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Abstract. In every negotiation with a deadline, one of the negotiating parties has
to accept an offer to avoid a break off. A break off is usually an undesirable out-
come for both parties, therefore it is important that a negotiator employs a proficient
mechanism to decide under which conditions to accept. When designing such con-
ditions one is faced with the acceptance dilemma: accepting the current offer may be
suboptimal, as better offers may still be presented. On the other hand, accepting too
late may prevent an agreement from being reached, resulting in a break off with no
gain for either party. Motivated by the challenges of bilateral negotiations between
automated agents and by the results and insights of the automated negotiating agents
competition (ANAC), we classify and compare state-of-the-art generic acceptance
conditions. We focus on decoupled acceptance conditions, i.e. conditions that do not
depend on the bidding strategy that is used. We performed extensive experiments to
compare the performance of acceptance conditions in combination with a broad
range of bidding strategies and negotiation domains. Furthermore we propose new
acceptance conditions and we demonstrate that they outperform the other conditions
that we study. In particular, it is shown that they outperform the standard acceptance
condition of comparing the current offer with the offer the agent is ready to send
out. We also provide insight in to why some conditions work better than others and
investigate correlations between the properties of the negotiation environment and
the efficacy of acceptance conditions.

1 Introduction

Negotiation is an important process to reach trade agreements, and to form alliances
or resolve conflicts. The field of negotiation originates from various disciplines
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including artificial intelligence, economics, social science, and game theory (e.g.,
[2, 15, 20]). The strategic–negotiation model has a wide range of applications, such
as resource and task allocation mechanisms, conflict resolution mechanisms, and
decentralized information services [15].

A number of successful negotiation strategies have already been established both
in literature and in implementations [5, 6, 11, 12, 19]. And more recently, in 2010
seven new negotiation strategies were created to participate in the first automated
negotiating agents competition (ANAC 2010) [3] in conjunction with the Ninth In-
ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS-
10). During post tournament analysis of the results, it became apparent that different
agent implementations use various conditions to decide when to accept an offer. In
every negotiation with a deadline, one of the negotiating parties has to accept an
offer to avoid a break off. Therefore, it is important for every negotiator to employ a
mechanism to decide under which conditions to accept. However, designing a proper
acceptance condition is a difficult task: accepting too late may result in the break off
of a negotiation, while accepting too early may result in suboptimal agreements.

The importance of choosing an appropriate acceptance condition is confirmed by
the results of ANAC 2010 (see Table 1). Agents with simple acceptance criteria were
ranked at the bottom, while the more sophisticated time- and utility-based criteria
obtained a higher score. For instance, the low ranking of Agent Smith was due to a
mistake in the implementation of the acceptance condition [27].

Despite its importance, the theory and practice of acceptance conditions has not
yet received much attention. The goal of this paper is to classify current approaches
and to compare acceptance conditions in an experimental setting. Thus in this pa-
per we will concentrate on the final part of the negotiation process: the acceptation
of an offer. We focus on decoupled acceptance conditions: i.e., generic acceptance
conditions that can be used in conjunction with an arbitrary bidding strategy.

Table 1 An overview of the rank of every agent in ANAC 2010 and the type of acceptance
conditions that they employ

Rank Agent Acceptance condition
1 Agent K Time and utility based
2 Yushu Time and utility based
3 Nozomi Time and utility based
4 IAMhaggler Utility based only
5 FSEGA Utility based only
6 IAMcrazyHaggler Utility based only
7 Agent Smith Time and utility based

Our contribution is fourfold:

i. We give an overview and provide a categorization of current decoupled accep-
tance conditions.

ii. We introduce a formal negotiation model that supports the use of arbitrary ac-
ceptance conditions.
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iii. We compare a selection of current generic acceptance conditions and evaluate
them in an experimental setting.

iv. We propose new acceptance conditions and test them against established accep-
tance conditions, using varying types of bidding techniques.

