suitable agents to
play a role in the organisation successfully. A possible way
to ensure this is by introducing a dedicated agent (a gate-
keeper) that is responsible for admitting agents to the or-
ganisation. An example of an organisational modelling lan-
guage in which such a gatekeeper is present, is OperA [8].
The idea of the interaction between the agent and the organ-
isation is that the gatekeeper asks agents who want to join
whether they have the necessary capabilities for playing the
desired role in the organisation, and then assigns roles to
agents based on this. In earlier work [24], we have proposed
a protocol for this interaction, but it was left unclear how the
gatekeeper decides on the role assignments. In this paper
we focus on the reasoning aspects of the gatekeeper agent.
How to decide which agent to choose for fulfilling (critical)
roles? And, can any agent that says that it has the required
capabilities be trusted? This approach requires that neces-
sary capabilities for enacting a role can be described in the
role specification.

This paper proposes a framework to deal with these two
problems. The framework consists of an interaction protocol
for agents that want to enter open organisations, The frame-
work is formalised as an extension to the OperA model. Of

course formalisations to other organisation modelling lan-
guages can be defined in a similar way. The ideas and for-
malisations have been tested in the Blocks World for Teams
environment (BW4T) [14].

The paper is organised as follows. In Sect. 2, we describe
Blocks World for Teams, the teamwork domain used as il-
lustration scenario to investigate the reasoning process of the
gatekeeper on agent admission. Section 3 presents a general
pattern for modeling capabilities in OperA, which are an es-
sential piece of information for the gatekeeper agent. We
propose a negotiation and agreement process for agent ad-
mission in Sect. 4. We conclude the paper and discuss future
research in Sect. 5.

2 Blocks World for Teams

The Blocks World for Teams (BW4T) simulated environ-
ment [14] has been developed as a testbed for human-
agent/robot teamwork. The environment consists of a num-
ber of rooms that are connected through halls. Coloured
blocks are placed inside the rooms. Simulated robots should
work together to pick up blocks from the rooms, bring them
to the so-called drop zone and put them down there, in a
specified colour sequence. Blocks only become visible once
a robot enters the room where these blocks are. Robots can-
not see each other but they can exchange messages. Once
a robot enters a room (including the drop zone), no other
robots can enter. Blocks disappear from the environment
when dropped in the hall or in the drop zone. Robots can be
controlled by agents or humans, thereby providing the pos-
sibility to investigate human-agent robot teamwork. In this
paper, we only consider agent-only teams.

An interface that allows a GOAL [11] agent to control
a simulated robot has been developed using the Environ-
ment Interface Standard (EIS) [2]. Broadly speaking, this
standard specifies that agents can control entities in the en-
vironment through actions, and that agents can observe the
environment through percepts that are sent from the envi-
ronment to the agents. The actions made available to agents
in the BW4T environment are goTo(<Place>) to move
to the specified place (a room, the drop zone or a hall),
goTo(<Block>) to move to the specified block, pickUp
to pick up a block (the robot has to be close to the block) and
putDown to put a block down (if the robot is not holding a
block, the action has no effect).

Percepts available to agents include at(<Me>,
<Place>)which specifies the current location of the robot,
and colour(<Block>,<Colour>) which is sent when
an agent enters the room where <Block> is located.

The colour sequence in which agents should put down
blocks at the drop zone is sent at the beginning to all agents
using percept sequence([<Colour>]) which has a list



Künstl Intell (2012) 26:37–45 39

of colours as parameter. The colour to deliver is indicated to
agents using the percept sequenceIndex(<N>), where
<N> refers to the N-th element in the colour sequence.

Designing an open organisation for the deceptively sim-
ple looking BW4T presents the designer with all the impor-
tant challenges we want to address with our framework. For
example, the environment has limited visibility; actions take
time, which means that effective cooperation, in order to pre-
vent unnecessary actions, can significantly reduce the time
needed to deliver all the required blocks; and communica-
tion is needed that can support effective teamwork, for ex-
ample by letting other agents know which blocks one has
discovered and which block one is carrying. A dependency
analysis of the BW4Ts shows its true complexity [15].

