
Revision by Expansion in Logic Programs

Cees Wi t t eveen 1 and Ca tho l i jn Jonker 2

1 Delft University of Technology,
Dept. of Mathematics and Computer Science,

P.O. Box 356, 2600 AJ Delft, The Netherlands,
e-mail: witt(@cs.tudelft.nl

2 Utrecht University,
Depts of Philosophy and Computer Science,

Heidelberglaan 8,
3584 CS Utrecht, The Netherlands,

e-mail: cmj onker(~phil.ruu.nl

A b s t r a c t . We discuss the general problem of revising a contradictory
non-monotonic theory and we show that sometimes expanding the theory
is more appropriate than contracting it in order to remove the contra-
diction. We apply this idea of theory-expansion to logic programs with
negation and constraints.
Using the well-founded (wf-) model semantics for logic programs as our
starting point we show that this model may be contradictory due to
a clash between the assumption made in the wf-model to consider un-
founded atoms to be false and the repercussions constraints can have on
this assumption.
Then we show that the contradiction can be removed by adding rules
to unfounded atoms in the program. We propose to use the noncontra-
dictory wf-model of such an expansion as the semantics of the original
program.

We develop a formal framework for program expansion, studying prop-
erties as completeness, minimality and computational complexity of ex-
pansions.
We think that program expansion is the best framework to study pro-
cedurally defined revision processes as proposed in truth maintenance
and logic programming such as dependency-directed backtracking and
the recently proposed contradiction removal semantics.
Using the framework of program expansions we are able to determine
the complexity profiles of these approaches as well as significant gener-
alizations of both of them.

334

1 I n t r o d u c t i o n

1.1 R e v i s i o n o f n o n - m o n o t o n i c t h e o r i e s

In this' paper we deal with revision in logic programs. Such a revision has to oc-
cur if the current program becomes contradictory, i.e. has no acceptable model.
To remove such a contradiction, we propose to expand the current program with
new rules in such a way that the expanded program is contradiction-free.

At first sight, expanding a theory in order to remove a contradiction might seem
an odd idea. For, in the currently dominant Alchourr6n-Gs
(AGM-) approach ([1, 4]) to theory revision, instead of expanding a contradictory
theory we would contract it in order to find a smaller but consistent theory.
The difference, however, between theories dealt with in the AGM-approach and
our logic programs is that in the former an underlying monotonic logic is as-
sumed, while we have to deal with logic programs in which negation by default
can occur, giving it the characteristics of a non-monotonic theory.
We will argue that non-monotonici ty requires an adaptat ion of the s tandard
AGM-approach to theory revision.
First of all, although we think that, like revision in s tandard monotonic theories,
revision in non-monotonic theories should be based on consistency as a meta-
constraint, we claim that the notion of (in)consistency used has to be generalized.
While classically a theory is inconsistent iff it admits no models at all, for an
inconsistent non-monotonic theory T it is perfectly possible to have classical
models. The reason is that in a nonmonotonic theory not every classical model of
the theory is considered acceptable. So usually we distinguish for a given theory 3
T a subset of the set Mod(T) of its classical models: its acceptable models.
Consequentially, T is called (non-monotonically) inconsistent iff it has no ac-
ceptable models (allowing it still to have some classical models). So, classical
inconsistency is a kind of limiting case for inconsistent non-monotonic theories.

This notion of non-monotonic inconsistency has some impor tan t consequences.
Firstly, it disposes of the main rationale for applying revision by contraction if
a theory is inconsistent. Whereas retraction in monotonic logic seems perfectly
reasonable, if a non-monotonic theory is inconsistent it is not so obvious why
we should apply it. For example, if the theory has classical models, we could
adapt our notion of acceptability, and turn a classical model into an acceptable
one. However, instead of changing the semantics, there is another way to solve
a revision problem.
Note tha t our definition of non-monotonic inconsistency implies that:

for an inconsistent non-monotonic theory T there may exist consistent
theories T ~ containing T.

3 Here; a a theory T is a set of sentences over a language/2. We use Cn(T) to denote
the deductive closure of T. In terms of the AGM-theory, T is a belief base and
Cn(T) the set of befiefs defined by it.

335

This suggests that

suppose we have a consistent non-monotonic theory T such that T U { r
does not have an acceptable model. Then, instead of contracting T, we
could try to find a theory T ~ containing T such that T ~ U {r has an
acceptable model.

Let us call such a theory T ~ an expansion of T.

Therefore, theory-expansion at least is an option in revising contradictory non-
monotonic theories. To show that sometimes it is a bet ter alternative, we will
discuss a proposal for applying theory-expansion in the revision of logic pro-
grams.
We will argue that whenever a logic p rogram is (purely) non-monotonically in-
consistent, it is more appropriate to apply theory expansion than theory contrac-
tion to solve a revision problem. The reason for this is provided by the special
nature of grounded reasoning in the semantics of logic programming, governed
by the following meta-rule:

unless there is a grounded reason for a statement, assume it to be false.

Then, applying revision by expansion is justified by the following consideration:

i f in a theory T a contradiction arises as a consequence of making some
assumptions, it seems more adequate to revise the assumptions than the
sentences of T.

Observe that revising these assumptions means that we have to state explicitly
that some beliefs cannot be false. As we will see, the only way to express such
s ta tements in a logic program is to add suitable arguments for such assumptions.

1.2 P l a n o f t h e p a p e r

Using logic programs with constraints, first we will give some motivat ion for
introducing expansions as revisions of contradictory programs. Then we will
introduce the notion of an expansion function and we will discuss the notion of
completeness of such functions.
Intuitively, an expansion function E is complete wrt. a class 7 ~ of programs if
E returns an expansion for a program P E 7 ~ whenever there is an expansion
possible for P. So complete expansions are the most successful revisions for a
class of programs.
Since it makes sense to concentrate on complete functions only, we would like to
represent such functions by expansion functions having some very simple form.
We will show that there exists a regular class of expansion functions having this
feature (u-t-simple expansion functions) and that these functions can be used to
represent and simulate the effect of every possible expansion function.
We will also give computat ional complexity results for expansion functions. In
particular, we will deal with the problem of finding minimal expansions, show-
ing that the problem of minimal size and minimal change expansions both are

336

intractable. If we relax minimality to inclusion minimality it turns out that in-
clusion minimal size expansions can be found very efficiently, but relaxing the
minimal change problem does not change the difficulty of the original problem.

A general problem, however, with these minimal expansions is that they don't
need to be unique for a program.
Therefore, in the subsequent sections we discuss a canonical approach to ex-
pansions which combines a set of expansions to obtain a uniquely defined non-
contradictory wf-model. The wf-model of such a "summarizing" expansion can
be proposed as a canonical (non-contradictory) extended stable model of the
program.