The remainder of this paper is organized as follows. Section 2 defines the model of
negotiation that we employ and provides an overview of current acceptance condi-
tions. In Section 3, we also consider combinations of acceptance conditions. Sec-
tion 4 discusses our experimental setup and results, which demonstrate that some
combinations outperform traditional acceptance conditions. Finally, Section 5 out-
lines our conclusions and our plans for further research on acceptance strategies.

2 Acceptance Conditions in Negotiation

This paper focuses on acceptance conditions (also called acceptance criteria) that
are decoupled: i.e. generic acceptance conditions that are not tied to a specific agent
implementation and hence can be used in conjunction with an arbitrary bidding
strategy. We first describe a general negotiation model which fits current decoupled
acceptance conditions. We have surveyed existing negotiation agents to examine the
acceptance criteria that they employ. We then categorize them according to the input
that they use in their decision making process.

2.1 Negotiation Model

We consider bilateral negotiations, i.e. a negotiation between two parties or agents
A and B. The agents negotiate over issues that are part of a negotiation domain, and
every issue has an associated range of alternatives or values. A negotiation outcome
consists of a mapping of every issue to a value, and the set Ω of all possible out-
comes is called the outcome space. The outcome space is common knowledge to
the negotiating parties and stays fixed during a single negotiation session.

We further assume that both parties have certain preferences prescribed by a pref-
erence profile over Ω . These preferences can be modeled by means of a utility func-
tion U , which maps a possible outcome ω ∈ Ω to a real-valued number in the range
[0,1]. In contrast to the outcome space, the preference profile of the agents is private
information.

Finally, the interaction between negotiating parties is regulated by a negotiation
protocol that defines the rules of how and when proposals can be exchanged. We use
the alternating-offers protocol [23] for bilateral negotiation, in which the negotiating
parties exchange offers in turns.

As in [26], we assume a common global time, represented here by T = [0,1]. We
supplement the alternating-offers protocol with a deadline t = 1, at which moment
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both agent receive utility 0. This is the same setup as [8], with the exception that
issues are not necessarily real-valued and both agents have the same deadline equal
to t = 1. We represent by xt

A→B the negotiation outcome proposed by agent A to
agent B at time t. A negotiation thread (cf. [5, 26]) between two agents A and B at
time t ∈ T is defined as a finite sequence

Ht
A↔B :=

(
xt1

p1→p2
,xt2

p2→p3
,xt3

p3→p4
, . . . ,xtn

pn→pn+1

)
,

where

i. tk ≤ tl for k ≤ l, the offers are ordered over time T ,
ii. pk = pk+2 ∈ {A,B} for all k, the offers are alternating between the agents,

iii. All ti represent instances of time T , with tn ≤ t,
iv. xtk

pk→pk+1 ∈ Ω for k ∈ {1, . . . ,n}, the agents exchange complete offers.

Additionally, the last element of Ht
A↔B may be equal to one of the particles

{Accept,End}. We will say a negotiation thread is active if this is not the case.
When agent A receives an offer xt

B→A from agent B sent at time t, it has to decide
at a later time t ′ > t whether to accept the offer, or to send a counter-offer xt′

A→B.
Given a negotiation thread Ht

A↔B between agents A and B, we can formally express
the action performed by A with an action function XA:

XA(t
′,xt

B→A) =

⎧⎨
⎩

End if t ′ ≥ 1
Accept if ACA(t ′,xt′

A→B,H
t
A↔B)

xt′
A→B otherwise

Note that we extend the setting of [8, 26] by introducing the acceptance condition
ACA of an agent A. This model enables us to study arbitrary decoupled acceptance
conditions. ACA that takes as input

I = (t ′,xt′
A→B,H

t
A↔B),

the tuple containing the current time t ′, the offer xt′
A→B that the agent considers as a

bid (in line with the bidding strategy the agent uses), and the ongoing negotiation
thread Ht

B↔A.
The resulting action given by the function XA(t ′,xt

B→A) is used to extend the cur-
rent negotiation thread between the two agents. If the agent does not accept the
current offer, and the deadline has not been reached, it will prepare a counter-offer
xt′