3 Organisational Specification

The OperA framework [8] proposes an expressive way for
defining open organisations distinguishing explicitly be-
tween the organisational aims and the agents who act in it.
That is, OperA enables the specification of organisational
structures, requirements and objectives independently from
any knowledge on the properties or architecture of agents,
which allows participating agents to have the freedom to act
according to their own capabilities and demands. The OperA
framework consists of three interrelated models: organisa-
tion, social, and interaction.

The Organisational Model (OM) is the result of the ob-
servation and analysis of the domain and describes the de-
sired behaviour of the organisation, as determined by the
organisational stakeholders in terms of roles, objectives,
norms, interactions and ontologies. The design and valida-
tion of OperA OMs can be done with the OperettA tool [1].
The OM provides the overall organisation design that ful-
fills the stakeholders’ requirements. The OM consists of a
social structure which describes roles and their objectives,
and relations between roles concerning achievement of ob-
jectives (further detailed in Sect. 3.1), a normative struc-
ture which describes norms associated with roles (further
detailed in Sect. 3.2), an interaction structure which is an
abstract workflow that specifies how objectives should be
achieved by the organisation using the notions of scenes and
landmarks, and a communicative structure which specifies
the organisation’s ontology and communicative languages.
In this paper, for simplicity, we assume a common ontology
for the organisation and the agents. The OM is a descriptive
view of the organisation. In itself, the OM cannot act but
is dependent on a population of agents that enact its roles
in order to achieve the organisation’s objectives. What this
population looks like and how it acts are described in OperA
in the Social and Interaction Models.

The Social Model (SM) maps roles to agents and de-
scribes agreements concerning the role enactment and their

conditions in social contracts. In OperA, agent and role are
fundamentally different concepts. Roles are typically declar-
ative entities meant to represent a part of the organisation’s
design and can be taken up by the agents enacting the role.
Objectives of an organisation are achieved through the ac-
tions of agents, which means that, at each moment, an or-
ganisation should employ the relevant agents that can make
its objectives happen. That is, a role only gets an operational
semantics indirectly through the agents that take up that role.
For the operationalisation of OperA organisations, a Gate-
keeper role is defined, which is responsible for the assign-
ment of roles to (external) agents. The gatekeeper agent is
part of the SM of each organisation.

Finally, the Interaction Model (IM) specifies the interac-
tion agreements between role-enacting agents as interaction
contracts. The IM specification enables variations to the en-
actment of interactions between role-enacting agents.

In this paper, we focus on the SM, specifically on the role
assignment processes. Therefore, only those components of
the OM that are relevant for this aspect are considered, in
particular the social and the normative structures which are
described in more detail in the remainder of this section.
Moreover, in order to enable negotiation on role enactment,
we extend OperA with the definition of role capabilities, as
discussed in Sect. 3.3.

3.1 Social Structure

The Social Structure of an organisation describes the roles
in the organisation. For example, who should locate blocks,
who should pickup and return them, how they relate to each
other, etc. The Social Structure consists of a list of role def-
initions, Roles (including their objectives, rights, norms and
requirements); a list of role groups’ definitions, Groups; and
a Role Dependencies graph.

Abstract organisation objectives form the basis for the
definition of the objectives of roles. From the organisation
perspective, role descriptions identify the activities and ser-
vices necessary to achieve its objectives and enable to ab-
stract from the individuals that will eventually perform the
role. From the agent perspective, roles specify the expec-
tations of the society with respect to the agent’s activity in
the society. In OperA, the definition of a role consists of an
identifier, and sets of role objectives (with possibly their sets
of sub-objectives), role rights, norms, and the role type.