We show that some canonical expansions can be found effectively, but that in
general those canonical approaches based on some form of size or change mini-
reality are intractable, even if they are based on inclusion minimal size expan-
sions.

1.3 R e l a t e d r e s e a r c h

In truth maintenance -a closely related formalism- program expansion has been
applied in the context of dependency-directed backtracking methods to perform
belief revision in case a contradiction has been detected ([3, 13, 17]). As these
methods mainly have been stated informally and in an procedural way, there are
little or no formal results.
In auto-epistemic logic, Morris ([9]) has suggested something like program ex-
pansion for auto-epistemic theories that have no extension. The simple idea is: if
there is no extension for a set of premises S, then a set-inclusion minimal set of
ordinary (i.e. modal-operator-free) premises is added to S such that an extension
exists.
In logic programming, the work of Pereira et al. ([10]) on Contradiction Removal
Semantics can be seen as a special expansion method, allowing for revision of
assumptions.
Also the abduction problem in logic programming is closely related to the ex-
pansion problem: an abduction problem can be reformulated as the search for
a suitable expansion of a program if some constraints are added restricting the
admissible truth-value of some atoms.

In none of the references cited above, however, a general characterization of
program expansion has been given and also the aspects of completeness and
tractability of expansion methods have not been discussed as we will do in this
paper.

337

2 P r e l i m i n a r i e s

2.1 Programs and interpretat ions .

By a finite proposi t ional logic p rogram P we mean a finite set of rules r of the
form

A ~-- L1, L 2 , . . . , Lm m > 0

where A is a proposi t ional a tom and L1, �9 �9 Lm are positive or negative (propo-
sitional) literals. In a negative literal -~ B, the negat ion opera tor -,~ s tands for
negat ion by default.
We will often abbreviate such a rule r by

A ~ A or A ~ A + , A -

were A +, ((A+(r)) denotes the conjunct ion of the positive literals, A-, (A-(r))
the conjunct ion of the negative literals in the body of r and A, (A(r)) is the
conjunct ion of A - and A +.
We will denote the head A of a rule r by hd(r) and hd(P) = {hd(r) I r E P}.
For convenience, we will also use A to denote the set of literals occurr ing in the
body A of a rule.
Bp denotes the Herbrand Base of P. For a set S of literals ~ S = { ~ L I L E S}
is also a set of literals, where ,,~,,~L = L. Let Lit(P) = BpU ,.~Bp.
Let r be a formula over Bp. We use Lit(e) (Lit+(r Lit-(r to denote the set
of all literals(positive literals, negative literals) occurr ing in r A three-valued
semantics for logic programs will be used dist inguishing the t ruth-values t, f
and u. We use two orderings of these truth-values: the lattice 3t, defined by
f < t u < t t and the semi-latt ice 3k defined by u <k f , u <k t.
A three-valued interpretat ion I is a t ru th-ass ignment Bp ,) 3t. We will also
use I x to s tand for I-~(x), x 6 3t and we will also represent I by the (consistent.)
subset ItLj ,..I / C_ Lit(P).
Interpreta t ions are extended to formulas over A, ,-. by using the s tandard s trong
Kleene interpretat ions:

A : I(a A/3) = mint{I(a), I(/3)}
~ : ,-~t = f, , v u = u, ~ f = t.

The implicat ion opera tor "~--" is interpreted as weak implicat ion, defined by

t if I(A) >_t I(A)
I(A ~- A) = f o t h e r w i s e

The ordering _<k between literals can be extended to a knowledge ordering _E k
between interpretat ions in the usual way:

IC_k I ' iff I(A)<_kI~(A) for every A EBp

The t ru th ordering _Et for interpretat ions is defined analogously.
Finally, an interpreta t ion I of P is a model of P iff I(r) = t for every rule r E P.

Somet imes we will use the constants t or u in the body of p rog ram rules. We will
assume tha t the meaning of these constants is respected in the interpretat ions.

338

2.2 W e l l - f o u n d e d s e m a n t i c s

We will take the well-known Well-Founded model W F (P) as the semantics of
logic p rogram p4.
In the sequel we will use the not ion of a well-founded proof (wf-proof) for an
a t o m A. Such a wf-proof is a set of rules which can be used as an a rgument for
considering A not to be false.

P r o p e r t y 2.1 For every atom A such that W F (P) (A) ~ f there exists a small-
est ~nite sequence (rp(A) : (rl, r2 , . . . , rk) of rules in P such that

1. hd(rk) = A;
2. for every i < k, Lit+(A(ri)) C_ {hd(rl) , hd(r2) , . . . , hd(ri-1)}, i.e. the belief

in hd(ri) is grounded;
3. WF(P) (hd(r i)) = WF(P) (A(r i)) >_t WF(P)(hd(rk)) , i.e., the belief in

hd(ri) is supported.

Such a sequence (rp(A) is called a well-founded proof(wf-proof) of A in P.

Such a wf-proof in fact is a simple general izat ion of the s tandard not ion of a
proof:

L e m m a 2.2 Let P be a program. I f there is a wf-proof ap (A) containing only
positive rules then P ~ A, i.e., A is a logical consequence of P.

2.3 M o d e l s o f p r o g r a m s w i t h c o n s t r a i n t s

In normal logic programs using negat ion as failure it is not possible to express
tha t there exists an incompat ibi l i ty relation between two or more literals occur-
ring in the program. For example, it is not possible to express tha t two literals
A and B cannot be s imul taneaously true.
To express such incompat ibi l i ty relations, we need constraints. A p rogram with
constraints is a p rogram P, containing a special subset P c of rules, called con-
straints. Constra in ts are represented as rules of the form _k *- A. The special
a t o m _L does not occur as antecedent of any rule in P . Such a constraint ex-
presses tha t the literals occurring in A cannot be true simultaneously.
A p rogram with constraints is a p rogram P, containing a special subset P c of
these constraints .

For programs P with a set of constraints Pc, we define a model M of P to be
a consistent or C-model of P iff M(.I_) ~ t. Otherwise, M is contradictory.
P is called C-consistent if there exists a C-mode l of P. Otherwise, P is called
C-inconsistent.
We define M to be the wfc-model of P if M = WF(P) and M is consistent.

4 We refer to [7, 16, 18, 21] for exact definitions and relations to other possible se-
mantics for logic programming; here we only mention its relation to the three-valued,
stable model semantics: the Well-Founded model WF(P) is the unique _k-least sta-
ble model of P.

