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A b s t r a c t .  We discuss the general problem of revising a contradictory 
non-monotonic theory and we show that sometimes expanding the theory 
is more appropriate than contracting it in order to remove the contra- 
diction. We apply this idea of theory-expansion to logic programs with 
negation and constraints. 
Using the well-founded (wf-) model semantics for logic programs as our 
starting point we show that this model may be contradictory due to 
a clash between the assumption made in the wf-model to consider un- 
founded atoms to be false and the repercussions constraints can have on 
this assumption. 
Then we show that the contradiction can be removed by adding rules 
to unfounded atoms in the program. We propose to use the noncontra- 
dictory wf-model of such an expansion as the semantics of the original 
program. 

We develop a formal framework for program expansion, studying prop- 
erties as completeness, minimality and computational complexity of ex- 
pansions. 
We think that program expansion is the best framework to study pro- 
cedurally defined revision processes as proposed in truth maintenance 
and logic programming such as dependency-directed backtracking and 
the recently proposed contradiction removal semantics. 
Using the framework of program expansions we are able to determine 
the complexity profiles of these approaches as well as significant gener- 
alizations of both of them. 
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1 I n t r o d u c t i o n  

1.1 R e v i s i o n  o f  n o n - m o n o t o n i c  t h e o r i e s  

In this' paper  we deal with revision in logic programs.  Such a revision has to oc- 
cur if the current program becomes contradictory, i.e. has no acceptable model. 
To remove such a contradiction, we propose to expand the current program with 
new rules in such a way that  the expanded program is contradiction-free. 

At first sight, expanding a theory in order to remove a contradiction might seem 
an odd idea. For, in the currently dominant  Alchourr6n-Gs 
(AGM-) approach ([1, 4]) to theory revision, instead of expanding a contradictory 
theory we would contract it in order to find a smaller but consistent theory. 
The difference, however, between theories dealt with in the AGM-approach and 
our logic programs is that  in the former an underlying monotonic logic is as- 
sumed, while we have to deal with logic programs in which negation by default 
can occur, giving it the characteristics of a non-monotonic theory. 
We will argue that  non-monotonici ty requires an adaptat ion of the s tandard 
AGM-approach to theory revision. 
First of all, although we think that,  like revision in s tandard monotonic theories, 
revision in non-monotonic theories should be based on consistency as a meta-  
constraint, we claim that  the notion of (in)consistency used has to be generalized. 
While classically a theory is inconsistent iff it admits  no models at all, for an 
inconsistent non-monotonic theory T it is perfectly possible to have classical 
models. The reason is that  in a nonmonotonic theory not every classical model of 
the theory is considered acceptable. So usually we distinguish for a given theory 3 
T a subset of the set Mod(T) of its classical models: its acceptable models. 
Consequentially, T is called (non-monotonically) inconsistent iff it has no ac- 
ceptable models (allowing it still to have some classical models). So, classical 
inconsistency is a kind of limiting case for inconsistent non-monotonic theories. 

This notion of non-monotonic inconsistency has some impor tan t  consequences. 
Firstly, it disposes of the main rationale for applying revision by contraction if 
a theory is inconsistent. Whereas retraction in monotonic logic seems perfectly 
reasonable, if a non-monotonic theory is inconsistent it is not so obvious why 
we should apply it. For example, if the theory has classical models, we could 
adapt  our notion of acceptability, and turn a classical model into an acceptable 
one. However, instead of changing the semantics, there is another way to solve 
a revision problem. 
Note tha t  our definition of non-monotonic inconsistency implies that:  

for an inconsistent non-monotonic theory T there may exist consistent 
theories T ~ containing T. 

3 Here; a a theory T is a set of sentences over a language/2. We use Cn(T) to denote 
the deductive closure of T. In terms of the AGM-theory, T is a belief base and 
Cn(T) the set of befiefs defined by it. 
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This suggests that  

suppose we have a consistent non-monotonic theory T such that T U { r  
does not have an acceptable model. Then, instead of contracting T, we 
could try to find a theory T ~ containing T such that T ~ U {r has an 
acceptable model. 

Let us call such a theory T ~ an expansion of T. 

Therefore, theory-expansion at least is an option in revising contradictory non- 
monotonic theories. To show that  sometimes it is a bet ter  alternative, we will 
discuss a proposal for applying theory-expansion in the revision of logic pro- 
grams. 
We will argue that  whenever a logic p rogram is (purely) non-monotonically in- 
consistent, it is more appropriate  to apply theory expansion than theory contrac- 
tion to solve a revision problem. The reason for this is provided by the special 
nature of grounded reasoning in the semantics of logic programming,  governed 
by the following meta-rule: 

unless there is a grounded reason for  a statement, assume it to be false. 

Then, applying revision by expansion is justified by the following consideration: 

i f  in a theory T a contradiction arises as a consequence of making some 
assumptions, it seems more adequate to revise the assumptions than the 
sentences of T.  

Observe that  revising these assumptions means that  we have to state explicitly 
that  some beliefs cannot be false. As we will see, the only way to express such 
s ta tements  in a logic program is to add suitable arguments for such assumptions.  

1.2 P l a n  o f  t h e  p a p e r  

Using logic programs with constraints, first we will give some motivat ion for 
introducing expansions as revisions of contradictory programs.  Then we will 
introduce the notion of an expansion function and we will discuss the notion of 
completeness of such functions. 
Intuitively, an expansion function E is complete wrt. a class 7 ~ of programs if 
E returns an expansion for a program P E 7 ~ whenever there is an expansion 
possible for P. So complete expansions are the most  successful revisions for a 
class of programs. 
Since it makes sense to concentrate on complete functions only, we would like to 
represent such functions by expansion functions having some very simple form. 
We will show that  there exists a regular class of expansion functions having this 
feature (u-t-simple expansion functions) and that  these functions can be used to 
represent and simulate the effect of every possible expansion function. 
We will also give computat ional  complexity results for expansion functions. In 
particular,  we will deal with the problem of finding minimal expansions, show- 
ing that  the problem of minimal size and minimal  change expansions both  are 
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intractable. If we relax minimality to inclusion minimality it turns out that  in- 
clusion minimal size expansions can be found very efficiently, but relaxing the 
minimal change problem does not change the difficulty of the original problem. 

A general problem, however, with these minimal expansions is that  they don't  
need to be unique for a program. 
Therefore, in the subsequent sections we discuss a canonical approach to ex- 
pansions which combines a set of expansions to obtain a uniquely defined non- 
contradictory wf-model. The wf-model of such a "summarizing" expansion can 
be proposed as a canonical (non-contradictory) extended stable model of the 
program. 