Figure 1 shows the social structure of the BW4T organi-
sation as used in this paper, and the corresponding role de-
scriptions for the Searcher and Deliverer roles. Player is a
group containing the roles Searcher and Deliverer. The arcs
in the social structure diagram indicate the dependency re-
lations between roles or groups. That is, the arcs are labeled
with the objectives for which the parent role depends on the
child role. These dependencies describe how the distribution



40 Künstl Intell (2012) 26:37–45

Fig. 1 Role dependencies (top), properties of Searcher (middle) and
Deliverer (bottom)

of objectives in the organisation is realised. OperA identifies
three types of role dependencies: bidding [Market], request
[Network], and delegation [Hierarchy]. These are important
for the realisation of the interactions between role enacting
agents within the scenes described in the interaction struc-
ture, which is outside the scope of this paper.

In the BW4T example, the organisational objective of
collecting the coloured blocks in a particular colour order
is split over the two roles in the organisation; the Searchers
are responsible for checking all rooms for the blocks and
providing the information about block locations and colours
to other agents (allRoomsChecked), and the Deliverers are
responsible for picking up the blocks of the correct colour
and dropping them at the drop zone (allBlocksDelivered).
The deliverers thus depend on the searchers for finding the
correct blocks, and the searchers depend on the deliverers
for collecting the blocks and bringing them to the drop zone.

The Gatekeeper role is not specific to the BW4T domain,
but must be present in every OperA organisational model.
The gatekeeper is responsible for admitting agents to the or-
ganisation by means of asking agents about their capabilities
and assigning roles to agents on the basis of this. This is why
the Gatekeeper role has been marked as internal (“In”) in the
social structure, which means that the agent(s) enacting this
role are to be programmed by the designer of the organi-
sation herself, while the other roles are marked as external
(“Ex”).

External roles can be played by agents that are designed
independently from the society. Individual agents consider
joining an organisation when they believe that the enactment

of role(s) will contribute to the achievement of some of their
own goals. When an agent applies, and is accepted for a role,
it commits itself to the realisation of the role’s objectives and
it should function within the society according to the con-
straints applicable to its role(s). This means that agents need
to be able to interpret the specification of the role and take
this into account in their decision making. These processes
are specified in the interaction structure. The social contracts
in the Social Model are the result of these processes.

3.2 Normative Structure

At the highest level of abstraction, norms are the values of
a society, in the sense that they define the concepts that are
used to determine the value or utility of situations. However,
values do not specify how, when or in which conditions in-
dividuals should behave appropriately in any given social
setup. In OperA, these aspects are defined in the Normative
Structure using a deontic logic that is temporal, relativised
(in terms of roles and groups) and conditional. The norma-
tive structure enables the definition of norms that specify
desired behaviour that agents should exhibit when playing
the role.

Norms in OperA can be obligations, permissions or pro-
hibitions, represented respectively as Orϕ, Prϕ and Frϕ,
where r is a role and ϕ a predicate in the domain language.
Examples of norms in the BW4T domain are the obliga-
tion for deliverers to inform others of the blocks that they
placed in the drop zone, and the prohibition that more than
one searcher is present in the same room at any given mo-
ment. The latter can be formalised as:

Fsearcher(enter(〈Room〉)|occupied(〈Room〉))

3.3 Capabilities in OperA

In the theory of agency, the notions of agent capability and
action have been widely researched. The intuition is that an
agent possesses capabilities that make action possible. In the
literature, there are many approaches to the formalisation of
these definitions.1 Research on the theory of action follows
two main schools [9]. The first aims at the explicit represen-
tation of action by a specific agent, in terms of dynamic logic
or situation calculus; whereas the second is concerned with
representing the fact that a certain result has been achieved,
such as in the stit theories or in the notion of agency. Based
on the philosophical notion that “can” implies ability and
opportunity [7], in [9], we have defined agent capability as
the inherent skills an agent is endowed with. This implies
that having a capability is a necessary but not sufficient pre-
requisite for exhibiting behaviour that demonstrates the ca-
pability. In that work, we discussed the relation between

1A concise overview can be found in [6].