A→B by using a bidding strategy or tactic to generate new values for the negotiable
issues. Tactics can take many forms, e.g. time-dependent, resource dependent, im-
itative, and so on [26]. In our setup we will consider the tactics as given and try to
optimize the accompanying acceptance conditions.
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2.2 Acceptance Criteria

Let an active negotiation thread

Ht
A↔B =

(
xt1

p1→p2
,xt2

p2→p3
, . . . ,xtn−1

A→B,x
tn
B→A

)
,

be given at time t ′ > t = tn, so that it is agent A’s turn to perform an action.
As outlined in our negotiation model, the action function XA of an agent A uses

an acceptance condition ACA(I ) to decide whether to accept. In practice, most
agents do not use the full negotiation thread to decide whether it is time to accept.
For instance many agent implementations, such as [7, 8, 26], use the following im-
plementation of ACA(I ):

ACA(t
′,xt′

A→B,H
t
A↔B) ⇐⇒ UA(x

t
B→A)≥UA(x

t′
A→B).

That is, A will accept when the utility UA for the opponent’s last offer at time t
is greater than the value of the offer agent A is ready to send out at time t ′. The
acceptance condition above depends on the agent’s upcoming offer xt′

A→B. For α,β ∈
R this may be generalized as follows:

ACI
next(α,β ) def⇐⇒ α ·UA(x

t
B→A)+β ≥UA(x

t′
A→B).

We can view α as the scale factor by which we multiply the opponent’s bid, while
β specifies the minimal ‘utility gap’ [12] that is sufficient to accept.

Analogously, we have acceptance conditions that rely on the agent’s previous
offer xtn−1

A→B:

ACI
prev(α,β ) def⇐⇒ α ·UA(x

t
B→A)+β ≥UA(x

tn−1
A→B).

Note that this acceptance condition does not take into account the time that is left in
the negotiation, nor any offers made previous to time t. Other acceptance conditions
may rely on other measures, such as the remaining negotiation time or the utility of
our previous offer. For example, there is a very simple acceptance criterion that only
compares the opponent’s offer with a constant α:

ACI
const(α)

def⇐⇒ UA(x
t
B→A)≥ α.

Last but not least, instead of considering utility agents may employ a time-based
condition to accept after a certain amount of time T ∈ T has passed:

ACI
time(T )

def⇐⇒ t ′ ≥ T.

We will omit the superscript I when it is clear from the context. We will use these
general acceptance conditions to classify existing acceptance mechanisms in the
next section.
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2.3 Existing Acceptance Conditions

We give a short overview of decoupled acceptance conditions used in literature and
current agent implementations. We are primarily interested in acceptance conditions
that are not specifically designed for a single agent. We do not claim the list below
is complete; however it serves as a good starting point to categorize current decou-
pled acceptance conditions. We surveyed the entire pool of agents of ANAC 2010,
including Agent K, Nozomi [25], Yushu [1], IAM(crazy)Haggler [4], FSEGA [24]
and Agent Smith [27]. We also examined well-known agents from literature, such
as the Trade-off agent [6], the Bayesian learning agent [10], ABMP [12], equilib-
rium strategies of [7], and time dependent negotiation strategies as defined in [22],
i.e. the Boulware and Conceder tactics.

Listed in Table 2 is a selection of generic acceptance conditions found.

Table 2 A selection of existing decoupled acceptance conditions found in literature and cur-
rent agent implementations

AC α β Agent
ACprev(α,β ) 1.03 0 FSEGA,

Bayesian Agent
1 0 Agent Smith
1.02 0 IAM(crazy)Haggler
1 0.02 ABMP

ACnext(α,β ) 1 0 FSEGA, Boulware,
Conceder, Trade-off,
Equilibrium strategies

1.02 0 IAM(crazy)Haggler
1.03 0 Bayesian Agent

ACconst(α) 1 - FSEGA
0.9 - Agent Smith
0.88 - IAM(crazy)Haggler

T
ACtime(T ) 0.92 - Agent Smith

Some agents also use logical combinations of different acceptance conditions at
the same time. This explains why some agents are listed multiple times in the table.
For example, both IAMHaggler and IAMcrazyHaggler [4] accept precisely when

ACconst(0.88)∨ACnext(1.02,0)∨ACprev(1.02,0).