We show that some canonical expansions can be found effectively, but that in 
general those canonical approaches based on some form of size or change mini- 
reality are intractable, even if they are based on inclusion minimal size expan- 
sions. 

1.3 R e l a t e d  r e s e a r c h  

In truth maintenance -a closely related formalism- program expansion has been 
applied in the context of dependency-directed backtracking methods to perform 
belief revision in case a contradiction has been detected ([3, 13, 17]). As these 
methods mainly have been stated informally and in an procedural way, there are 
little or no formal results. 
In auto-epistemic logic, Morris ([9]) has suggested something like program ex- 
pansion for auto-epistemic theories that have no extension. The simple idea is: if 
there is no extension for a set of premises S, then a set-inclusion minimal set of 
ordinary (i.e. modal-operator-free) premises is added to S such that  an extension 
exists. 
In logic programming, the work of Pereira et al. ([10]) on Contradiction Removal 
Semantics can be seen as a special expansion method, allowing for revision of 
assumptions. 
Also the abduction problem in logic programming is closely related to the ex- 
pansion problem: an abduction problem can be reformulated as the search for 
a suitable expansion of a program if some constraints are added restricting the 
admissible truth-value of some atoms. 

In none of the references cited above, however, a general characterization of 
program expansion has been given and also the aspects of completeness and 
tractability of expansion methods have not been discussed as we will do in this 
paper. 
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2 P r e l i m i n a r i e s  

2.1 Programs  and interpretat ions .  

By a finite proposi t ional  logic p rogram P we mean a finite set of rules r of the 
form 

A ~-- L1, L 2 , . . . ,  Lm m > 0 

where A is a proposi t ional  a tom and L1, �9 �9 Lm are positive or negative (propo- 
sitional) literals. In a negative literal -~ B, the negat ion opera tor  -,~ s tands  for 
negat ion by default. 
We will often abbreviate  such a rule r by 

A ~ A  or A ~ A + , A  - 

were A +, ( (A+(r ) )  denotes the conjunct ion of the positive literals, A-,  (A-(r))  
the conjunct ion of  the negative literals in the body  of  r and A, (A(r)) is the 
conjunct ion of  A -  and A +. 
We will denote the head A of a rule r by hd(r) and hd(P) = {hd(r) I r E P}. 
For convenience, we will also use A to denote the set of literals occurr ing in the 
body  A of a rule. 
Bp denotes the Herbrand Base of P. For a set S of literals ~ S  = { ~ L  I L E S} 
is also a set of  literals, where ,,~,,~L = L. Let Lit(P) = BpU ,.~Bp. 
Let r be a formula  over Bp. We use Lit(e) (Lit+(r Lit-(r to denote the set 
of all literals( positive literals, negative literals) occurr ing in r A three-valued 
semantics for logic programs will be used dist inguishing the t ruth-values t, f 
and u. We use two orderings of these truth-values:  the lattice 3t, defined by 
f < t  u < t  t and the semi-latt ice 3k defined by u <k f ,  u <k t. 
A three-valued interpretat ion I is a t ru th-ass ignment  Bp , ) 3t. We will also 
use I x to s tand for I-~(x), x 6 3t and we will also represent I by the (consistent.) 
subset ItLj ,..I / C_ Lit(P). 
Interpreta t ions  are extended to formulas  over A, ,-. by using the s tandard  s trong 
Kleene interpretat ions:  

A : I(a A/3) = mint{I(a),  I(/3)} 
~ :  ,-~t = f, , v u  = u,  ~ f =  t. 

The  implicat ion opera tor  "~--" is interpreted as weak implicat ion,  defined by 

t if I(A) >_t I(A) 
I(A ~- A) = f o t h e r w i s e  

The ordering _<k between literals can be extended to a knowledge ordering _E k 
between interpretat ions in the usual way: 

IC_k I '  iff I(A)<_kI~(A) for every A EBp  

The t ru th  ordering _Et for interpretat ions is defined analogously.  
Finally, an interpreta t ion I of  P is a model of P iff I(r) = t for every rule r E P.  

Somet imes  we will use the constants  t or u in the body  of  p rog ram rules. We will 
assume tha t  the meaning  of  these constants  is respected in the interpretat ions.  
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2.2  W e l l - f o u n d e d  s e m a n t i c s  

We will take the well-known Well-Founded model W F ( P )  as the semantics  of 
logic p rogram p4.  
In the sequel we will use the not ion of  a well-founded proof (wf-proof) for an 
a t o m  A. Such a wf-proof  is a set of  rules which can be used as an a rgument  for 
considering A not  to be false. 

P r o p e r t y  2.1 For every atom A such that W F ( P ) ( A )  ~ f there exists a small- 
est ~nite sequence (rp(A) : (rl, r2 , . . . ,  rk) of rules in P such that 

1. hd(rk) = A; 
2. for every i < k, Lit+(A(ri))  C_ {hd(rl) ,  hd(r2) , . . . ,  hd(ri-1)},  i.e. the belief 

in hd(ri) is grounded; 
3. WF(P) (hd( r i ) )  = WF(P) (A(r i ) )  >_t WF(P)(hd(rk ) ) ,  i.e., the belief in 

hd(ri) is supported. 

Such a sequence (rp(A) is called a well-founded proof(wf-proof) of A in P. 

Such a wf-proof  in fact is a simple general izat ion of the s tandard  not ion of a 
proof: 

L e m m a  2.2  Let P be a program. I f  there is a wf-proof ap (A)  containing only 
positive rules then P ~ A, i.e., A is a logical consequence of P. 

2.3 M o d e l s  o f  p r o g r a m s  w i t h  c o n s t r a i n t s  

In normal  logic programs using negat ion as failure it is not  possible to express 
tha t  there exists an incompat ibi l i ty  relation between two or more literals occur- 
ring in the program.  For example, it is not  possible to express tha t  two literals 
A and B cannot  be s imul taneaously  true. 
To express such incompat ibi l i ty  relations, we need constraints.  A p rogram with 
constraints is a p rogram P,  containing a special subset P c  of rules, called con- 
straints. Constra in ts  are represented as rules of  the form _k *-  A. The  special 
a t o m  _L does not  occur as antecedent of any rule in P .  Such a constraint  ex- 
presses tha t  the literals occurring in A cannot  be true simultaneously.  
A p rogram with constraints is a p rogram P,  containing a special subset P c  of 
these constraints .  