Künstl Intell (2012) 26:37–45 41

agent capability, ability (the potential or opportunity to act
in a certain state) and action (the actual act of bringing a
certain state about). This interpretation of capability as abil-
ity follows [19], in which the notion of capability is inves-
tigated in the context of BDI logic. In agent programming,
capabilities have been introduced as a modularisation con-
struct [4, 5] comparable to modules in GOAL. Capabilities
allow for packaging a subset of beliefs, plans, and goals into
an agent module and to reuse this module wherever needed.
That is, capability is taken as the capability to achieve goals,
which is also the capability type considered in [19].

From an organisation perspective, it is necessary not only
to know an agent’s capabilities, but also how to match those
capabilities to the requirements of the organisation. Instead
of agent capabilities, organisation models should describe
role capabilities, that is, the capabilities that an agent must
possess in order to be able to enact that role.

Although capabilities have been considered in the con-
text of the gatekeeper in [8], modeling capabilities has so
far received relatively little attention in OperA. Taking into
account the analysis of the BW4T domain and other sce-
narios, we distinguish four capabilities types [24]: capabili-
ties to execute actions, to perceive aspects of the environ-
ment in which the agents operate, to communicate infor-
mation, questions or requests, and to achieve goals (for-
mulated as objectives in the organisational specification).
We believe this to be a suitable distinction since these four
types of capabilities correspond to the commonly adopted
notion of intelligent agents as being reactive (able to per-
ceive and react to changes in the environment), proactive
(act towards achieving goals) and social (communicate with
other agents).

We have extended the meta-model of OperA to include
the definition of role capabilities as follows:2

Definition 1 (Role Capability) Given a role r , a role capa-
bility is a predicate describing a requirement for role en-
actment. A role capability is represented by capr (type,p),
where type ∈ {(ableToDo,ableToPerceive,ableToSay,
ableToAchieve)} and p is a predicate in the domain lan-
guage.

The semantics of role capabilities is defined as deontic
expressions. That is, capabilities can be defined as norms
that apply to agents that enact a role. Capability norms de-
scribe the activation and expiration conditions related to the
enactment and deactment of the role by an agent. Required
capabilities are modelled as maintenance conditions, i.e., as
long as the agent is playing the role, it is obliged to have that
capability. Formally:

– capr (ableToDo, α) ≡ Or(ableToDo(α))

2See [8] for the full specification of OperA.

– capr (ableToPerceive,p) ≡ Or(ableToPerceive(p))

– capr (ableToSay, c) ≡ Or(ableToSay(c))
– capr (ableToAchieve, φ) ≡ Or(ableToAchieve(φ))

where α is an action that can be executed by agents in the en-
vironment, p is a situation that can be perceived by agents
in the environment, c is a communicative act that can be
performed by agents, and φ expresses a property of the en-
vironment that agents should be able to achieve.

In the BW4T scenario, examples of capabilities for the
searcher role are the capability to execute the action of go-
ing to a place, the capability to perceive blocks and their
colours, the capability to send information about blocks to
other agents, and the capability to achieve the goal of having
checked all rooms. For example, the required capability of
the Searcher to perceive the blocks’ colours is modelled as

OSearcher(ableToPerceive(color(〈BlockId〉, 〈ColorId〉)))
I.e., upon enacting the role Searcher, the agent is obliged to
be able to perceive the colour of the blocks until it deacts the
role.

Intuitively, role capabilities describe the minimum skills
that an agent must possess in order to enact the role. In that
sense capabilities are complementary to role rights, which
are capabilities that an agent receives by enacting a role.
Which and how many capabilities are to be required from
agents enacting a role is a modeling choice and reflect the
balance between regulation and autonomy demanded by the
application [20]. Basically, the less demands are placed on
role enactment, the more autonomy is allowed to specific
role-enacting agents, but the less guarantees can be made
with respect to the overall organisational behaviour.

4 Agreeing on Role Enactment

Given heterogeneous and autonomous agents, which have
their own goals and interests, mismatches between the goals
and capabilities of the agent and the objectives and require-
ments of a role must be assumed. Thus, participants are ad-
mitted to the society only through a process of socialisation,
during which the participant negotiates with the organisation
(represented by the Gatekeeper) the terms and conditions of
its participation. The Social Model (SM) of OperA enables
the specification of terms and conditions for participation as
a social contract. The Gatekeeper role, and the interaction
scene Agent-Admission are modelled in the Organisational
Model.