We will not focus on the many possible combinations of all acceptance conditions
that may thus be obtained; we will study the basic acceptance conditions in isolation
with varying parameters. However in addition to this we study a small selection of
combinations in Section 3. We leave further combinations for future research.



Acceptance Conditions in Automated Negotiation 101

As can be seen from Table 2, in our sample the most commonly used accep-
tance condition is ACnext = ACnext(1,0), which is the familiar condition of accept-
ing when the opponent’s last offer is better than the planned offer of the agent. The
function β �→ ACprev(1,β ) can be viewed as an acceptance condition that accepts
when the utility gap [12] between the parties is smaller than β . We denote this con-
dition by ACgap(β ).

3 Combined Acceptance Conditions

We define three acceptance conditions that are designed to perform well in conjunc-
tion with an arbitrary bidding strategy. This will incorporate all ideas behind the
traditional acceptance conditions we have described so far. We will show in Sec-
tion 4 that they work better than the majority of simple generic conditions listed in
Table 2.

From a negotiation point of view, it makes sense to alter the behavior of an ac-
ceptance condition when time is running short. For example, many ANAC agents
such as Yushu, Nozomi and FSEGA [1, 24, 25] split the negotiation into different
intervals of time and apply different sub-strategies to each interval.

The basic idea behind combined acceptance conditions ACcombi is similar. In case
the bidding strategy plans to propose a deal that is worse than the opponent’s offer,
we have reached a consensus with our opponent and we accept the offer. However, if
there still exists a gap between our offer and time is short, the acceptance condition
should wait for an offer that is not expected to improve in the remaining time. Thus
ACcombi is designed to be a proper extension of ACnext, with adaptive behavior based
on recent bidding behavior near the deadline.

To define ACcombi, suppose an active negotiation thread

Ht
A↔B =

(
xt1

p1→p2
,xt2

p2→p3
, . . . ,xtn−1

A→B,x
tn
B→A

)
,

is given at time t ′ > t = tn > 1
2 near the deadline, when it is agent A’s turn. Note

that there is r = 1− t ′ time remaining in the negotiation, which we will call the
remaining time window. A good sample of what might be expected in the remaining
time window consists of the bids that were exchanged during the previous time
window W = [t ′ − r, t ′]⊆ T of the same size.

Let
HW

B→A =
{

xs
B→A ∈ Ht

A↔B | s ∈W
}

denote all bids offered by B to A in time window W . We can now formulate the
average and maximum utility that was offered during the previous time window in
the negotiation thread H = HW

B→A:

MAXW = max
x∈H

UA(x).
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and

AVGW =
1
|H| ∑

x∈H
UA(x).

We let ACcombi(T,α) accept at time t ′ exactly when the following holds: ACnext

indicates that we have to accept, or we have almost reached the deadline (t ′ ≥ T )
and the current offer suffices (i.e. better than α) given the remaining time:

ACcombi(T,α)

def⇐⇒
ACnext ∨ACtime(T )∧ (UA(xt

B→A)≥ α).

Note that we have defined ACcombi(T,α) in such a way that it splits the negotia-
tion time into two phases: [0,T ) and [T,1], with different behavior in both cases.

We will consider three different combined acceptance conditions:

i. ACcombi(T,MAXW ): the current offer is good enough when it is better than all
offers seen in the previous time window W ,

ii. ACcombi(T,AVGW ): the offer is better than the average utility of offers during
the previous time window W ,

iii. ACcombi(T,MAXT ): the offer should be better than any bid seen before.