For programs P with a set of  constraints  Pc,  we define a model  M of P to be 
a consistent or C-model of P iff M(.I_) ~ t. Otherwise, M is contradictory. 
P is called C-consistent if there exists a C-mode l  of P.  Otherwise, P is called 
C-inconsistent. 
We define M to be the wfc-model of P if M = WF(P)  and M is consistent. 

4 We refer to [7, 16, 18, 21] for exact definitions and relations to other possible se- 
mantics for logic programming; here we only mention its relation to the three-valued, 
stable model semantics: the Well-Founded model WF(P) is the unique _k-least sta- 
ble model of P. 
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3 Revision by Expansion 

For every general logic p r o g r a m  the  wf-model  WF(P) is un ique ly  defined. For  
p r o g r a m s  wi th  cons t ra in t s  however,  no t  every p r o g r a m  P does have a wfc model .  
For  example ,  the  p r o g r a m  

P1 : P ~ - -  
q ~-p,~..r 
l ~ - q  

does not  have a wfc-model, and the  s ame  is t rue  for the  the  p r o g r a m  

P2 :p~--  
_l_~--p 

We argue t ha t  in the  first case there  is a very n a t u r a l  so lu t ion  to the  p rob l em:  
a l though  the wf-model  M = {p, q, J_, ~ r} for P1 is cont rad ic tory ,  there  are  o the r  
mode l s  of P1 which are not.  For example ,  {p, r,--~ q, , , ~ / }  and  {p} are  three-  
valued C - m o d e l s  of  P .  The  reason why M was selected by the wf -semant ics  
is, of course, t ha t  there  is no direct  g rounded  reason to consider  r as t rue  or 
unknown.  Hence, r is assumed to be false and  this  causes the  cons t r a in t  _L ~-- q 
to be v io la ted .  
But  of course, i sn ' t  the  v io la t ion  of such a cons t r a in t  a perfect  reason to consider  
r not to be false? Hence, we see t h a t  there  exis ts  an indirect reason to consider  
r as t rue or unknown,  which cannot  be de tec ted  by the wf-semant ics .  Now in 
order  to express  t ha t  we want  to assign some t r u t h  to an a t o m  A in a logic 
p r o g r a m ,  we have to add  a rule for it. 
So it seems t ha t  we can repa i r  such a defect of the  wf-semant ics  by recogniz ing 
these repercussions of the  wf- requi rements  in the  presence of cons t ra in t s  by 

(i) add ing  some reason (rule) for one or more  such a s sumpt ions  r; 
(ii) d e t e r m i n i n g  the wf-model  of the  o b t a i n e d  expansion of the  or ig ina l  p r o g r a m .  

Hence, we see t ha t  in this  case, in which P has  a n o n - e m p t y  set of  C -mode l s ,  a 
t heo ry -expans ion  app roach  can be m o t i v a t e d  in a s imple  way. 

On the o ther  hand ,  in case of  P2, the  p r o g r a m  i tself  is C- incons i s t en t  and  the 
wf-model  seman t i c s  cannot  be b l a m e d  for a defect.  Here, in fact ,  every expans ion  
of P2 is C- incons i s ten t ,  so there  exists  no expans ion  having  a wfc-model. 
In this  l a t t e r  case, s t a n d a r d  theory  revis ion m e t h o d s  could be appl ied ,  inc lud ing  
the app l i ca t i on  of contraction opera t ions  (of. e.g. [4]). However,  as m e n t i o n e d  in 
the  i n t roduc t ion ,  we will res t r ic t  our a t t e n t i o n  to expans ion  me thods .  

N o t a t i o n :  A p r o g r a m  P expanded  by a set of  rules R is deno ted  by P + R. If  
R is a s ing le ton  R = {r} ,  we will also use P + r .  

In [21] we have inves t iga ted  some re la t ions  be tween  the  wel l - founded m o d e l  of  a 
p r o g r a m  P and  the wel l - founded m o d e l  of cer ta in  expans ions  of  P .  
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Here we will need only one property, needed in the subsequent sections. 
This property implies not only that rules of the form A *-- u can be added to 
the program in order to find a E k-smaller well-founded model of the expansion, 
but also when such an addition will result in a weakening of the wf-model. 

P r o p e r t y  3.1 ( u - a n t i - m o n o t o n i c i t y )  For every P and A �9 Bp : 
(1) W F ( P  + {A ~ u}) C_k WF(P)  
and, 
(2) if W F ( P ) ( A )  >__t u then WF(P)  = W F ( P  + {A ~- u}). 

4 E x p a n s i o n s  a n d  E x p a n s i o n  f u n c t i o n s  

We will now discuss a framework for program expansion. 

D e f i n i t i o n  4.1 An e x p a n s i o n  of a program P is a program P~ such that P C 
P' and Pc  =PIc .  

D e f i n i t i o n  4.2 A w f - e x p a n s i o n  of a program P is an expansion pi of P such 
that P' has a wfc-model. 

Our interest is also in computat ional  aspects of program expansion. Therefore 
we want to study the complexity of algorithms which given a program would 
find a suitable expansion of it. 
So we will study expansions of programs by studying properties of expansion 
functions that  are used to generate them. 

D e f i n i t i o n  4.3 Given a class of programs 7 ~, a w f - e x p a n s i o n  f u n c t i o n  is a 
(partial) computable mapping E, whose domain is a class of programs, assigning 
to every P �9 dom(E) a wf-expansion E(P)  = P' of P. 
I f  P �9 dora(E), ME(P)  denotes the w f - e x p a n s i o n  m o d e l  WF(F ' )  returned 
by E. 

E x a m p l e  4.4 Consider again the program 

P :  p~-- 
q ~-- p,,,~r 

.J_+-- q 

Suppose we have an expansion function E, which applied to a program P, ex- 
pands P by adding a rule s ~- for every negative literal -~ s occurring in P. 
Then E will return the expansion pi  __ p + {r ~--} and finds the wfc model 
W E ( P  ~) = {p, r, ,-~ q, -,~_l_} as the wf-expansion model for P. 
If, however, the rule q ~- r is added to P, E is not defined for P U {q ~-- r}: 
adding r ~-- to this program now results in a program P~ having no wfc-model, 
since WF(P ' )  = {p, r, q, _L}, so W F ( P ' ) ( •  = t.  
If  we take another function E ~ that  always adds a rule s ~--,-~ s for every negative 
literal ,,~ s occurring in the body of some rule, E ~ is also defined for this latter 
program, since then WF(P ' )  = {p}. �9 
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4.1 Revisabi l i ty  and Comple tenes s  

As the example given above shows, some expansion functions may succeed for 
some programs but not for others. Clearly, given an arbitrary program P we 
would like to know whether there exists some function for a successful expansion 
of this P. This motivates the following definition: 

D e f i n i t i o n  4.5 A program P is called r e v i s a b l e  iff there exists a wf-expansion 
function E, such that P E dora(E). 