The Gatekeeper is responsible for admitting agents into
the organisation and giving them the role specifications. It
has the responsibility of checking the capabilities of the
agents and seeing if they match the requirements set for
the role. As such, the Gatekeeper plays an important func-
tion in the SM. In previous work we have introduced a pro-
tocol for the interaction between an agent wanting to join



42 Künstl Intell (2012) 26:37–45

Fig. 2 Role Enactment Interaction Protocol in UML

Fig. 3 Standard properties of Gatekeeper

an organisation and the gatekeeper [24]. Figure 2 shows
the basic interaction protocol, using the notation of [12]
to distinguish different kinds of messages: the prefix “!”
for imperative messages (requests), “?” for interrogative
(questions), and “:” for declarative (information). The fig-
ure shows the interaction where the applying agent agt
sends a message to the gatekeeper that it wants to play a
certain role, i.e., that it wants to become a role-enacting
agent or rea for short [8] (!rea(agt,Role)). The gate-
keeper replies by asking the agent whether it has the capa-
bilities to play this role (?cap(agt,Cap)). It does this
for each required capability (reqCap(Role,Cap)). The
agent replies by informing the gatekeeper of the capabilities
it has (:cap(agt,Cap) and :notCap(agt,Cap)). If
the agent has all required capabilities, it can play the role
(canPlay(agt,Role)) and the gatekeeper informs the
agent that it is now playing the role (:rea(agt,Role)).
If the agent does not have all required capabilities, its request
to play the role is rejected.

The enactment protocol can be modified in various ways.
In particular, the gatekeeper and the applying agent could
negotiate about whether the latter is allowed to play the role
even if it does not have all required capabilities. We elabo-
rate on this below.

4.1 Specifying Gatekeeper Behaviour

The behaviour of the gatekeeper is determined by the spec-
ification of the Gatekeeper role. Figure 3 shows the basic

Fig. 4 Interaction Structure for BW4T detailing the Agent-Admission
scene

specification of the Gatekeeper role, which is standardly
provided by OperA. According to this definition, the gate-
keeper can decide to accept any agent that applies for a role.
Specifying sub-objectives for processAdmission will con-
strain the gatekeeper to a specific way of admitting agents.
For example, sub-objectives

request_capabilities(Agt); check_capabilities(Agt,Role)

request_credentials(Agt)

will force the gatekeeper to follow these steps in order to
achieve the processAdmission objective. A partial defini-
tion of the Agent-Admission scene for this situation is de-
picted in Fig. 4. Landmarks in this scene indicate that the
final state admit (corresponding to the realisation of the pro-
cessAdmission objective) is entailled from achieving state
caps_checked, which in turn depends on reaching the states
in which each type of capabilities is checked. By refining
or relaxing these landmarks, different behaviours can be ob-
tained.

Another way to condition the gatekeeper’s behaviour is
by defining norms in the role specification. For example, the
norm

Fgatekeeper(admitted(Agt,Role)|(∃c ∈ cap(Role)
∧ c �∈ cap(Agt)))

indicates that the gatekeeper is forbidden to admit agents
that do not exactly fulfill all capabilities of the role they aim
to play. Other enactment rules can be described similarly.
This norm provides a straightforward way of matching the
available agents to the role requirements by demanding that
each capability of the role can be fulfilled by the agent. That
is, if the agent misses even one of the requirements of the
role specification, it will not be selected for enactment of
that role. This would result in an “all-or-nothing” situation:
each role is fulfilled by an agent that has all the capabilities
to enact it, and agents with insufficient capabilities are re-
strained from playing a certain role. In realistic situations,
this may be unpractical. In those cases, the norm can be re-
laxed, for example, to indicate a minimum number of capa-
bilities to fulfill, or to designate some prioritised capabilities
that must be fulfilled.