339

3 Revision by Expansion

For every general logic p r o g r a m the wf-model WF(P) is un ique ly defined. For
p r o g r a m s wi th cons t ra in t s however, no t every p r o g r a m P does have a wfc model .
For example , the p r o g r a m

P1 : P ~ - -
q ~-p,~..r
l ~ - q

does not have a wfc-model, and the s ame is t rue for the the p r o g r a m

P2 :p~--
l~--p

We argue t ha t in the first case there is a very n a t u r a l so lu t ion to the p rob l em:
a l though the wf-model M = {p, q, J_, ~ r} for P1 is cont rad ic tory , there are o the r
mode l s of P1 which are not. For example , {p, r,--~ q, , , ~ / } and {p} are three-
valued C - m o d e l s of P . The reason why M was selected by the wf -semant ics
is, of course, t ha t there is no direct g rounded reason to consider r as t rue or
unknown. Hence, r is assumed to be false and this causes the cons t r a in t _L ~-- q
to be v io la ted .
But of course, i sn ' t the v io la t ion of such a cons t r a in t a perfect reason to consider
r not to be false? Hence, we see t h a t there exis ts an indirect reason to consider
r as t rue or unknown, which cannot be de tec ted by the wf-semant ics . Now in
order to express t ha t we want to assign some t r u t h to an a t o m A in a logic
p r o g r a m , we have to add a rule for it.
So it seems t ha t we can repa i r such a defect of the wf-semant ics by recogniz ing
these repercussions of the wf- requi rements in the presence of cons t ra in t s by

(i) add ing some reason (rule) for one or more such a s sumpt ions r;
(ii) d e t e r m i n i n g the wf-model of the o b t a i n e d expansion of the or ig ina l p r o g r a m .

Hence, we see t ha t in this case, in which P has a n o n - e m p t y set of C -mode l s , a
t heo ry -expans ion app roach can be m o t i v a t e d in a s imple way.

On the o ther hand , in case of P2, the p r o g r a m i tself is C- incons i s t en t and the
wf-model seman t i c s cannot be b l a m e d for a defect. Here, in fact , every expans ion
of P2 is C- incons i s ten t , so there exists no expans ion having a wfc-model.
In this l a t t e r case, s t a n d a r d theory revis ion m e t h o d s could be appl ied , inc lud ing
the app l i ca t i on of contraction opera t ions (of. e.g. [4]). However, as m e n t i o n e d in
the i n t roduc t ion , we will res t r ic t our a t t e n t i o n to expans ion me thods .

N o t a t i o n : A p r o g r a m P expanded by a set of rules R is deno ted by P + R. If
R is a s ing le ton R = {r} , we will also use P + r .

In [21] we have inves t iga ted some re la t ions be tween the wel l - founded m o d e l of a
p r o g r a m P and the wel l - founded m o d e l of cer ta in expans ions of P .

340

Here we will need only one property, needed in the subsequent sections.
This property implies not only that rules of the form A *-- u can be added to
the program in order to find a E k-smaller well-founded model of the expansion,
but also when such an addition will result in a weakening of the wf-model.

P r o p e r t y 3.1 (u - a n t i - m o n o t o n i c i t y) For every P and A �9 Bp :
(1) W F (P + {A ~ u}) C_k WF(P)
and,
(2) if W F (P) (A) >__t u then WF(P) = W F (P + {A ~- u}).

4 E x p a n s i o n s a n d E x p a n s i o n f u n c t i o n s

We will now discuss a framework for program expansion.

D e f i n i t i o n 4.1 An e x p a n s i o n of a program P is a program P~ such that P C
P' and Pc =PIc .

D e f i n i t i o n 4.2 A w f - e x p a n s i o n of a program P is an expansion pi of P such
that P' has a wfc-model.

Our interest is also in computat ional aspects of program expansion. Therefore
we want to study the complexity of algorithms which given a program would
find a suitable expansion of it.
So we will study expansions of programs by studying properties of expansion
functions that are used to generate them.

D e f i n i t i o n 4.3 Given a class of programs 7 ~, a w f - e x p a n s i o n f u n c t i o n is a
(partial) computable mapping E, whose domain is a class of programs, assigning
to every P �9 dom(E) a wf-expansion E(P) = P' of P.
I f P �9 dora(E), ME(P) denotes the w f - e x p a n s i o n m o d e l WF(F ') returned
by E.

E x a m p l e 4.4 Consider again the program

P : p~--
q ~-- p,,,~r

.J_+-- q

Suppose we have an expansion function E, which applied to a program P, ex-
pands P by adding a rule s ~- for every negative literal -~ s occurring in P.
Then E will return the expansion pi __ p + {r ~--} and finds the wfc model
W E (P ~) = {p, r, ,-~ q, -,~_l_} as the wf-expansion model for P.
If, however, the rule q ~- r is added to P, E is not defined for P U {q ~-- r}:
adding r ~-- to this program now results in a program P~ having no wfc-model,
since WF(P ') = {p, r, q, _L}, so W F (P ') (• = t.
If we take another function E ~ that always adds a rule s ~--,-~ s for every negative
literal ,,~ s occurring in the body of some rule, E ~ is also defined for this latter
program, since then WF(P ') = {p}. �9

341

4.1 Revisabi l i ty and Comple tenes s

As the example given above shows, some expansion functions may succeed for
some programs but not for others. Clearly, given an arbitrary program P we
would like to know whether there exists some function for a successful expansion
of this P. This motivates the following definition:

D e f i n i t i o n 4.5 A program P is called r e v i s a b l e iff there exists a wf-expansion
function E, such that P E dora(E).

The following simple result shows that a program P is revisable iff, classically,
it is non-contradictory:

T h e o r e m 4.6 A program P is revisable iff P has a C-model.

As a consequence, another characterization of revisable programs can be given
by means of wf-proofs of J_:

C o r o l l a r y 4.7 A program P is revisable iff every wf-proof ~rp(3-) contains at
least one rule r having at least one negative antecedent.

These results imply that the domain of a suitable expansion function E should
contain every C-consistent program. Functions satisfying this requirement will
be called complete.
More exactly, let T' be a class of programs and let

CONS(P) = { P E P I P is a C-consistent program }

Then we define completeness as:

D e f i n i t i o n 4.8 A program expansion function E is said to be c o m p l e t e with
respect to 7 ~ iff dora(E)= CONS(P) .

Clearly, it makes sense to concentrate on complete functions, since they can be
considered as the most successful expansion functions.