The following simple result shows that a program P is revisable iff, classically, 
it is non-contradictory: 

T h e o r e m  4.6 A program P is revisable iff P has a C-model. 

As a consequence, another characterization of revisable programs can be given 
by means of wf-proofs of J_: 

C o r o l l a r y  4.7 A program P is revisable iff every wf-proof ~rp(3-) contains at 
least one rule r having at least one negative antecedent. 

These results imply that the domain of a suitable expansion function E should 
contain every C-consistent program. Functions satisfying this requirement will 
be called complete. 
More exactly, let T' be a class of programs and let 

CONS(P)  = { P E P I P is a C-consistent program } 

Then we define completeness as: 

D e f i n i t i o n  4.8 A program expansion function E is said to be c o m p l e t e  with 
respect to 7 ~ iff dora(E)= CONS(P) .  

Clearly, it makes sense to concentrate on complete functions, since they can be 
considered as the most successful expansion functions. 

4.2 C o m p l e t e  classes o f  e x p a n s i o n  funct ions  

We will show now that every (complete) expansion function can be represented 
by some subset of atoms from Bp.  First, we will prove that every expansion 
function can be simulated by a some simple expansion function. Then we will 
show how to reduce simple expansion functions to subsets of Bp. 

Suppose we could represent the effect of every conceivable expansion function 
by using functions in a rather small and regular class of expansions. This latter 
class then should have the property that the effect of every conceivable expansion 
function on atoms in Bp can be simulated by some member of this class. If such 
a class E has this property, we will call it a complete class: 
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Def in i t ion  4.9 Let E be a class of expansion functions and 7 9 a class of pro- 
grams. E is said to be a c o m p l e t e  class of  expans ion  func t ions  wi th  r e spec t  
to  79 iff for every expansion function E ~ there exists an expansion function E E 
such that 

1. dom~,( E) = dom~,( E') 
2. for every P E domp(E') ,  W F ( E ( P ) )  =Lit(P) WF(E~(P)) .  

Here, dom,p(E) refers to the domain of E restricted to the elements from 79 and 
=Lit(P) refers to equality restricted to elements occurring in Li t (P) .  
We will now define a complete class of regular expansion fimctions. 

Def in i t ion  4.10 An expansion function E is called s imple  if  for every P E 
dora(E) only rules of the form A ~- t or A ~- u are added to P, where A E Bp.  
We will call E t - s imple  if only rules of the form A ~- t are added and u-s imple  
if  only rules of the form A *-- u are added. 

The following lemma shows that the class of simple expansion functions is a class 
of complete expansion functions with respect to the class of all propositional logic 
programs with constraints. 

L e m m a  4.11 Let E be an arbitrary expansion function and P an arbitrary 
element of dora(E). Then there exists a simple expansion function Esimple such 
that 

1. dom(Esimple) = dom(E) and 
2. WF(Esi,~pte(P))=Lit(P) W F ( E ( P ) ) .  

Note that given a program P, the effect of a t- or u-simple expansion func- 
tion can be represented by set of conclusions of the rules added to P. In gen- 
erM, given an expansion function E and a program P, we will call the set 
Ep = {hd(r)  I r E E ( P)  - P}  an expansion set of P. 

The following observation implies that we don't lose completeness in representing 
complete simple expansion functions by u-simple expansion sets: 

Obse rva t ion  4.12 For every complete simple expansion function E, there ex- 
ists a complete u-simple expansion function E ~ such that for every P E dom(E),  
Ep = E'p. 

Taking these results together, we have the following theorem: 

T h e o r e m  4.13 For every complete expansion function E ~ there exists a u- 
simple expansion function E, such that dom( E')  = dom( E). 
In particular, the u-simple function E such that for every P, Ep = E~ (q Bp 
SUffiCeS. 
This result, and the completeness of simple expansion functions, show that we 
can study properties of arbitrary complete expansion functions E by reducing 
them to the expansion set Ep n ]3p. 
In the subsequent sections we will assume that every expansion function E has 
been reduced to such a set and we will simply use Ep to denote this expansion 
set, further reducing it to E if P is understood. 
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4.3 C o m p l e x i t y  o f  complete expansion functions 

At this point the reader might ask how difficult it might  be to actually compute  
complete expansion functions. 
It  turns out that  finding an arbi trary expansion of a revisable program is tractable.  
In fact, computing WF(P)  and selecting the atoms evaluated false by WF(P) 
already suffices. 

Theorem 4.14 (tractability of arbitrary expansions) 
There exists an O(IPI2)-lime computable expansion function for programs with 
constraints. 

Proof Sketch. Let E be the expansion function returning for every revisable but 
contradictory program P with constraints the expansion set 

Ep =- {A I WF(A) = f ,A  E Bp}. 

It is easy to see that  P+Ep is contradiction-free. Since revisability can be checked 
in O(IPD-t ime and the WF-model of P+Ep  can be computed in O(IP+Ep] 2) = 
O(IPI 2) time, the theorem follows. 

Remark. At this point, the reader might  ask, why we did not require an expan- 
sion model to falsify • i.e., to require that  M(_L) -- f for every wfc model of 
P. Such a C-model  could be called satisfying hard constraints. 
Among others, the reason is that  allowing hard constraints would make the the- 
ory less interesting from a computat ional  point of view: we can show that  hard 
constraints already render the problem to find an arbri trary wf-expansion of P 
intractable. 

P r o p o s i t i o n  4.15 Let P be a program with at least one hard constraint. Then 
finding an arbitrary wf-expansion of P is NP-Hard. 

5 M i n i m a l  E x p a n s i o n  M e t h o d s  

We only expand a program if it is necessary to do so. And if it is necessary it 
seems natural  to try to change the program as little as possible. 
This idea of minimali ty can be specified either in a syntactical or in a semantical 
way. 

1. Syntactically an expansion function is a minimal expansion if it minimizes 
the amount  of expansion rules added to a program P i.e., the size of the 
expansion, in order to obtain a contradiction-free expanded program. 