Künstl Intell (2012) 26:37–45 43

Another possibility would be to keep the norm as above,
but to extend the interaction scene to include the possibil-
ity for the gatekeeper to suggest a more suitable role to the
applying agent, that is, a role for which it does have the
required capabilities. For example, in the BW4T scenario,
according to this norm an agent without the capability to
recognise colour would not be accepted to enact the role of
Searcher, but could be suggested to become a Deliverer.

Finally, another possibility for role enactment is to allow
one role to be enacted by a set of agents working as a team.
In this way, the total capabilities necessary to enact the role
should be possessed by the team, which would enable agents
to participate that have less capabilities. This is however, an
aspect for further research.

4.2 Trust

The Gatekeeper agent has a number of ways to decide on
the trustworthiness of the candidate agents. It could check
the trustworthiness upfront, or on the fly. To check the trust-
worthiness upfront, the candidate agents could be required
to present a certificate by a trusted third party to the Gate-
keeper that states that the agent is indeed capable of per-
ceiving, acting and/or communicating as promised. This is
an easy and effective method, but requires such a third party
that can actually check the candidate agents. The checking
might be done off line. Alternatively, the Gatekeeper can set
up a trial run for the agent to see whether the agent indeed
has the required capabilities, before admitting the agent into
the real team.

Another approach is for the Gatekeeper to consider the
reputation of the candidate agent in the community. There is
enough agent literature on reputation and trust mechanisms
to choose appropriate and effective mechanisms per appli-
cation. See, for example, [17, 21, 22]. A last and probably
least attractive method, is to use a fundamentally much more
complex approach in which the Gatekeeper would ask for
the essential code of the candidate agent, and then use veri-
fication or model checking techniques to test the code for the
desired capability. For literature on model checking agents,
see e.g., [3, 16].

Instead of, or in addition to, deciding on the trustworthi-
ness and capabilities of the candidate agent the Gatekeeper
can also use monitoring methods to form an opinion of the
player agents as they perform their tasks. Keeping a mem-
ory of results of monitoring of past performance would be
used to decide to accept the agent again for the same role.
For example, the GRID community has done research on
this topic, see e.g., [18, 25]. The level of monitoring can
be made dependent on the sensitivity of the application and
also depends on the mechanisms put into place to prevent
prohibited actions by the agents.

5 Conclusions

If we want to design open organisations, in which heteroge-
neous agents are able to join, then we must be able to specify
what is expected of those agents, and engage in a process of
admission during which the requirements and aims of both
the organisations and the agent are evaluated. In this paper,
we assume that agents are capable of reasoning about role
enactment, and focus on the organisation part of this pro-
cess. In [24] we discussed the reasoning and reflective capa-
bilities of the agents.

We took the simple blocks world scenario as a case study,
and used the OperA organisation modelling framework as a
basis for the specification of an organisation. For this pur-
pose, we extended the OperA language to include the rep-
resentation of role capability requirements (i.e. ableToDo,
ableToPerceive, ableToSay, and ableToAchieve), which are
formally interpreted as norms in the OperA model.

Furthermore, we discussed how role-enactment agree-
ments can be achieved by a process of negotiation between
a gatekeeper and a candidate agent. This is specified as an
interaction scene in the OperA model, which operationalisa-
tion results in the set of role-enactment contracts of the So-
cial Model. We have proposed different behaviours for the
gatekeeper which represent possible levels of verification of
agent suitability for a role.

In future work we aim to further detail the possible gate-
keeper behaviours. Moreover, it would be interesting to in-
vestigate the relation between an approach that uses a gate-
keeper for matching agents and roles, and work on semantic
matchmaking in service-oriented systems. The latter facili-
tates a more semantic definition of capability and the appli-
cation of existing flexible matchmaking algorithms. Another
direction for future research is investigating the relation be-
tween the capabilities required by a role and other norms that
agents should adhere to when playing the role. For example,
if there is a norm saying that an agent should communicate
certain information at a certain point, it would presumably
make sense to require the agent to be capable of doing this.

Acknowledgements The authors are grateful to the anonymous re-
views for their constructive comments. This works was partially sup-
ported by the ESW project (Extended Single Window: Information
Gateway to Europe) funded by the Dutch Institute for Advanced Lo-
gistics (DINALOG).