4.2 C o m p l e t e classes o f e x p a n s i o n funct ions

We will show now that every (complete) expansion function can be represented
by some subset of atoms from Bp. First, we will prove that every expansion
function can be simulated by a some simple expansion function. Then we will
show how to reduce simple expansion functions to subsets of Bp.

Suppose we could represent the effect of every conceivable expansion function
by using functions in a rather small and regular class of expansions. This latter
class then should have the property that the effect of every conceivable expansion
function on atoms in Bp can be simulated by some member of this class. If such
a class E has this property, we will call it a complete class:

342

Def in i t ion 4.9 Let E be a class of expansion functions and 7 9 a class of pro-
grams. E is said to be a c o m p l e t e class of expans ion func t ions wi th r e spec t
to 79 iff for every expansion function E ~ there exists an expansion function E E
such that

1. dom~,(E) = dom~,(E')
2. for every P E domp(E') , W F (E (P)) =Lit(P) WF(E~(P)) .

Here, dom,p(E) refers to the domain of E restricted to the elements from 79 and
=Lit(P) refers to equality restricted to elements occurring in Li t (P) .
We will now define a complete class of regular expansion fimctions.

Def in i t ion 4.10 An expansion function E is called s imple if for every P E
dora(E) only rules of the form A ~- t or A ~- u are added to P, where A E Bp.
We will call E t - s imple if only rules of the form A ~- t are added and u-s imple
if only rules of the form A *-- u are added.

The following lemma shows that the class of simple expansion functions is a class
of complete expansion functions with respect to the class of all propositional logic
programs with constraints.

L e m m a 4.11 Let E be an arbitrary expansion function and P an arbitrary
element of dora(E). Then there exists a simple expansion function Esimple such
that

1. dom(Esimple) = dom(E) and
2. WF(Esi,~pte(P))=Lit(P) W F (E (P)) .

Note that given a program P, the effect of a t- or u-simple expansion func-
tion can be represented by set of conclusions of the rules added to P. In gen-
erM, given an expansion function E and a program P, we will call the set
Ep = {hd(r) I r E E (P) - P} an expansion set of P.

The following observation implies that we don't lose completeness in representing
complete simple expansion functions by u-simple expansion sets:

Obse rva t ion 4.12 For every complete simple expansion function E, there ex-
ists a complete u-simple expansion function E ~ such that for every P E dom(E),
Ep = E'p.

Taking these results together, we have the following theorem:

T h e o r e m 4.13 For every complete expansion function E ~ there exists a u-
simple expansion function E, such that dom(E') = dom(E).
In particular, the u-simple function E such that for every P, Ep = E~ (q Bp
SUffiCeS.
This result, and the completeness of simple expansion functions, show that we
can study properties of arbitrary complete expansion functions E by reducing
them to the expansion set Ep n]3p.
In the subsequent sections we will assume that every expansion function E has
been reduced to such a set and we will simply use Ep to denote this expansion
set, further reducing it to E if P is understood.

343

4.3 C o m p l e x i t y o f complete expansion functions

At this point the reader might ask how difficult it might be to actually compute
complete expansion functions.
It turns out that finding an arbi trary expansion of a revisable program is tractable.
In fact, computing WF(P) and selecting the atoms evaluated false by WF(P)
already suffices.

Theorem 4.14 (tractability of arbitrary expansions)
There exists an O(IPI2)-lime computable expansion function for programs with
constraints.

Proof Sketch. Let E be the expansion function returning for every revisable but
contradictory program P with constraints the expansion set

Ep =- {A I WF(A) = f ,A E Bp}.

It is easy to see that P+Ep is contradiction-free. Since revisability can be checked
in O(IPD-t ime and the WF-model of P+Ep can be computed in O(IP+Ep] 2) =
O(IPI 2) time, the theorem follows.

Remark. At this point, the reader might ask, why we did not require an expan-
sion model to falsify • i.e., to require that M(_L) -- f for every wfc model of
P. Such a C-model could be called satisfying hard constraints.
Among others, the reason is that allowing hard constraints would make the the-
ory less interesting from a computat ional point of view: we can show that hard
constraints already render the problem to find an arbri trary wf-expansion of P
intractable.

P r o p o s i t i o n 4.15 Let P be a program with at least one hard constraint. Then
finding an arbitrary wf-expansion of P is NP-Hard.

5 M i n i m a l E x p a n s i o n M e t h o d s

We only expand a program if it is necessary to do so. And if it is necessary it
seems natural to try to change the program as little as possible.
This idea of minimali ty can be specified either in a syntactical or in a semantical
way.

1. Syntactically an expansion function is a minimal expansion if it minimizes
the amount of expansion rules added to a program P i.e., the size of the
expansion, in order to obtain a contradiction-free expanded program.

Therefore, we will call an expansion function E a minimal size expansion
function if for every E ' and P E dora(E) N dom(E'), we have

IE(P)I <_]E'(P)]

344

2. Semantically, an expansion function E is a minimal expansion if it affects the
information conveyed by the original program in a minimal way. Such a min-
imal change expansion we define as a minimization of the model-difference
between the (inconsistent) wf-model of P and the (consistent) wf-model of
the expansion E(P).
More exactly, if E(P)AP is defined as

E(P)AP = {a E Bp I WF(E(P))(a) ~ WF(P)(a)}

then E is a minimal change expansion function, if for every E ~ and P E
dora(E) N dom(E'), we have

IE(P)API <_ IE'(P)API

As we already remarked we aim at complete and hopefully tractable expansion
functions.
I t is, however, very unlikely that there exist complete and minimal expansion
functions which also can be computed efficiently. If we look at their associated
search problems (to find a size- or change-minimal expansion for a given pro-
gram), these problems turn out to be NP-Hard.

T h e o r e m 5.1 The problem to find a minimal size or minimal change expansion
for an arbitrary program P with constraints is NP-Hard.

The proof of these results 5 is given by a polynomial turing-reduction from the
NP-complete Hitting Set problem (see [5]). Let (S, C, K) be an instance of the
Hitting Set problem, where S is a finite set, C is a set of non-empty subsets of
S and K is a positive integer.