Therefore, we will call an expansion function E a minimal size expansion 
function if for every E '  and P E dora(E) N dom(E'), we have 

IE(P)I <_ ]E'(P)] 
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2. Semantically, an expansion function E is a minimal  expansion if it affects the 
information conveyed by the original program in a minimal  way. Such a min- 
imal change expansion we define as a minimization of the model-difference 
between the (inconsistent) wf-model of P and the (consistent) wf-model of 
the expansion E(P). 
More exactly, if E(P)AP  is defined as 

E(P)AP  = {a E Bp I WF(E(P))(a) ~ WF(P)(a)} 

then E is a minimal change expansion function, if for every E ~ and P E 
dora(E) N dom( E'), we have 

IE(P)API <_ IE'(P)API 

As we already remarked we aim at complete and hopefully tractable expansion 
functions. 
I t  is, however, very unlikely that  there exist complete and minimal  expansion 
functions which also can be computed efficiently. If  we look at their associated 
search problems (to find a size- or change-minimal expansion for a given pro- 
gram),  these problems turn out to be NP-Hard.  

T h e o r e m  5.1 The problem to find a minimal size or minimal change expansion 
for an arbitrary program P with constraints is NP-Hard. 

The proof of these results 5 is given by a polynomial turing-reduction from the 
NP-complete Hitting Set problem (see [5]). Let (S, C, K)  be an instance of the 
Hitting Set problem, where S is a finite set, C is a set of non-empty subsets of 
S and K is a positive integer. 

We can show that  this instance has a hitting set of size _< K iff the program 

PHS = {_L ~---"~sil,...,..~s,, I { s i l , . . . s i , }  E C} 

has a minimal expansion of size ~ K or a minimal  expansion making at most  K 
changes. 
To measure the degree of NP-Hardness more precisely, we can use the technique 
of bounded query evaluation [19], where the complexity of a problem is measured 
in terms of the necessary number  of calls to an NP-oracle in order to solve the 
problem by an otherwise polynomial  algorithm. 
The associated decision problems of these problems: do there exist minimal ex- 
pansions of size~change K or less? both are NP-complete problems. By making 
O(log n) calls to an NP-oracle for these problems, we can decide the size K of 
the minimal  size expansion or the number K of changes required by a minimal 
change expansion, where n is the number  of a toms occurring in P. 
This number K can be used to determine which a toms will be required to occur 
in a minimal  size- or change-expansion by making O(n) calls to an NP-oracle 

5 For the complete proof, the reader is referred to a technical report [21] 
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for the associated decision problems. Hence, both problems can be solved by 
making at most O(log n) + O(n) = O(n) calls to an iP-orac le .  
On the other hand, there are more than a logarithmic number  of calls necessary, 
since it is easy to see that  if we only allow for O(log n) calls to an NP-oracle 
to solve the minimal  expansion problem, the existence of any algorithm solving 
these problems in polynomial  t ime would immediately  imply that  P = NP 6. 
So we have: 

T h e o r e m  5.2 The problem to find a minimal size or minimal change expansion 
for an arbitrary program P with constraints can be solved by a polynomial algo- 
rithm making more than O(log n) but no more than O(n) calls to an NP-oracle. 

Note that  until now we have only analysed cardinality minimal  size/change ex- 
pansion functions. It is tempting to relax these notions and to investigate the 
complexity of their relaxation looking at inclusion minimal  (size/change) expan- 
sion flmctions. 

We will investigate the complexity of these problems separately. 

5.1 I n c l u s i o n  m i n i m a l  size e x p a n s i o n  is e a s y  

For a relaxation of size minimal expansions we do not look at the number of ele- 
ments occurring in a size-minimal expansion, but at the subsets of the expansion 
verifying that  none of them makes the program contradiction-free. 

D e f i n i t i o n  5.3 An expansion set E is called an inclusion size minimal expan- 
sion for  a program P if  P + E is contradiction-free and there is no strict subset 
U of E such that P + U is contradiction-free. 

It turns out that  relaxation of size minimali ty is a good idea. 

T h e o r e m  5.4 The problem to find an inclusion minimal minimal expansion for 
an arbitrary program P with constraints can be solved in polynomial time 

Proof Sketch. Without  loss of generality assume P to be revisable. Take an ar- 
birary expansion set E for P; We know (see Theorem 4.14) that  such an expan- 
sion set can be found in polynomial time. 
Basically, the idea is to remove elements from E as long as the resulting program 
P + E still has a WF-model.  The following algori thm creates such a minimal  
expansion Era,, from a given expansion E: 

MinExpansion(P,  E): 
b e g i n  

Emin := E ; i := 1 ; 
w h i l e  i _< I EI 

6 For an application to a related problem see [6] 
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o 

i f  W F ( P  + (E,,~in - {ai})) is non-contradictory 
t h e n  E,~in := Emia - { ai } 

fi; 
i : = i + 1 ;  

wend ;  
r e t u r n  Emin ; 

end;  

The correctness of this algorithm can be derived from the u-antimonotonicity 
of the WF-operator (see Property 3.1). Since the wf-model of a propositional 
program can be computed in O(n x [PD-time, where n is the number of atoms 
occurring in P (see [22]), MinExpansion(P, E) can be computed in O(n x (n x 
(IPl + n))) = O(n 2 x ]Pl) time. 

E x a m p l e  5.5 Consider the following program: 

P : e ~ a 
e ~---,,~ a , ,,~ b 
d*--e  
e ~ - . - d ,  , . ~c  

..L ~-..--e. 

The wf-model of this program is M = {,~ a, ,~ b, ,~ c, e, d, .l_}. 
Take E -- {a, b, c}. Computing MinExpansion(P, E) we find E,ni,~ = {a}. Hence, 
P U { a ~----,-~ a } is a minimal size expansion of P. 

5.2 I n c l u s i o n  m i n i m a l  change  e x p a n s i o n  is hard 

To define a relaxation of minimal change expansion requires some more work. 
First of all, if we would define E to be an inclusion minimal change expansion 
if no subset of E is a minimal change expansion, we would immediately identify 
it with inclusion minimal size expansions. 
Note, however, that if E is an expansion set, the set (P + E ) A P  is also an ex- 
pansion set. Moreover, it is easy to see that  for every expansion set E' contained 
in (P + E ) A P ,  we have: 

(P + E ' ) A P  C_ (P + E ) A P  

Therefore, we can relax the change minimality of E with respect to the set 
(P + E ) A P  and we define inclusion minimal change expansions as follows: 

D e f i n i t i o n  5.6 An expansion set E of P is an inclusion minimal change expan- 
sion if  there is no subset E' o f ( P + E ) A P  such that I ( P + E ' ) A P  I < I(P+ E ) A P  I. 