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Aldewereld H, Dignum V (2010) OperettA: Organization-oriented
development environment. In: Languages, methodologies and de-
velopment tools for multi-agent systems (LADS2010@Mallow).
LNCS, vol 6822, pp 1–19



44 Künstl Intell (2012) 26:37–45

2. Behrens T, Hindriks K, Dix J (2010) Towards an environment in-
terface standard for agent platforms. Ann Math Artif Intell 1–35.
doi:10.1007/s10472-010-9215-9

3. Bordini R, Fisher M, Visser W, Wooldridge M (2006) Verifying
multi-agent programs by model checking. Auton Agents Multi-
Agent Syst 12:239–256

4. Braubach L, Pokahr A, Lamersdorf W (2006) Extending the capa-
bility concept for flexible BDI agent modularization. In: Third in-
ternational workshop on programming multi-agent systems (Pro-
MAS’05). LNCS, vol 3862. Springer, Berlin, pp 139–155

5. Busetta P, Howden N, Rönnquist R, Hodgson A (2000) Structuring
BDI agents in functional clusters. In: ATAL’99: 6th international
workshop on intelligent agents VI, agent theories, architectures,
and languages (ATAL). Springer, Berlin, pp 277–289

6. Cholvy L, Garion C, Saurel C (2005) Ability in a multi-agent con-
text: a model in the situation calculus. In: Proc CLIMA VI

7. Cross C (1986) ‘Can’ and the logic of ability. Philos Stud 50:53–
64

8. Dignum V (2004) A model for organizational interaction: based
on agents, founded in logic. PhD Thesis, SIKS Dissertation Series
2004-1, Utrecht University

9. Dignum V, Dignum F (2012) A logic of agent organizations. Log
J IGPL (to appear). doi:10.1093/jigpal/jzr041

10. Hewitt C (1991) Open information systems semantics for dis-
tributed artificial intelligence. Artif Intell 47:79–106

11. Hindriks KV (2009) Programming rational agents in GOAL.
In: Bordini RH, Dastani M, Dix J, El Fallah Seghrouchni A
(eds) Multi-agent programming: languages, tools and applica-
tions. Springer, Berlin

12. Hindriks K, van Riemsdijk MB (2010) A computational seman-
tics for communicating rational agents based on mental models.
In: Programming multiagent systems, 7th international workshop
(ProMAS’09). LNAI, vol 5919. Springer, Berlin, pp 31–48

13. Hübner JF, Sichman JS, Boissier O (2007) Developing organised
multiagent systems using the MOISE+ model: programming is-
sues at the system and agent levels. Int J Agent-Oriented Softw
Eng 1(3/4):370–395

14. Johnson M, Jonker CM, van Riemsdijk MB, Feltovich PJ, Brad-
shaw JM (2009) Joint activity testbed: Blocks world for teams
(BW4T). In: Proceedings of the tenth international workshop on
engineering societies in the agents’ world (ESAW’09). LNAI, vol
5881. Springer, Berlin, pp 254–256

15. Johnson M, Bradshaw JM, Feltovitch PJ, Jonker CM, van Riems-
dijk MB, Sierhuis M (2010) Coactive design, why interdepen-
dence must shape autonomy. In: Proc 9th int workshop on coor-
dination, organization, institutions and norms in multi-agent sys-
tems, COIN@AAMAS2010

16. Jongmans SS, Hindriks K, van Riemsdijk MB (2010) Model
checking agent programs by using the program interpreter. In: Dix
J, Leite J, Governatori G, Jamroga W (eds) Computational logic in
multi-agent systems. Lecture notes in computer science, vol 6245.
Springer, Berlin, pp 219–237

17. Jøsang A, Ismail R, Boyd C (2007) A survey of trust and rep-
utation systems for online service provision. Decis Support Syst
43(2):618–644. Emerging Issues in Collaborative commerce

