[s usability compositional?

Willem-Paul Brinkman

The work described in this thesis has been carried out under the auspices of the J.F. Schouten
School for User-System Interaction Research.

@ 2003 Willem-Paul Brinkman - Eindhoven - The Netherlands.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Brinkman, W.-P.

Is usability compositional? / by Willem-Paul Brinkman. — Eindhoven: Technische Universiteit
Eindhoven, 2003. — Proefschrift. —

ISBN 90-386-1947-2

NUR 811

Keywords: Human-computer interaction / Usability / Usability evaluation methods / Sequential
data analysis/ Component-based software engineering

Printing: Universiteitsdrukkerij Technische Universiteit Eindhoven.

il

Is usability compositional?

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof.dr. R.A. van Santen, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op woensdag 15 januari 2003 om 16.00 uur

door

Willem-Paul Brinkman

geboren te Middelburg

iii

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. D.G. Bouwhuis
en
prof.dr. P.M.E. De Bra

Copromotor:
dr.ir. R. Haakma

v

Acknowledgements

The research described in this thesis was conducted at Eindhoven University of Technol-
ogy, first at TPO Centre for User-System Interaction, and later on at the Department of
Technology Management. During those four and a half years, many people contributed to
this work. First of all, I thank Don Bouwhuis and Reinder Haakma for their advice and
discussions, which were always stimulating and helped me to clarify many issues.

Working with Maxim Schram on the modelling of a TV set was very productive. Having
a more or less real product to describe helped me to understand the complexity of it.
Thanks for going through this ordeal with me. I am also indebted to Rob van Eijk, who
programmed and pre-tested the mobile telephone simulation described in chapter 4, and
Willem Peeters, who set up, conducted and analysed an earlier version of the experiment
described in chapter 6. Mark Houben’s involvement provided the different simulations with
the right sounds, but also his Matlab expertise is highly appreciated. Special thanks go to
Arnout Fischer and Audrey Bink for carefully reading drafts of this thesis. Without them
I would certainly consider reading this thesis a challenge.

Furthermore, I would like to express my gratitude to Michel Alders, Agnieszka Matysiak,
and Oleksandr Krashtan for being involved in their final projects of the User System
Interaction Programme. Their work brought me into closer contact with the problems
faced by designers and software engineers when it comes to creating a user interface.

Finally, I want to thank the IPO and MTI members. They were without a doubt parties
to the good atmosphere. It was a delight doing this Ph.D. research. We should do it again
some time.

Willem-Paul Brinkman

vi

Contents

1 Introduction 1

1.1 Devices and usability 1

1.1.1 The user interface: one or many? 2

1.2 Layered Protocol Theory 2

1.3 Component-based software engineering 5

1.3.1 Component-based software development 6

1.3.2 Software architectureo 6

1.4 Usability evaluation Lo 9

1.5 The research objectives o 11
1.5.1 An empirical component-based testing framework with a theoretical

backgroundo 11

1.5.2 Is the whole more than the sum of its parts? 12

1.6 Overview thesis 12

2 An explorative study on control and the comprehension of user interface

components 15

2.1 Introduction 15

2.1.1 Description message exchange between components 15

2.1.2 Objectives 17

2.2 Method 18

2.2.1 Prototype 18

2.2.2 Experimental design L 21

223 Training Lo 22

2.2.4 Hypotheses 25

2.2.5 Procedure 28

vil

2.3 Results 28

2.3.1 Control tests 28
2.3.2 Overall performance L. 30
2.3.3 Control on the lower-level layer 31
2.3.4 Control on the higher-level layer 34
2.4 Discussion 35
2.5 Conclusions 37
Usability testing in a component-based environment 39
3.1 Introduction 39
3.1.1 Objectives evaluation method 39
3.1.2 Overview of the evaluation method 40
3.1.3 Overview chapter 40
3.2 Formalisating LPT o 41
3.2.1 Architecture 41
3.2.2 Controleffects L 44
3.3 Evaluation method o 46
3.3.1 Test procedure 46

3.3.2 Objective performance measure in the multiple versions testing paradigm 47

3.3.3 Objective performance measure in the single version testing paradigm 49

3.3.4 Subjective measures 59
3.4 Comparison with other evaluation methods 60
3.4.1 Sequential data analysis o0 60
3.4.2 Not log-file-based usability evaluations 61