Note that  again, every cardinality based minimal-change expansion also is an 
inclusion minimal change expansion. 

The disappointing result however, is, that  even relaxation does not help in mak- 
ing the problem easier: 
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Theorem 5.7 Given an arbirary program P and an expansion E of P the prob- 
lem to find an inclusion minimal change expansion is NP-hard. 

And even looking at a more detailed level it turns out that  such E-minimal  
change problems can be solved by polynomial  algorithms using at most  O(n) 
but more than O(log n) calls to an NP-oracle. 

6 C a n o n i c a l  E x p a n s i o n  M e t h o d s  

In the previous section we discussed syntactical and semantical minimali ty  cri- 
teria for expansion, methods.  One of the aspects evolving from minimization- 
activities is that  generally several minimal  expansion are associated with a pro- 
gram. 
As is common in the research of logic programming,  a canonical method  is desir- 
able. The most  obvious way to at ta in canonicity is to create a most  general ex- 
pansion method,  i.e. an expansion method that  contains every expansion method 
of a certain class. Before studying canonicity in the context of minimali ty  we will 
first characterize canonicity for arbi trary complete expansion classes. 
The most  general expansion method that  exists is the set of all a toms A such 
that  WF(P)(A)  = f as expansion set for a revisable program P. Obviously, 
this set can be computed in constant t ime if the wf-model of P is given and 
in O(IPI2)-t ime otherwise. However, this method is in most  cases too general, 
a toms may get changed that  do not occur in any wf-proof of J_. 
So, let us restrict ourselves to methods that  only change a toms that  are involved, 
one way or another, with some wf-proof of J_. These expansion methods  will 
be called relevant expansion methods.  Note that  every minimal  size expansion 
method is relevant. 
Restricted to relevancy, we can now obtain an easy method for generalization of 
such a class of relevant complete expansion methods: 
Let T~ be a class of relevant complete expansion methods,  then 

Rk = U { E I E e ~ }  

is a relevant and complete expansion method with the feature that  for all ex- 
pansions E E 7~ and arbi trary revisable programs,P ,  

WF(Rk(P))  E_k WF(E(P)) .  

Therefore, we call these most  general relevant complete expansion methods 
knowledge-minimal expansion methods.  

6.1 Knowledge-minimal  Expansion Methods  

In the above definition of knowledge-minimal expansion methods,  such an expan- 
sion method is defined with respect to a specific, but arbi trary class of relevant 
complete expansion methods.  Therefore, we can study the knowledge-minimal 
expansion method for every relevant and complete class. Since first computing 
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every expansion for a revisable program within a specific class R will most of- 
ten lead to unnecessary high time-complexities, it makes more sense to try to 
characterize the set of atoms affected by the expansions in R in direct way. In 
recent years several classes of relevant complete expansion methods have been 
characterized by their knowledge-minimal expansion and some of these can be 
computed in cubic-time, given the size of the program, since the associated 
expansion-sets can be found in linear time. We refer to Section 4.3 where we 
prove that there exist tractable knowledge-miaimal expansion methods. Fur- 
thermore we refer to [7, 20, 21, 22] where knowledge-minimal expansions of sev- 
eral classes are introduced and compared. In this paper we only want to stress 
that  knowledge-minimality is in many cases tractable. However, in the next sec- 
tion we will study the knowledge-minimality of the classes of minimal expansion 
methods and their complexity. This way the lower and upper bounds on the 
complexity of canonical expansions will be fully determined. We hope that  by 
way of future research, this will help to establish exactly where the narrow line 
between tractability and intractability is. 

6.2 Canonical Minimal  Expansion Methods  

In this section we will study the knowledge-minimal expansions of the different 
classes of minimal expansion methods. We will abbreviate knowledge-minimal 
minimal expansion methods by the term canonical minimal expansion methods. 
Doing this we generalize an idea suggested in [10] to use a canonical minimal 
expansion function in order to obtain a canonical wf-expansion for a program 
with constraints. 
We will not discuss the somewhat intricate details of the CRS Pereira et al. 
proposed, but in the Section 7 we will present a characterization framework for 
arbitrary expansion methods with we will analyse the CRS. 

We will start by considering the abstraction level where the kind of minimality 
is not important,  later we will concentrate on inclusion-minimality of size, since 
it is the only tractable minimality criterion, then we will continue by relating 
the complexities of the notions minimality of size and (inclusion) minimality of 
change to the complexity of inclusion-minimality of size. 

As mentioned in Section 6.1, given the a specific sort of minimality and its as- 
sociated class R, the computation of Rk by first computing all expansions in R 
will not lead to tractable algorithms. Therefore, we will first compute the com- 
plexity of finding a canonical minimal expansion given a specific, but arbitrary, 
expansion function. 
Assume that we have some complete expansion function E and a program P E 
dom(E). Overloading E we let E C Bp represent the expansion set generated 
by the expansion function and we will call E the candidate set. E~ will denote 
the set of rules E,, = {e ~-- u I e E E}. 
Every subset E I of E that is also an expansion set, will be called a subexpansion 
of E. Among them are subexpansions that are minimal subexpansions of E. Since 
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we have no reason to prefer one above another we take the union of all minimal  
subexpansions of E as the canonical expansion set E* associated with E, i.e. if, 
for example, R denotes the class of all inclusion minimal-size expansions that  are 
subexpansions of E, then E* would coincide with Rk. Subsequently, W F ( P + E * )  
is called the canonical wf-expansion model of P wrt. E. 
Given the candidate set E, the canonical wf-expansion model is consistent: 

P r o p o s i t i o n  6.1 Let E be a candidate set for a program P. Then E* is an 
expansion set for P. 

This follows immediately from the fact that  E* can be defined as the set of ele- 
ments e E E for which there exist a minimal subexpansion containing e. Hence, 
E* C E. Now the result follows as an easy consequence of E being an expansion 
set and Property 3.1. 

Until now, we made no reference to a specific type of minimality, but  in Sec- 
tion 6.2 we will first consider inclusion minimali ty  of size. 