We can show that this instance has a hitting set of size _< K iff the program

PHS = {_L ~---"~sil,...,..~s,, I { s i l , . . . s i , } E C}

has a minimal expansion of size ~ K or a minimal expansion making at most K
changes.
To measure the degree of NP-Hardness more precisely, we can use the technique
of bounded query evaluation [19], where the complexity of a problem is measured
in terms of the necessary number of calls to an NP-oracle in order to solve the
problem by an otherwise polynomial algorithm.
The associated decision problems of these problems: do there exist minimal ex-
pansions of size~change K or less? both are NP-complete problems. By making
O(log n) calls to an NP-oracle for these problems, we can decide the size K of
the minimal size expansion or the number K of changes required by a minimal
change expansion, where n is the number of a toms occurring in P.
This number K can be used to determine which a toms will be required to occur
in a minimal size- or change-expansion by making O(n) calls to an NP-oracle

5 For the complete proof, the reader is referred to a technical report [21]

345

for the associated decision problems. Hence, both problems can be solved by
making at most O(log n) + O(n) = O(n) calls to an iP-orac le .
On the other hand, there are more than a logarithmic number of calls necessary,
since it is easy to see that if we only allow for O(log n) calls to an NP-oracle
to solve the minimal expansion problem, the existence of any algorithm solving
these problems in polynomial t ime would immediately imply that P = NP 6.
So we have:

T h e o r e m 5.2 The problem to find a minimal size or minimal change expansion
for an arbitrary program P with constraints can be solved by a polynomial algo-
rithm making more than O(log n) but no more than O(n) calls to an NP-oracle.

Note that until now we have only analysed cardinality minimal size/change ex-
pansion functions. It is tempting to relax these notions and to investigate the
complexity of their relaxation looking at inclusion minimal (size/change) expan-
sion flmctions.

We will investigate the complexity of these problems separately.

5.1 I n c l u s i o n m i n i m a l size e x p a n s i o n is e a s y

For a relaxation of size minimal expansions we do not look at the number of ele-
ments occurring in a size-minimal expansion, but at the subsets of the expansion
verifying that none of them makes the program contradiction-free.

D e f i n i t i o n 5.3 An expansion set E is called an inclusion size minimal expan-
sion for a program P if P + E is contradiction-free and there is no strict subset
U of E such that P + U is contradiction-free.

It turns out that relaxation of size minimali ty is a good idea.

T h e o r e m 5.4 The problem to find an inclusion minimal minimal expansion for
an arbitrary program P with constraints can be solved in polynomial time

Proof Sketch. Without loss of generality assume P to be revisable. Take an ar-
birary expansion set E for P; We know (see Theorem 4.14) that such an expan-
sion set can be found in polynomial time.
Basically, the idea is to remove elements from E as long as the resulting program
P + E still has a WF-model. The following algori thm creates such a minimal
expansion Era,, from a given expansion E:

MinExpansion(P, E):
b e g i n

Emin := E ; i := 1 ;
w h i l e i _< I EI

6 For an application to a related problem see [6]

346

o

i f W F (P + (E,,~in - {ai})) is non-contradictory
t h e n E,~in := Emia - { ai }

fi;
i : = i + 1 ;

wend ;
r e t u r n Emin ;

end;

The correctness of this algorithm can be derived from the u-antimonotonicity
of the WF-operator (see Property 3.1). Since the wf-model of a propositional
program can be computed in O(n x [PD-time, where n is the number of atoms
occurring in P (see [22]), MinExpansion(P, E) can be computed in O(n x (n x
(IPl + n))) = O(n 2 x]Pl) time.

E x a m p l e 5.5 Consider the following program:

P : e ~ a
e ~---,,~ a , ,,~ b
d*--e
e ~ - . - d , , . ~c

..L ~-..--e.

The wf-model of this program is M = {,~ a, ,~ b, ,~ c, e, d, .l_}.
Take E -- {a, b, c}. Computing MinExpansion(P, E) we find E,ni,~ = {a}. Hence,
P U { a ~----,-~ a } is a minimal size expansion of P.

5.2 I n c l u s i o n m i n i m a l change e x p a n s i o n is hard

To define a relaxation of minimal change expansion requires some more work.
First of all, if we would define E to be an inclusion minimal change expansion
if no subset of E is a minimal change expansion, we would immediately identify
it with inclusion minimal size expansions.
Note, however, that if E is an expansion set, the set (P + E) A P is also an ex-
pansion set. Moreover, it is easy to see that for every expansion set E' contained
in (P + E) A P , we have:

(P + E ') A P C_ (P + E) A P

Therefore, we can relax the change minimality of E with respect to the set
(P + E) A P and we define inclusion minimal change expansions as follows:

D e f i n i t i o n 5.6 An expansion set E of P is an inclusion minimal change expan-
sion if there is no subset E' o f (P + E) A P such that I (P + E ') A P I < I(P+ E) A P I.

Note that again, every cardinality based minimal-change expansion also is an
inclusion minimal change expansion.

The disappointing result however, is, that even relaxation does not help in mak-
ing the problem easier:

347

Theorem 5.7 Given an arbirary program P and an expansion E of P the prob-
lem to find an inclusion minimal change expansion is NP-hard.

And even looking at a more detailed level it turns out that such E-minimal
change problems can be solved by polynomial algorithms using at most O(n)
but more than O(log n) calls to an NP-oracle.

6 C a n o n i c a l E x p a n s i o n M e t h o d s

In the previous section we discussed syntactical and semantical minimali ty cri-
teria for expansion, methods. One of the aspects evolving from minimization-
activities is that generally several minimal expansion are associated with a pro-
gram.
As is common in the research of logic programming, a canonical method is desir-
able. The most obvious way to at ta in canonicity is to create a most general ex-
pansion method, i.e. an expansion method that contains every expansion method
of a certain class. Before studying canonicity in the context of minimali ty we will
first characterize canonicity for arbi trary complete expansion classes.
The most general expansion method that exists is the set of all a toms A such
that WF(P)(A) = f as expansion set for a revisable program P. Obviously,
this set can be computed in constant t ime if the wf-model of P is given and
in O(IPI2)-t ime otherwise. However, this method is in most cases too general,
a toms may get changed that do not occur in any wf-proof of J_.
So, let us restrict ourselves to methods that only change a toms that are involved,
one way or another, with some wf-proof of J_. These expansion methods will
be called relevant expansion methods. Note that every minimal size expansion
method is relevant.
Restricted to relevancy, we can now obtain an easy method for generalization of
such a class of relevant complete expansion methods:
Let T~ be a class of relevant complete expansion methods, then

Rk = U { E I E e ~ }

is a relevant and complete expansion method with the feature that for all ex-
pansions E E 7~ and arbi trary revisable programs,P ,

WF(Rk(P)) E_k WF(E(P)) .

Therefore, we call these most general relevant complete expansion methods
knowledge-minimal expansion methods.