An experimental evaluation of the component-based usability testing

framework 63
4.1 Introduction 63
4.2 Method 64
4.2.1 Prototypes and operationalisation claims 65
4.2.2 Designo 74
4.2.3 Procedure 75
4.3 Results 75

4.3.1 Data preparation L o 76

4.3.2 Multiple versions testing paradigm 7
4.3.3 Single version testing paradigm L. 86
4.4 Discussion 90
4.4.1 The power of the objective component-specific performance measure 92
4.4.2 The power of subjective component-specific usability measures . . . 92
4.4.3 Objective component-specific performance measure in the single ver-
sion testing paradigm 93
4.4.4 Ineffectiveness problems 93
4.4.5 General remarks 94
4.5 Conclusions e 95
Effects of consistency on the usability of user interface components 97
5.1 Introduction 97
5.1.1 Consistency and LPT 0. 97
5.2 General experimental set-upo 99
5.3 Experiment 1 —consistency within the same layer 100
5.3.1 Method 100
532 Results. 102
5.3.3 Discussiono 109
5.4 Experiment 2 —consistency between lower-level and higher-level layers . . 110
54.1 Method 111
54.2 Results. 114
5.4.3 Discussion 122
5.5 Experiment 3 —consistency between the component and the application
domain 124
5.5.1 Method 124
5.5.2 Results. 128
5.5.3 Discussion 132
5.6 General discussion 134
5.6.1 Theoretical implications 134
5.6.2 Practical implications L 135
5.7 Conclusions and further research 136

1X

6 Effect of mental effort on the usability of user interface components 137

6.1 Introduction 137
6.2 Method 138
6.2.1 Prototypes 138

6.2.2 Hypothesis. 139

6.2.3 Alternative hypothesis 140

6.24 Tasks. 141

6.2.0 Measures L 142

6.2.6 Experimental design Lo 0oL 145

6.2.7 Subjects 145

6.2.8 Procedure 145

6.3 Results. 146
6.3.1 Data preparation Lo 146

6.3.2 Statistical analyseso Lo 148

6.4 Discussion and conclusions 152
6.4.1 Interpretation results Lo 152

6.4.2 Theoretical implications L. 155

6.4.3 Practical implications oo 157

7 Discussion and conclusions 159
7.1 Recapitulation 159
7.2 Main conclusions and limitations 00000 160
7.2.1 Component-based usability testing 160

7.2.2 The independence of the component’s usability 163

7.3 Implications 164
7.3.1 Theoretical implications 164

7.3.2 Practical implications L 166

7.4 Future work 167
Bibliography 169
Appendix 179

A Formal specification objective performance measure in the single version

testing paradigm 181
B Standard questions used in the questionnaires 185
Summary 187
Samenvatting (Summary in Dutch) 191

Curriculum vitae 195

X1

xii

Chapter 1

Introduction

1.1 Devices and usability

In the past few decades, people have surrounded themselves with a growing number of
devices that offer increasingly more complex functionality. Consequently, the devices’
usability has had a growing effect on areas like the military, economy, society and politics.
The Second World War led to the birth of human factors, or ergonomics, as a research
field. From then on, aircraft cockpits, sonar, radar, etc. were increasingly designed in
accordance with the capabilities of soldiers. The army and navy could no longer solely
depend on selection and training to cope with the peculiarities of devices. In such a period
of national emergency, selection standards were relaxed and equipment was operated by
half-trained soldiers (Driskell & Olmstead, 1989; Meister, 1999). In the civilian society,
product developers recognised that they could compete with the usability of products. So
they set out to develop devices consumers could easily use. Sales figures dropped when
consumers had to struggle with the supporting artefacts of a service as online shopping
(Lohse & Spiller, 1998) or online auctions (Hahn, 2001). Concerns have also been expressed
about a possible division in society between those who can handle complex artefacts and
those who can not. Some press for universal usability because they believe that in a fair
society all individuals would have an equal opportunity to participate in, or benefit from,
the use of computer resources regardless of race, sex, religion, age, disability, national
origin or other factors (Shneiderman, 2000). This is becoming increasingly important, as
governments rely more and more on electronic means to communicate with their citizens.
Even democratic processes are disrupted by bad usability since part of the controversy
surrounding the 2000 United States presidential election concerned the confusing butterfly
ballot format (Sinclair, Mark, Moore, Lavis, & Soldat, 2000). In Palm Beach County,
Florida, people who had intended to vote for Al Gore might have end up voting for Pat
Buchanan by mistake. All these examples illustrate that theories that explain and predict
the interaction between humans and systems are very welcome indeed, because they can
guide designers in their aspiration to design more easy-to-use artefacts.