18. Lenzini G, Tokmakoff A, Muskens J (2007) Managing trustwor-
thiness in component-based embedded systems. Electron Notes
Theor Comput Sci 179:143–155

19. Padgham L, Lambrix P (2005) Formalisations of capabilities for
BDI-agents. Auton Agents Multi-Agent Syst 10(3):249–271

20. Penserini L, Dignum V, Staikopoulos A, Aldewereld H, Dignum
F (2009) Balancing organizational regulation and agent auton-
omy: An MDE-based approach. In: ESAW’09: proceedings of the
10th international workshop on engineering societies in the agents
world X. Springer, Berlin, pp 197–212

21. Resnick P, Kuwabara K, Zeckhauser R, Friedman E (2000) Repu-
tation systems. Commun ACM 43:45–48

22. Sabater J, Sierra C (2005) Review on computational trust and rep-
utation models. Artif Intell Rev 24:33–60

23. van Riemsdijk MB, Hindriks KV, Jonker CM (2009) Program-
ming organization-aware agents: A research agenda. In: Aldew-
ereld H et al (eds) Engineering societies in the agents’ world X
(ESAW’09). LNAI, vol 5881. Springer, Berlin, pp 98–112

24. van Riemsdijk MB, Dignum V, Jonker CM, Aldewereld H (2011)
Programming role enactment through reflection. In: Boissier O
(ed) Proceedings of the 10th IEEE/WIC/ACM international con-
ference on intelligent agent technology (IAT)

25. Yang S, Butt AR, Hu YC, Midkiff SP (2005) Trust but verify:
monitoring remotely executing programs for progress and correct-
ness. In: Proceedings of the tenth ACM SIGPLAN symposium on
principles and practice of parallel programming, PPoPP’05. ACM,
New York, pp 196–205

Huib Aldewereld is researcher at
the ICT section of the Delft Univer-
sity of Technology. He got his Ph.D.
in 2007 at Utrecht University on the
topic of norms and institutions for
agent systems. He has since worked
at several universities as researcher
in the fields of distributed plan diag-
nosis, organising webservice-based
systems, and (agent) organisations
for scheduling and planning logisti-
cal services.

Virginia Dignum is associate pro-
fessor in the ICT section at Delft
University of Technology. She got
her Ph.D. in 2004 from the Utrecht
University. In 2006, she was
awarded the prestigious Veni grant
from NWO (Dutch Organization for
Scientific Research) for her work on
agent-based organisational frame-
works. Her research focuses on
agent based models of organiza-
tions, in particular in the dynamic
aspects of organizations.

Catholijn M. Jonker is full pro-
fessor of Man-Machine Interaction
at the Delft University of Tech-
nology. She studied computer sci-
ence, and did her Ph.D. studies at
Utrecht University. From Septem-
ber 2004 until September 2006 she
was a full professor of Artificial In-
telligence/Cognitive Science at the
Radboud University Nijmegen. She
chaired De Jonge Akademie of the
KNAW (The Royal Netherlands So-
ciety of Arts and Sciences) in 2005
and 2006, of which she was a mem-
ber from 2005 to 2010.

http://dx.doi.org/10.1007/s10472-010-9215-9
http://dx.doi.org/10.1093/jigpal/jzr041


Künstl Intell (2012) 26:37–45 45

M. Birna van Riemsdijk is assis-
tant professor in the Man-Machine
Interaction group at Delft Univer-
sity of Technology. Until Septem-
ber 2008, she was a postdoc at
LMU Munich, and she obtained
here Ph.D. at Utrecht University.
She has done research in the areas
of agent programming and service-
oriented systems. She is a mem-
ber of the steering committee of
the workshop on Declarative Agent
Languages and Technologies
(DALT) and has been a co-chair of
several workshops.


	Agreeing on Role Adoption in Open Organisations
	Abstract
	Introduction
	Blocks World for Teams
	Organisational Specification
	Social Structure
	Normative Structure
	Capabilities in OperA

	Agreeing on Role Enactment
	Specifying Gatekeeper Behaviour
	Trust

	Conclusions
	Acknowledgements
	Open Access
	References