6.1 Knowledge-minimal Expansion Methods

In the above definition of knowledge-minimal expansion methods, such an expan-
sion method is defined with respect to a specific, but arbi trary class of relevant
complete expansion methods. Therefore, we can study the knowledge-minimal
expansion method for every relevant and complete class. Since first computing

348

every expansion for a revisable program within a specific class R will most of-
ten lead to unnecessary high time-complexities, it makes more sense to try to
characterize the set of atoms affected by the expansions in R in direct way. In
recent years several classes of relevant complete expansion methods have been
characterized by their knowledge-minimal expansion and some of these can be
computed in cubic-time, given the size of the program, since the associated
expansion-sets can be found in linear time. We refer to Section 4.3 where we
prove that there exist tractable knowledge-miaimal expansion methods. Fur-
thermore we refer to [7, 20, 21, 22] where knowledge-minimal expansions of sev-
eral classes are introduced and compared. In this paper we only want to stress
that knowledge-minimality is in many cases tractable. However, in the next sec-
tion we will study the knowledge-minimality of the classes of minimal expansion
methods and their complexity. This way the lower and upper bounds on the
complexity of canonical expansions will be fully determined. We hope that by
way of future research, this will help to establish exactly where the narrow line
between tractability and intractability is.

6.2 Canonical Minimal Expansion Methods

In this section we will study the knowledge-minimal expansions of the different
classes of minimal expansion methods. We will abbreviate knowledge-minimal
minimal expansion methods by the term canonical minimal expansion methods.
Doing this we generalize an idea suggested in [10] to use a canonical minimal
expansion function in order to obtain a canonical wf-expansion for a program
with constraints.
We will not discuss the somewhat intricate details of the CRS Pereira et al.
proposed, but in the Section 7 we will present a characterization framework for
arbitrary expansion methods with we will analyse the CRS.

We will start by considering the abstraction level where the kind of minimality
is not important, later we will concentrate on inclusion-minimality of size, since
it is the only tractable minimality criterion, then we will continue by relating
the complexities of the notions minimality of size and (inclusion) minimality of
change to the complexity of inclusion-minimality of size.

As mentioned in Section 6.1, given the a specific sort of minimality and its as-
sociated class R, the computation of Rk by first computing all expansions in R
will not lead to tractable algorithms. Therefore, we will first compute the com-
plexity of finding a canonical minimal expansion given a specific, but arbitrary,
expansion function.
Assume that we have some complete expansion function E and a program P E
dom(E). Overloading E we let E C Bp represent the expansion set generated
by the expansion function and we will call E the candidate set. E~ will denote
the set of rules E,, = {e ~-- u I e E E}.
Every subset E I of E that is also an expansion set, will be called a subexpansion
of E. Among them are subexpansions that are minimal subexpansions of E. Since

349

we have no reason to prefer one above another we take the union of all minimal
subexpansions of E as the canonical expansion set E* associated with E, i.e. if,
for example, R denotes the class of all inclusion minimal-size expansions that are
subexpansions of E, then E* would coincide with Rk. Subsequently, W F (P + E *)
is called the canonical wf-expansion model of P wrt. E.
Given the candidate set E, the canonical wf-expansion model is consistent:

P r o p o s i t i o n 6.1 Let E be a candidate set for a program P. Then E* is an
expansion set for P.

This follows immediately from the fact that E* can be defined as the set of ele-
ments e E E for which there exist a minimal subexpansion containing e. Hence,
E* C E. Now the result follows as an easy consequence of E being an expansion
set and Property 3.1.

Until now, we made no reference to a specific type of minimality, but in Sec-
tion 6.2 we will first consider inclusion minimali ty of size.

C o m p l e x i t y o f c a n o n i c a l m i n i m a l e x p a n s i o n s
Since we know that inclusion minimal size expansion problems are tractable, we
might expect the canonical inclusion minimal size expansion also to be tractable.
We can show, however, that finding such a canonical expansion is intractable.
This proof is based on the intractability of the following decision problem:

Given a program P, an expansion set E C Bp and an element e E E, is
there a minimal subexpansion E t of E containing e ?7

Note, that we can find the canonical subexpansion E* of E by quering an oracle
for this NP-complete problem O(]E]) times: for every e E E, decide whether or
not e occurs in a minimal subexpansion of E. Hence,

T h e o r e m 6.2 Given an arbitrary program P and a complete expansion set E
for P, the problem to find a canonical inclusion minimal-size expansion E* of
E can is NP-hard but can be found by quering an NP oracle O([EI) times.

From Section 5 we know that all three other criteria for minimali ty (of size, of
change and inclusion minimal change) are essentially more difficult than inclu-
sion minimal size. Therefore, it is easy to understand that the complexities of
canonical minimal-size and canonical inclusion minimal change expansion cannot
be of a lower complexity than canonical inclusion minimal size expansion.

7 A n a l y s i s a n d C h a r a c t e r i z a t i o n o f E x p a n s i o n M e t h o d s

In this article we discussed several aspects by which expansion methods can
be classified: completeness, relevance, (inclusion) minimali ty of size and change,

7 So finding an arbitrary minimal size expansion is tractable, but looking for a specific
minimal size expansion is intractable.

350

tractability and canonicity. In this section we will give the analysis two proposals
from literature for program expansion that have not been subjected to such an
analysis before. We chose the original Dependency-directed backtracking method
of Doyle [3] and the recent Contradiction Removal Semantics of Pereira et al. For
a similar analysis of other expansion methods we refer again to [7, 20, 21, 22],
see also Section 6.1.
We chose dependency-directed backtracking (DDB) since Doyle was the first to
perform revision by expansion by way of DDB. We chose the CRS, since the
CRS is the latest, as far as we know, of such proposals other than our own.
We will only go into the details of DDB, when it is absolutely necessary for the
understanding of our analysis. A lot of research has already been done concerning
DDB, see [3, 7, 8, 13, 17], so that we feel justified in summarizing those results
relevant for our analysis. The non-obvious details of the analysis of DDB can be
found in [22] and [8]. We will discuss the analysis of CRS in more detail since
apart from the authors, i.e. Pereira et al., all research concerning CRS can be
found in [21].