4 Experiments

In order to experimentally test the efficacy of an acceptance condition, we con-
sidered a negotiation setup with the following characteristics. We equipped a set
of agents (as defined later) with an acceptance condition, and measured the result
against other agents in the following way. Suppose agent A is equipped with ac-
ceptance condition ACA and negotiates with agent B. The two parties may reach a
certain outcome ω ∈Ω , for which A receives the associated utility UA(ω). The score
for A is averaged over all trials on various domains (see Section 4.1.2), alternating
between the two preference profiles defined on that domain. E.g., on the negotia-
tion scenario between England and Zimbabwe, A will play both as England and as
Zimbabwe against all others.

For our experimental setup we employed GENIUS (General Environment for Ne-
gotiation with Intelligent multi-purpose Usage Simulation) [16]. This environment,
which is also used in ANAC, helps to facilitate the design and evaluation of auto-
mated negotiators’ strategies. It can be used to simulate tournaments between ne-
gotiating agents in various negotiation scenarios, such as the setup described in this
section. It supports the alternating offer protocol with a real-time deadline as out-
lined in our negotiation model. The default negotiation time in GENIUS and in the
setup of ANAC is 3 minutes per negotiation session; therefore we use the same value
in our experiments.
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4.1 Detailed Experimental Setup

4.1.1 Agents

We use the negotiation tactics that were submitted to The Automated Negotiating
Agents Competition (ANAC 2010) [3]. ANAC is a negotiation competition aiming
to facilitate and coordinate the research into proficient negotiation strategies for
bilateral multi-issue negotiation, similar to what the Trading Agent Competition
(TAC) has achieved for the trading agent problem [28].

The seven agents that participated in ANAC 2010 have been implemented by
various international research groups of negotiation experts. We used these strate-
gies in our experiments as they are representative of the current state-of-the-art in
automated negotiation. Firstly, we removed the built-in acceptance mechanism from
this representative group of agents; this left us with its pure bidding tactics. As out-
lined in our negotiation model, this procedure allowed us to test arbitrary acceptance
conditions in tandem with any ANAC tactic.

We aimed to tune our acceptance conditions to the top performing ANAC 2010
agents. Therefore we have selected the top 3 of ANAC agents that were submitted
by different research groups, namely Agent K, Yushu and IAMhaggler (we omitted
Nozomi as the designing group also implemented Agent K, cf. Table 1). For the
set of opponents, we selected all agents from ANAC 2010, for the acceptance con-
ditions should be tested against a wide array of strategies. The opponents also had
their built-in acceptance conditions removed (and hence were not able to accept), so
that differences in results would depend entirely on the acceptance condition under
consideration. To test the efficacy of an acceptance condition, we equipped the top
3 tactics with this condition and compared the average utility obtained by the three
agents when negotiating against their opponents.

4.1.2 Domains

The specifics of a negotiation domain can be of great influence on the negotiation
outcome [9]. Acceptance conditions have to be assessed on negotiation domains of
different size and complexity. Negotiation results also depend on the opposition of
the parties’ preferences. The notion of weak and strong opposition can be formally
defined [13]. Strong opposition is typical of competitive domains, when a gain for
one party can be achieved only at a loss for the other party. Conversely, weak oppo-
sition means that both parties achieve either losses or gains simultaneously.

With this in mind, we aimed for two domains (with two preference profiles each)
with a good spread of negotiation characteristics. We picked two domains from the
three that were used in ANAC 2010 (cf. [3]). Some agents participating in ANAC
2010 did not scale well and could not deal with a large bid space. We omitted the
Travel domain as the agents had too many difficulties with it to make it a reliable
testing domain.
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Our first scenario is taken from [14], which describes a buyer–seller business ne-
gotiation. It involves representatives of two companies: Itex Manufacturing, a pro-
ducer of bicycle components and Cypress Cycles, a builder of bicycles. There are
four issues that both sides have to discuss: the price of the components, delivery
times, payment arrangements and terms for the return of possibly defective parts.
The opposition between the parties is strong in this domain, as the manufacturer
and consumer have naturally opposing requirements. Altogether, there are 180 po-
tential offers that contain all combinations of values for the four issues.