C o m p l e x i t y  o f  c a n o n i c a l  m i n i m a l  e x p a n s i o n s  
Since we know that  inclusion minimal size expansion problems are tractable,  we 
might expect the canonical inclusion minimal  size expansion also to be tractable.  
We can show, however, that  finding such a canonical expansion is intractable. 
This proof is based on the intractability of the following decision problem: 

Given a program P, an expansion set E C Bp and an element e E E, is 
there a minimal subexpansion E t of E containing e ?7 

Note, that  we can find the canonical subexpansion E* of E by quering an oracle 
for this NP-complete problem O(]E]) times: for every e E E, decide whether or 
not e occurs in a minimal subexpansion of E. Hence, 

T h e o r e m  6.2 Given an arbitrary program P and a complete expansion set E 
for P, the problem to find a canonical inclusion minimal-size expansion E* of 
E can is NP-hard but can be found by quering an NP oracle O([EI) times. 

From Section 5 we know that  all three other criteria for minimali ty (of size, of 
change and inclusion minimal change) are essentially more difficult than inclu- 
sion minimal size. Therefore, it is easy to understand that  the complexities of 
canonical minimal-size and canonical inclusion minimal change expansion cannot 
be of a lower complexity than canonical inclusion minimal  size expansion. 

7 A n a l y s i s  a n d  C h a r a c t e r i z a t i o n  o f  E x p a n s i o n  M e t h o d s  

In this article we discussed several aspects by which expansion methods can 
be classified: completeness, relevance, (inclusion) minimali ty  of size and change, 

7 So finding an arbitrary minimal size expansion is tractable, but looking for a specific 
minimal size expansion is intractable. 
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tractability and canonicity. In this section we will give the analysis two proposals 
from literature for program expansion that  have not been subjected to such an 
analysis before. We chose the original Dependency-directed backtracking method 
of Doyle [3] and the recent Contradiction Removal Semantics of Pereira et al. For 
a similar analysis of other expansion methods we refer again to [7, 20, 21, 22], 
see also Section 6.1. 
We chose dependency-directed backtracking (DDB) since Doyle was the first to 
perform revision by expansion by way of DDB. We chose the CRS, since the 
CRS is the latest, as far as we know, of such proposals other than our own. 
We will only go into the details of DDB, when it is absolutely necessary for the 
understanding of our analysis. A lot of research has already been done concerning 
DDB, see [3, 7, 8, 13, 17], so that  we feel justified in summarizing those results 
relevant for our analysis. The non-obvious details of the analysis of DDB can be 
found in [22] and [8]. We will discuss the analysis of CRS in more detail since 
apart from the authors, i.e. Pereira et al., all research concerning CRS can be 
found in [21]. 

7.1 D e p e n d e n c y - d i r e c t e d  b a c k t r a c k i n g  

Dependency-directed backtracking was developed by Doyle [3] for the restoration 
of consistency in Truth Maintenance Systems, which were also developed by 
Doyle. Truth Maintenance Systems were developed to record reasons for belief, 
called justifications, and a consistent model for a set of such justifications. Since a 
complete line of reasoning is recorded, consistency restoration (or revision) must 
affect as little as possible of the justifications so as not invalidate the greater line 
of reasoning. Given a wf-proof ( r l , . . . ,  rm) for _l_, Doyle, therefore, developed his 
DDB so that  the ensuing expansion set contained elements from the rules of the 
wf-proof that have the highest possible index. Doyle's priority was therefore a 
combination of size- and change-minimality. 
For reasons of tractibility, DDB was a heuristic for this aim, meaning that, 
possibly wrong, choices were made in creating the program expansion. This 
means that several DDB-strategies existed. The best that  could happen was 
that the first choice was right, which implies that  then the expansion was size- 
minimal. Unfortunately, change-minimality was not guaranteed if the first choice 
was right, see [8]. The worst that  could happen was that  exponentially many 
wrong choices were made before an expansion was found, the created expansion 
was then far from minimal in any sense. 
The making of choices also implies that DDB was not a canonical method. 
However, Doyle ensured that  only relevant choices are made and that,  if the 
program is revisable, an expansion is found. 
Summarizing, DDB is: 

1. complete, 
2. relevant, 
3. a heuristic for a combination of size- and change-minimality, 
4. best case: cubic time, and size-minimal, 
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5~ worst case: exponential time, 
6. not canonical. 

If  we now apply the result of Section 6 to find a reconstruction of DDB tha t  
corresponds better  to our enhanced insight in the declarative semantics of logic 
programming,  then the first obvious step is to change using a part icular  DDB- 
strategy into using all possible DDB-strategies at the same time. In this way 
we do not have to make choices, but  we can instead look for the set Eddb of 
those a toms for which there exists a DDB-strategy that  would have chosen these 
atoms. This ensures canonicity. The great advantage is that  we could prove that  
we do not need the individual DDB-strategies to determine Eddb, but that  we 
can determine Eddb in linear time. The details can be found in [7, 21] and [22]. 
Summarizing,  under the new reconstruction of DDB, Eddb is: 

1. complete, 
2. relevant, 
3. a combination of size- and change-minimality, 
4. tractable: taking cubic time, 
5. canonical. 

7.2 C o n t r a d i c t i o n  R e m o v a l  S e m a n t i c s  

The Contradiction Removal Semantics is a canonical expansion function that  
computes the canonical expansion set E*rs associated with a specific expan- 
sion set Er Pereira et al. propose the wf-model of E*r~ as a canonical (non- 
contradictory, extended stable) model of the program. 

So the first characterization is that  CRS consists of two stages: the first is the 
computat ion of the candidate set Ecrs and the second is the construction of its 
associated canonical expansion set. 
Since the wf-model of a program P can be found in O(n 2) t ime and the authors 
state that  the expanded program can be obtained by a simple t ransformat ion 
from the original one, this might suggest that  finding a "CRS"-model  of P is 
tractable. 

In Section 6.2 we showed that  the complexity of the second stage is NP-hard.  
This makes the existence of a tractable algorithm for CRS unlikely. However, 
before we can make a definite est imation of the t ime-complexity of the entire 
CRS, we must  first understand the first stage of CRS, i.e. the computa t ion  of 
the candidate set Ecrs. 
The CRS of Pereira et al. constructs its set of candidate literals using a set of 
so-called support sets and a set of assumption sets, the union of the latter giving 
the set of candidates Ecrs. We will give a brief overview. 

Let P be a program and M = WF(P) a contradictory wf-model. Informally, a 
support set SS(L) for a literal L contains all the literals that  are used to establish 
the t ruth of L in M. 
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D e f i n i t i o n  7.1 ( S u p p o r t  Se t s )  Let P be a GLP, M = WF(P), L E Bp U 
"~Bp. The set of support sets SSS(L) is defined inductively as: I f  L E Bp, then 

SSS(L) = {Lit(A)U U SS(L') ] L ~ A E P, M(A) = t, S S ( L ' ) E S S S ( L ' ) }  
L~EA 

and i lL  E ..~Bp, then 

SSS(L) = {{~U} U SS(...L') ] ~L ~- a E P, U E A, M(L') = f, 
SS(~L') SSS(~L')} 

An element of SSS(L) is called a support set and denoted by SS(L). 