7.1 D e p e n d e n c y - d i r e c t e d b a c k t r a c k i n g

Dependency-directed backtracking was developed by Doyle [3] for the restoration
of consistency in Truth Maintenance Systems, which were also developed by
Doyle. Truth Maintenance Systems were developed to record reasons for belief,
called justifications, and a consistent model for a set of such justifications. Since a
complete line of reasoning is recorded, consistency restoration (or revision) must
affect as little as possible of the justifications so as not invalidate the greater line
of reasoning. Given a wf-proof (r l , . . . , rm) for _l_, Doyle, therefore, developed his
DDB so that the ensuing expansion set contained elements from the rules of the
wf-proof that have the highest possible index. Doyle's priority was therefore a
combination of size- and change-minimality.
For reasons of tractibility, DDB was a heuristic for this aim, meaning that,
possibly wrong, choices were made in creating the program expansion. This
means that several DDB-strategies existed. The best that could happen was
that the first choice was right, which implies that then the expansion was size-
minimal. Unfortunately, change-minimality was not guaranteed if the first choice
was right, see [8]. The worst that could happen was that exponentially many
wrong choices were made before an expansion was found, the created expansion
was then far from minimal in any sense.
The making of choices also implies that DDB was not a canonical method.
However, Doyle ensured that only relevant choices are made and that, if the
program is revisable, an expansion is found.
Summarizing, DDB is:

1. complete,
2. relevant,
3. a heuristic for a combination of size- and change-minimality,
4. best case: cubic time, and size-minimal,

351

5~ worst case: exponential time,
6. not canonical.

If we now apply the result of Section 6 to find a reconstruction of DDB tha t
corresponds better to our enhanced insight in the declarative semantics of logic
programming, then the first obvious step is to change using a part icular DDB-
strategy into using all possible DDB-strategies at the same time. In this way
we do not have to make choices, but we can instead look for the set Eddb of
those a toms for which there exists a DDB-strategy that would have chosen these
atoms. This ensures canonicity. The great advantage is that we could prove that
we do not need the individual DDB-strategies to determine Eddb, but that we
can determine Eddb in linear time. The details can be found in [7, 21] and [22].
Summarizing, under the new reconstruction of DDB, Eddb is:

1. complete,
2. relevant,
3. a combination of size- and change-minimality,
4. tractable: taking cubic time,
5. canonical.

7.2 C o n t r a d i c t i o n R e m o v a l S e m a n t i c s

The Contradiction Removal Semantics is a canonical expansion function that
computes the canonical expansion set E*rs associated with a specific expan-
sion set Er Pereira et al. propose the wf-model of E*r~ as a canonical (non-
contradictory, extended stable) model of the program.

So the first characterization is that CRS consists of two stages: the first is the
computat ion of the candidate set Ecrs and the second is the construction of its
associated canonical expansion set.
Since the wf-model of a program P can be found in O(n 2) t ime and the authors
state that the expanded program can be obtained by a simple t ransformat ion
from the original one, this might suggest that finding a "CRS"-model of P is
tractable.

In Section 6.2 we showed that the complexity of the second stage is NP-hard.
This makes the existence of a tractable algorithm for CRS unlikely. However,
before we can make a definite est imation of the t ime-complexity of the entire
CRS, we must first understand the first stage of CRS, i.e. the computa t ion of
the candidate set Ecrs.
The CRS of Pereira et al. constructs its set of candidate literals using a set of
so-called support sets and a set of assumption sets, the union of the latter giving
the set of candidates Ecrs. We will give a brief overview.

Let P be a program and M = WF(P) a contradictory wf-model. Informally, a
support set SS(L) for a literal L contains all the literals that are used to establish
the t ruth of L in M.

352

D e f i n i t i o n 7.1 (S u p p o r t Se t s) Let P be a GLP, M = WF(P), L E Bp U
"~Bp. The set of support sets SSS(L) is defined inductively as: I f L E Bp, then

SSS(L) = {Lit(A)U U SS(L')] L ~ A E P, M(A) = t, S S (L ') E S S S (L ') }
L~EA

and i lL E ..~Bp, then

SSS(L) = {{~U} U SS(...L')] ~L ~- a E P, U E A, M(L') = f,
SS(~L') SSS(~L')}

An element of SSS(L) is called a support set and denoted by SS(L).

Let SSS(X) denote the set of support sets o fX . Given a support set S E SSS(X),
an assumption set Asss(X) is defined as:

Asss(X) = {A E Bp l ~ A E S a n d A ~ h d (P) }

Let ASS(_I_) denote the set of assumption sets of .L.

In the original formulation of CRS, the set of candidates is Ecrs = ASS(A_), then
the set

R = f 0 i f • E A S S (L)
[{S* I S E ASS(A_)} otherwise

is computed and then E*rs is defined as U R.
It is not difficult to see that, indeed, the CR.S is a special canonical revision
function. Now that the first stage of the CRS is duly described we proceed to
investigate its time-complexity.

S u p p o r t a n d A s s u m p t i o n Se ts a r e di f f icul t to c o m p u t e
Although it is not mentioned explicitly, one could have the impression that
the support and assumption sets are indispensible for the computation of the
canonical expansion E*rs. Of course then, one could ask how difficult it is to
compute them for an arbitrary program P.

P r o p e r t y 7.2 [21] There are programs P for which SSS(A_) and ASS(L) cannot
be computed in polynomial time.

As a very easy example, take the following program:

E x a m p l e 7.3 Let P he the following program:

P = { A _ + - - ~ q 0 } + { q i * - p i + l , q , + l , q, +- qi+l l i = 0 , 1 , 2 , . . . , n }

The support sets of .k are of the form {.~ q0} U SS(,.~ ql). For -~ qi the support
sets are of the form {"Pi+l, "" qi+l} U SS(..~ qi+l) and {-~ q~+l} U SS(... qi+l) for
all support sets SS(,.~ qi+l) of qi+l.
Hence, there are 0 (2 ~) support sets for A_ in this program of size O(n). The
number of assumption sets equals the number of subsets of {Pl ,P2 , - . . , Pn-1}
which is 0(2~). .

353

So, it is possible that the first stage of CRS takes exponential time. Although we
cannot fundamentMy lower the complexity of the first stage, we can make some
improvement:
We can also define the set Ecrs of candidates as follows:

0 if 0 E ASS(_k)
Ec~s = UASS(A-) otherwise

The above improvement is obviously not enough since we still need to compute
all support sets of _1_, of which there could be exponentially many. However, it
might lye argued that this is not the conclusive answer. For, there might exist a
polynomial function to compute E*~ without using the set of assumption sets.
However, even under this restriction, the existence of such a function - modulo
P # N P - is impossible.

We proved this result by showing that, given a program P, the problem whether
or not a given a tom belongs to E~'~ is NP-Hard. Clearly, if this decision problem
is NP-Hard, the construction of E*r~ must be NP-Hard as well.

T h e o r e m 7.4 [21] Given an arbitrary program P and an arbitrary atom s E
Bp, the problem whether or not s belongs to Ecr s is NP-Hard.

So, the second characterizing remark we can make about the CRS, is that ad-
ditional information used in the CRS cannot be used to speed us the canonical
revision process, thus leaving the complexity of CRS to be at least NP-hard.
The third aspect we want to investigate is completeness.
We show that revisable programs exist for which the CRS in its present form s
is unable to find a wf-expansion.