1.1.1 The user interface: one or many?

This thesis deals with the question whether usability is compositional. Artefacts can
be approached in two ways, holistically, or as a collection of components. Elementary
components such as pop-up menus, radio buttons, list boxes, give access to more abstract
components, or are embedded in other more complex components, such as spelling checkers
or email components in word processors or spreadsheets. Developers hope that applying
highly usable ready-made components will result in a highly usable device. Still, when it
comes to studying the usability of a device, so far, the usability of those components has not
been assessed individually, but only for their impact on the overall usability. Therefore, the
focus here is on whether and how the usability of components can be tested, and how the
usability of an individual component can be affected by other components. One theory that
uses such a division of an artefact is the Layered Protocol Theory (LPT), which provides
the basis for usability testing in a component-based software engineering approach. In the
following sections this idea will be further explained.

1.2 Layered Protocol Theory

LPT decomposes the user-system interaction into different layers that can be designed and
analysed separately. The theory was put forward by Taylor in 1988, but the basic ideas
were already mentioned earlier in a report on spatial information systems (Taylor, McCann,
& Tuori, 1984). The theory was inspired by the ISO (1994) Open Systems Interconnect
reference model for communication among computers, but also has its origins as early as
in the work of Donders in 1862 and Wundt in 1880 (Taylor, 1988a). Later on, LPT was
recognised (Farrell, Hollands, Taylor, & Gamble, 1999) as a special form of Powers’ (1973,
1998) Perception Control Theory (PCT). Whereas PCT is a general theory about human
interaction with the environment, LPT focuses on the human-human and human-system
communication and interaction. Central concepts in these theories are the perception-
control loop and the accumulation of these control loops, which creates multiple layers in
which the interaction takes place.

The main tenet of PCT is that the purpose of any given behaviour is to control perception.
This differs from both traditional behaviouristic and cognitive theories (Bourbon & Powers,
1999; Chéry & Farrell, 1998; Farrell et al., 1999). Behaviour in traditional behaviouristic
Stimulus-Response theories had no purpose and was controlled by the environment. It
was simply produced since it was linked to a particular stimulus. There was no admission
that something inside a person might be responsible for behaviour, which specifically is
the case according to the cognitive view. In the traditional cognitive view, behaviour was
the result of an internal planning process. However, the result of the planning process
could be out of date at the moment of execution as the world could change during the
planning phase. In PCT behaviour is not planned but continuously adjusted to control the
perception of the changing world according to an internal reference value. Today, however,

these views of behaviouristic and cognitive theories are outdated. The idea of purpose has
been the hallmark of modern behaviorists (Herrnstein, 1967) introducing action selection
by consequences. On the other hand, cognitive theories, such as Activity theory, Situated
Action Models, and Distributed Cognition, no longer seperate individuals from the work
context, as the theories look at the setting, the social group and the supporting artefacts
(Nardi, 1996).

Intention Action Action
User: formation selection P execution
E-feedback T |-feedback E-feedback l
System: Hidden internal workings

Figure 1.1: Perceptual-control loop. The four stages are shown from the perspective of
the user’s side of the loop. The system is shown as a kind of black box hiding its internal
workings. Users can only observe the Expectation and Interpretation feedback provided
by the system. By executing actions, like pressing buttons, users can make the system
change its interpretation feedback (Haakma, 1999).

Figure 1.1 presents the perceptual-control loop between a user and a system according to
Haakma (1999). On the user side of the control loop, the following four stages (Norman,
1984) can be identified: intention formation, evaluation, action selection, and action exe-
cution. First, users are expected to develop some ideas about what they want to perceive.
A combination of higher-level reference values, knowledge, and system feedback on what
is achievable with the system (expectation feedback: E-feedback) guides users to establish
the appropriated intentions. For instance, watching a TV set may cause users want to see
the weather forecast to learn if they will stay dry when they go outside. In the next stage,
the users evaluate whether the system meets their intentions; does the TV set show the
weather forecast? The feedback about the systems’ current state, reflecting how the system
interpreted previous user actions, is called interpretation feedback (I-feedback). When the
users’ perception deviates from their intentions, they can decide to act upon the system to
overcome this, which brings them to the next stage. Here, the users select physical actions
or create new sub-intentions (switching the TV set on, and selecting the right channel)
to remove the discrepancy. The E-feedback again guides users at this stage; the buttons’
labels on the TV provide the set of actions to choose from. In the final stage, users execute
the selected actions. This can mean going through a loop at a lower-level layer, or actually
performing physical actions, which make up the system’s input.