The second domain taken from [17, 18] involves a case where England and Zim-
babwe negotiate an agreement on tobacco control. The leaders of both countries
must reach an agreement on five issues. England and Zimbabwe have contradictory
preferences for the first two issues, but the other issues have options that are jointly
preferred by both sides. The domain has a total of 576 possible agreements.

To compensate for any utility differences in the preference profiles, the agents
play both sides of every scenario.

Table 3 The four preference profiles used in experiments

Itex–Cyp Zim–Eng
Size 180 576
Opposition Strong Medium

4.1.3 Acceptance Conditions

For each acceptance condition we tested all 3× 7 = 21 pairings of agents, playing
with each of the 4 different preference profiles. We ran every experiment twice,
so that altogether each acceptance condition was tested 168 times. We selected the
following acceptance conditions for experimental testing. The different values of
parameters will be discussed in the section below.

• ACnext(α,0) and ACprev(α,0) for α ∈ {1,1.02},
• ACgap(α) for α ∈ {0.02,0.05,0.1,0.2},
• ACconst(α) for α ∈ {0.8,0.9},
• ACtime(T ), and the combined acceptance conditions

ACcombi(T,MAXW ), ACcombi(T,AVGW ) and ACcombi(T,MAXT ), where W is
the previous time window with respect to the current time t ′, and T = 0.99 (this
particular value of T is discussed below).

Additionally, we ran the experiments with agents having their built-in acceptance
mechanism in place. That is, we also tested the original agents’ coupled acceptance
mechanism. As we cannot for example, equip Agent K with the coupled acceptance
condition of Yushu, we tested the built-in mechanism by having each agent employ
its own mechanism.
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4.2 Hypotheses and Experimental Results

The experiments considered here are designed to discuss the main properties and
drawbacks of the acceptance conditions listed above. We formulate several hypothe-
ses with respect to the acceptance conditions we have discussed.

Our hypothesis about ACconst(α) is the following:

Hypothesis 1. For α close to one, ACconst(α) performs worse than all other
conditions.

To evaluate this hypothesis and others below, we have carried out a large number
of experiments. The results are summarized in Table 4 of the appendix. The ta-
ble shows the average utility obtained by the agents when equipped with several
acceptance conditions. The “average utility of agreements” column represents the
average utility obtained by the agent given the fact that they have reached an agree-
ment. When they do not reach an agreement (due to the deadline), they get zero
utility. Thus the following holds:

(The acceptance dilemma)

Total average utility = Agreement percentage
×

Average utility of agreements.

This formula captures the essence of the acceptance dilemma: accepting bad to
mediocre offers yields more agreements of relatively low utility. While accepting
only the best offers produces less agreements, but of higher utility.

Now consider ACconst(0.9) and ACconst(0.8). When it reaches an agreement, it
receives a very high utility (at least 0.9 or 0.8 respectively), but this happens so
infrequently (resp. 26% and 38% of all negotiations), that it is ranked at the bottom
when we consider total average utility.

We can conclude that our hypothesis is confirmed: in isolation, ACconst(α) is not
very advantageous to use. The main reason is that the choice of the constant α is
highly domain-dependent. A very cooperative domain may have multiple win–win
outcomes with utilities above α . ACconst(α) would then accept an offer which is
relatively bad, i.e. it could have done much better. On the other hand, in highly
competitive domains, it may simply ‘ask for too much’ and may rarely obtain an
agreement. Its value lies mostly in using it in combination with other acceptance
conditions such as ACnext. It can then benefit the agent by accepting an unexpectedly
good offer or a mistake by the opponent.

As we discussed earlier in Section 2.3, the acceptance conditions ACprev(α,0) and
ACnext(α,0) are standard in literature for α ∈ {1,1.02}. Many agents tend to use
these acceptance conditions, as they are well-known and easy to implement. We
have formed the following hypothesis:
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Hypothesis 2. ACnext(α,0) will outperform ACprev(α,0) for α ∈ {1,1.02}. How-
ever, both conditions will perform worse than conditions that take the remaining
time into account.