Let SSS(X) denote the set of support sets o fX .  Given a support set S E SSS(X), 
an assumption set Asss(X) is defined as: 

Asss(X) = {A E Bp l ~ A E S a n d A ~ h d ( P ) }  

Let ASS(_I_) denote the set of assumption sets of .L. 

In the original formulation of CRS, the set of candidates is Ecrs = ASS(A_), then 
the set 

R =  f 0  i f • E A S S ( L )  
[ {S* I S  E ASS(A_)} otherwise 

is computed and then E*rs is defined as U R. 
It is not difficult to see that,  indeed, the CR.S is a special canonical revision 
function. Now that the first stage of the CRS is duly described we proceed to 
investigate its time-complexity. 

S u p p o r t  a n d  A s s u m p t i o n  Se ts  a r e  di f f icul t  to  c o m p u t e  
Although it is not mentioned explicitly, one could have the impression that 
the support and assumption sets are indispensible for the computation of the 
canonical expansion E*rs. Of course then, one could ask how difficult it is to 
compute them for an arbitrary program P. 

P r o p e r t y  7.2 [21] There are programs P for which SSS( A_) and ASS(L) cannot 
be computed in polynomial time. 

As a very easy example, take the following program: 

E x a m p l e  7.3 Let P he the following program: 

P = { A _ + - - ~ q 0 } + { q i * - p i + l , q , + l  , q, +- qi+l l i = 0 , 1 , 2 , . . . , n }  

The support sets of .k are of the form {.~ q0} U SS(,.~ ql). For -~ qi the support 
sets are of the form {"Pi+l, "" qi+l} U SS(..~ qi+l) and {-~ q~+l} U SS(... qi+l) for 
all support sets SS(,.~ qi+l) of qi+l. 
Hence, there are 0 (2  ~) support sets for A_ in this program of size O(n). The 
number of assumption sets equals the number of subsets of {Pl ,P2 , - . . ,  Pn-1} 
which is 0(2~).  . 
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So, it is possible that  the first stage of CRS takes exponential time. Although we 
cannot fundamentMy lower the complexity of the first stage, we can make some 
improvement:  
We can also define the set Ecrs of candidates as follows: 

0 if 0 E ASS(_k) 
Ec~s = UASS(A- )  otherwise 

The above improvement  is obviously not enough since we still need to compute 
all support  sets of _1_, of which there could be exponentially many. However, it 
might  lye argued that  this is not the conclusive answer. For, there might exist a 
polynomial  function to compute E*~ without using the set of assumption sets. 
However, even under this restriction, the existence of such a function - modulo 
P # N P  - is impossible. 

We proved this result by showing that,  given a program P, the problem whether 
or not a given a tom belongs to E~'~ is NP-Hard. Clearly, if this decision problem 
is NP-Hard,  the construction of E*r~ must be NP-Hard as well. 

T h e o r e m  7.4 [21] Given an arbitrary program P and an arbitrary atom s E 
Bp, the problem whether or not s belongs to Ecr s is NP-Hard. 

So, the second characterizing remark we can make about the CRS, is that  ad- 
ditional information used in the CRS cannot be used to speed us the canonical 
revision process, thus leaving the complexity of CRS to be at least NP-hard. 
The third aspect we want to investigate is completeness. 
We show that  revisable programs exist for which the CRS in its present form s 
is unable to find a wf-expansion. 

E x a m p l e  7.5 Consider the program 

P : l ~ - - - ~ p ,  
A_+---~q, 
p+--q, 
q+---p 

Note that  SSS(_k) = {{~ p, ,,~ q}} and A S S ( •  = {0}. Hence, the CRS is not 
able to find a wf expansion, while, for example, the candidate set E = {p, q} 
and the canonical expansion E* = {p, q} suffice. 
The fourth aspect is that  CRS comes nowhere near minimali ty of change. This 
is obvious from the the definitions of support-  and assumption sets. However, 
the authors never meant  CRS to be minimal with respect to change. 
The fifth aspect is related to the canonicity of the approach. The CRS is obvi- 
ously not a minimal expansion revision. 
The sixth aspect is that  by definition the CRS approach tends to be some 
kind of minimal-knowledge approach. However, since there are several complete 

s The CRS is currently under revision, according to [12]. 
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minimal-knowledge expansions that are tractable, the relative worth of CRS is 
difficult to establish. 
We summarize that the CRS is: 

1. incomplete; 
2. relevant; 
3. not a minimal-change expansion method; 
4. intractable; 
5. canonical 

In [21] this analysis appears in full and, based on the analysis, the CRS is gen- 
eralized so that completeness can be ensured. 
Based on these analysis, we conclude that DDB is based on good principles and 
lends itself to tractable computations, while the position of CRS is not clear 
with respect to the minimality criteria and cannot lead to a tractable algorithm. 
As far as minimality of change is concerned, we can compare DDB and CRS by 
introducing: 
Let E be an expansion set and let E = P + EAP.  Some simple facts are: 

- if E is minimal then E C_ ~7; 
- for every B, if B C ~: then B C ~7. 

In [21] we proved that Eddb C Ecrs which implies that Eadb C E, crs and thus 
Edd b C Ecr s. Informally, this means that DDB scores better with respect to 
minimality of change then CRS. 

8 C o n c l u s i o n  

We have applied the general idea of theory-expansion to logic programs with 
constraints. 
We have shown that sometimes expansion functions are easy to compute but also 
that they can be rather hard. Especially when we apply semantically motivated 
minimality criteria like minimal change expansion, the problem of finding such 
expansions is NP-hard. 
We can try, however, by applying the tractable syntactically motivated mini- 
mality criteria to appoximate minimal change expansions. For example among 
the syntactically minimal expansions, expansion functions based on (maximal) 
foundations can be used to minimize the model change. 
Possible extensions of our research could be 

(i) comparing expansion frameworks using different underlying semantics of 
logic programs, such as the two-valued stable model semantics and exten- 
sions of the well-founded semantics. 

(ii) studying the expansion framework within restricted programming classes like 
stratified programs and definite programs. 

(iii) investigating the relationship between abduction and program expansion. 
(iv) the application of the framework to more general non-monotonic formalisms 

as default logic and auto-epistemic logic. 
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