E x a m p l e 7.5 Consider the program

P : l ~ - - - ~ p ,
A_+---~q,
p+--q,
q+---p

Note that SSS(_k) = {{~ p, ,,~ q}} and A S S (• = {0}. Hence, the CRS is not
able to find a wf expansion, while, for example, the candidate set E = {p, q}
and the canonical expansion E* = {p, q} suffice.
The fourth aspect is that CRS comes nowhere near minimali ty of change. This
is obvious from the the definitions of support- and assumption sets. However,
the authors never meant CRS to be minimal with respect to change.
The fifth aspect is related to the canonicity of the approach. The CRS is obvi-
ously not a minimal expansion revision.
The sixth aspect is that by definition the CRS approach tends to be some
kind of minimal-knowledge approach. However, since there are several complete

s The CRS is currently under revision, according to [12].

354

minimal-knowledge expansions that are tractable, the relative worth of CRS is
difficult to establish.
We summarize that the CRS is:

1. incomplete;
2. relevant;
3. not a minimal-change expansion method;
4. intractable;
5. canonical

In [21] this analysis appears in full and, based on the analysis, the CRS is gen-
eralized so that completeness can be ensured.
Based on these analysis, we conclude that DDB is based on good principles and
lends itself to tractable computations, while the position of CRS is not clear
with respect to the minimality criteria and cannot lead to a tractable algorithm.
As far as minimality of change is concerned, we can compare DDB and CRS by
introducing:
Let E be an expansion set and let E = P + EAP. Some simple facts are:

- if E is minimal then E C_ ~7;
- for every B, if B C ~: then B C ~7.

In [21] we proved that Eddb C Ecrs which implies that Eadb C E, crs and thus
Edd b C Ecr s. Informally, this means that DDB scores better with respect to
minimality of change then CRS.

8 C o n c l u s i o n

We have applied the general idea of theory-expansion to logic programs with
constraints.
We have shown that sometimes expansion functions are easy to compute but also
that they can be rather hard. Especially when we apply semantically motivated
minimality criteria like minimal change expansion, the problem of finding such
expansions is NP-hard.
We can try, however, by applying the tractable syntactically motivated mini-
mality criteria to appoximate minimal change expansions. For example among
the syntactically minimal expansions, expansion functions based on (maximal)
foundations can be used to minimize the model change.
Possible extensions of our research could be

(i) comparing expansion frameworks using different underlying semantics of
logic programs, such as the two-valued stable model semantics and exten-
sions of the well-founded semantics.

(ii) studying the expansion framework within restricted programming classes like
stratified programs and definite programs.

(iii) investigating the relationship between abduction and program expansion.
(iv) the application of the framework to more general non-monotonic formalisms

as default logic and auto-epistemic logic.

355

References
1. C. AlchourrSn, P. G~rdenfors and D. Makinson, On the Logic of Theory Change:

Partial Meet Contraction and Revision Functions, Journal of Symbolic Logic, 50,
510-530, 1985.

2. J. Dix, Classifying Semantics of Logic Programs. In: A. Nerode et al. (eds), Pro-
ceedings LPNMR'91, MIT Press, 1991, pp. 166-180.

3. J. Doyle, A Truth Maintenance System, Artificial Intelligence 12, 1979.
4. P. Gs Knowledge in Flux, MIT Press, Cambridge, MA, 1988.
5. M. R. Garey, D. S. Johnson, Computers and Intractability, Freeman, New York,

1979.
6. G. Gottlob, C. G. Fermfiller, Removing redundancy from a clause, Artificial Intel-

ligence, 61, (1993) 263-289
7. C. M. Jonker, Cautious Backtracking and Well-Founded Semantics in Truth Main-

tenance. Technical Report RUU-CS-91-26, Dept. of Computer Science, Utrecht
University, 1991.

8. C. M. Jonker, Analysis of Dependency-Directed Backtracking: leading to Informa-
tive Backtracking. Technical Report to appear, Dept. of Philosophy and Dept. of
Computer Science, Utrecht University, 1993.

9. Morris, P., Stable Closures, Defeasible Logic and Contradiction Tolerant Reason-
ing, Proceedings of the 7th National Conference on Artificial Intelligence, 1988 .

10. L. M. Pereira, J. J. Alferes and J. N. Aparicio, Contradiction Removal within well-
founded semantics. In: A. Nerode, W. Marek and V. S. Subrahmanian, (eds.), First
International Workshop on Logic Programming and Non-monotonic Reasoning,
MIT Press, 1991.

11. L. M. Pereira, J. J. Alferes and J. N. Aparicio, The Extended Stable Models of
Contradiction Removal Semantics. In: P. Barahona, L.M. Pereira and A. Porto,
(eds.), Proceedings-EPIA 91, Springer Verlag, Heidelberg, 1991.

12. L. M. Pereira, Personal Communication, Berlin 1992.
13. Petrie, C.J., Revised Dependency-Directed Backtracking for Default Reasoning,

Proc. AAAI, 1987.
14. H. Przymusinska and T. Przymusinski, Semantic Issues in Deductive Databases

and Logic Programs, in: R.B. Banerji (ed), Formal Techniques in Artificial Intel-
ligence, A Sourcebook, Elsevier, Amsterdam, 1990, pp. 321-367.

15. T. Przymusinski, Well-founded semantics coincides with three-valued stable se-
mantics, Fundamenta lnformaticae, XIII:445-463, 1990.

16. T. Przymusinski, Three-valued nonmonotonic formalisms and semantics of logic
programs, Artificial Intelligence, 49, (1991), 309-343.

17. Reinfrank, M., Fundamentals and Logical Foundations of Truth Maintenance,
LinkSping Studies in Science and Technology. Dissertations no. 221, LinkSping
University, 1989.

18. A. Van Gelder, K. A. Ross and J. S. Schlipf, The well-founded semantics for gen-
eral logic programs. Journal of the ACM, 38(3), pp. 620-650, 1991.

19. K. W. Wagner, Bounded Query Classes, Siam Journal On Computing,19,5, pp.
833-846, 1990.

20. C. Witteveen, Expansions of Logic Programs, in: D. Pearce and G. Wagner (eds),
Logics in AI, Springer Verlag, Berlin, 1992.

21. C. Witteveen and C. M. Jonker, Revision by expansion in logic programs, Reports
of the Faculty of Technical Mathematics and Informatics no. 93-02, Delft University
of Technology, 1993.

22. C. Witteveen and G. Brewka, Skeptical Reason Maintenance and Belief Revision,
Artificial Intelligence, 61 (1993) 1-36.