To test this hypothesis, we consult Table 4 where we have considered the two val-
ues for α . The first observation is that ACprev(α,0) and ACnext(α,0) already per-
form much better than ACconst. The higher value for α yields a better result and
ACnext(α,0) does indeed outperform ACprev(α,0). It makes sense that comparing
the opponent’s offer to our upcoming offer is more beneficial than comparing it to
our previous offer, as ACnext is always ‘one step ahead’ of ACprev. However, all
time-dependent acceptance conditions outperform both of them, even for α = 1.02.
This also settles the second part of the hypothesis. The reason for this bad perfor-
mance is that many bidding strategies focus on the ‘negotiation dance’ [21]. That
is, modeling the opponent, trying to make equal concessions and so on. When a
strategy does not explicitly take time considerations into account when making an
offer, this poses a problem for the two standard acceptance conditions: they rely
completely on the bidding strategy to concede to the opponent before the deadline
occurs. When the agent or the opponent does not concede enough near the deadline,
the standard conditions lead to poor performance.

Our third hypothesis with respect to the time-dependent condition is as follows:

Hypothesis 3. ACtime(T ) always reaches an agreement, but of relatively low utility.

To evaluate this hypothesis we needed to provide a concrete value for the experi-
mental variable T . We have set T = 0.99 for every acceptance condition depending
on T . As we have found during preliminary experiments, this value is sufficiently
close to the deadline, while it still allows enough time to reach a win-win outcome.
From observing the acceptance probability of ACtime(0.99) in the experimental re-
sults, we see that in 1 out of 168 negotiations (≈ 1%) this criterion did not reach
an agreement due to agent crashes and protocol errors, in which case both agents
received utility zero. But except for these particular events, ACtime(T ) will always
reach an agreement, therefore we consider this part of the hypothesis confirmed.

ACtime(T ), with T close to 1 is a sensible criterion to avoid a break off at all
cost. It is rational to prefer any outcome over a break off of zero utility. However,
the resulting deal can be anything. As we can see from the table, this is the reverse
situation of ACgap: ACtime(T ) yields the lowest agreement score (0.622) of all con-
ditions. This can be explained by the acceptance dilemma: by accepting any offer
near the deadline, it reaches more agreements but of relatively low utility. Still the
overall score is almost the same (0.618) and thus reasonable. It is interesting to note
that ACtime(T ) outperforms both ACprev and ACnext in average overall score.

This insight led us to believe that more consideration has to be given to the re-
maining time when deciding to accept an offer. The combined acceptance condi-
tions evaluated in the next chapter expand upon this idea to get better deals near the
deadline.



Acceptance Conditions in Automated Negotiation 107

4.2.1 Evaluating ACcombi(T,α)

When evaluating ACcombi(T,α), we expect the following characteristics.
ACcombi(T,α) is an extension of ACnext in the sense that it will accept under broader
circumstances. It alleviates some of the mentioned drawbacks of ACnext by also ac-
cepting when the utility gap between the parties is positive. Also note, that in addi-
tion to the parameters that current acceptance conditions use, such as my previous
bid xtn−1

A→B, my next bid xt′
A→B, the remaining time, and the opponent’s bid xt

B→A, this
condition employs the entire bidding history Ht

A↔B to compute the acceptability of
an offer. Therefore we expect better results than with ACnext, with more agreements,
and when it agrees, we expect a better deal than by using ACtime(T ).

We capture this last statement in our final hypothesis:

Hypothesis 4. The combination ACcombi(T,α) outperform other acceptance con-
ditions, such as ACtime(T ) and ACnext primarily by getting deals of higher utility.

As is evident from the experimental results, ACcombi(MAXW ) as well as
ACcombi(AVGW ) dominate the other acceptance conditions. They even perform 7%
better than the built-in mechanisms of the agent, and 18% better than ACnext. Sim-
ilar to ACtime, both conditions still get a deal almost every time, but with a higher
utility. However, the average utility of an agreement is not the highest: the ACgap
conditions and the built-in mechanisms get better agreements. But again, we can
observe that their agreement rate is also lower, resulting in a higher overall score for
the combined criteria.

Aiming for the highest utility that has been offered so far (i.e.: using
ACcombi(MAXT )) is a less successful criterion, mostly due to a big decrease in
agreements. The higher utility that is obtained with this condition does not compen-
sate for the loss of utility that is caused by a break off.

4.3 Related Work

All existing negotiation agent implementations deal with the problem of when to ac-
cept. In many cases, the agent accepts a proposal when the value of the offered con-
tract is higher than the offer it is ready to send out at that moment in time. Examples
include the time dependent negotiation strategies defined in [22] (e.g. the Boulware
and Conceder tactics). The same principle is used in the equilibrium strategies of
[7] and for the Trade-off agent [6], although in this setting, the deadline can be dif-
ferent for both agents. In our work, we consider strategies that do not always reach
an agreement, and hence we have concentrated on acceptance conditions that yield
better results in such cases.

Of all ANAC 2010 participants, we shortly discuss Agent K [25] as it employs
the most sophisticated method to decide when to accept. Its acceptance mechanism
is based on the mean and variance of all received offers. It then tries to determine
the best offer it might receive in the future and sets its proposal target accordingly.
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In contrast to our approach, this mechanism is not fully decoupled from the bidding
strategy as it directly influences its bid target. Furthermore, it does not restrict its
scope to the remaining or previous time window. Finally, we note that Agent K
performs better in our experimental setup (cf. Table 4) when equipped with our
combined acceptance conditions than with its built-in mechanism.

Although we do not focus on negotiation tactics and convergence results, our
negotiation model builds upon the model of [26]. However, in this model, the action
function of an agent only takes into account the offer it is ready to send out at that
moment in time. Moreover, the focus of the paper is not on comparing acceptance
conditions as only one specific instance is studied. We take a more general approach
in which the agent utilizes a generic acceptance mechanism, in which the current
time and the entire bidding history is considered.

5 Conclusion and Future Work

In this paper, we aimed to classify current approaches to generic acceptance condi-
tions and to compare a selection of acceptance conditions in an experimental setting.
We presented the challenges and proposed new solutions for accepting offers in cur-
rent state-of-the-art automated negotiations. The focus of this paper is on decoupled
acceptance conditions, i.e. general conditions that do not depend on a particular
bidding strategy.

Designing an effective acceptance condition is challenging because of the accep-
tance dilemma: better offers may arrive in the future, but waiting for too long can
result in a break off of the negotiation, which is undesirable for both parties.

We have seen that the standard acceptance criterion ACnext is often used by ne-
gotiating agents. From our results, it is apparent that ACnext does not always yield
optimal agreements. We established that it performs worse than more sophisticated
acceptance conditions.

In addition to classifying and comparing existing acceptance conditions, we have
devised three new acceptance conditions by combining existing ones. This included
two acceptance conditions that estimate whether a better offer might occur in the fu-
ture based on recent bidding behavior. These conditions obtained the highest utility
in our experiments and hence performed better than the other conditions we have
investigated.

A suggestion for future research would be to explore the many possible
combinations of acceptance conditions that may be obtained using conjunction
and disjunction (and possibly negation). Some agents already use a logical
combination of different acceptance conditions at the same time. For example, the
IAM(crazy)Haggler agents accept when

ACconst(0.88)∨ACnext(1.02,0)∨ACprev(1.02,0).

A suitable combination of acceptance conditions could provide a considerable im-
provement over current acceptance conditions.
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Secondly, we plan to test acceptance conditions with more agents and on larger
domains, using the resources that will be available after the upcoming ANAC 2011
event.

Finally, we did not consider negotiation domains with discount factors, which
devaluate utility with the passing of time. Adding discount factors will require new
acceptance conditions that give more consideration to the negotiation timeline. We
plan to examine such extensions in future work.
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