Within LPT, user actions and system feedback are regarded as an exchange of messages.

The set of communication rules the user and system have to apply to get the messages
across, is called a protocol. Work has been done to specify a general protocol grammar
that describes the way in which possible communication errors are avoided or corrected
(Taylor, 1988b; Taylor, Farrell, & Hollands, 1999). In addition to grammatical problems,
the time delay between sending a user messages and receiving I-feedback could also lead
to communication problems (Taylor, 1988b, 1989). If the TV set does not provide a
perceivable response fast enough when it is switched on, users may repeat the action, which
would in fact switch the TV set off again. Summarising, in LPT, users send messages to
control the I-feedback and both the I- and E-feedback present the system’s contribution to
strengthening this control (Engel, Goossens, & Haakma, 1994; Engel & Haakma, 1993).

User message

Reference
value Feedback

A
Layer 3 a Virtual messages
Layer 2 J\ .
Virtual messages

Reference
value to see
user satisfied

User System

Figure 1.2: Layered user-system interaction. Via successive layers users send user messages
to adjust their perception of the system state according to their reference value.

In LPT messages seem to pass from the user to the system and back within the same
perceptual-control loop, but in fact all messages pass down from the originating sender to
the bottom-level layer and from that layer up at the receiving chain to the receiver that
operates in the same layer as the originating sender (Figure 1.2). As already mentioned,

4

users create sub-intentions as their intentions can not directly be mapped in physical
actions. This creates a stack of perceptual-control loops with less abstract intentions
when going downwards. In a Decoder-Model-Coder arrangement (Farrell et al., 1999), a
Coder transforms a message into reference values for lower-level control loops. Once, the
reference values are met, at the lower-level layers, the message is sent successfully. On the
receiver side, a Decoder transforms the received lower-level messages back into the original
message sent. Therefore, the message exchange on the lowest-level layer, the physical layer,
is considered to be real, while on all higher-level layers it is virtual. The function of the
Model in this arrangement is to compare the perceived system state with the reference
value. If it deviates, the Model sends a message, which the Coder transforms. Instead
of setting the reference value of one lower-level control loop, the Coder can also set the
reference value of multiple lower-level control loops. In that case, a single higher-level
message is supported by more than one lower-level control loop. The opposite can also
happen, when multiple higher-level control loops appeal to one lower-level control loop
for their communication. These constructions are called diviplexing and multiplexing,
respectively (Taylor, 1988b; Taylor & Waugh, 2000). User-system interaction should,
therefore, not be seen as two linear sequences, but as networks where multiple higher-level
loops are linked with multiple lower-level loops.

1.3 Component-based software engineering

Component-Based Software Engineering (CBSE) is a sub-discipline of software engineer-
ing, which is primarily concerned with the following three functions: development of soft-
ware from pre-produced parts; the ability to re-use those parts in other applications; and
easy maintenance and customisation of those parts to produce new functions and features
(Heineman & Councill, 2001). LPT fits into this concept well. Although the theory was
not explicitly set up for it, some scientists argued that in essence this is what the theory
was intended to accomplish (NATO, 2001). CBSE is not new; Mcllory (1979) already
introduced the concept at the first conference on software engineering in 1968. He pointed
at the inefficiency of software engineering when similar software parts had to be rewritten
for different applications. Therefore, he envisioned a catalogue of software components
where developers could choose and re-use. According to Myers (1998), the Andrew project
(Palay et al., 1988) was the first to demonstrate that CBSE can also be applied to user
interfaces. The idea behind the engineering concept is that components can easily be re-
used in other systems since they are autonomous units, free of the context in which they
are deployed. Components provide an external interface to their functionality and hide all
details about internal constructs that go into providing this functionality. The promise of
CBSE is reduced development cost and time (Aykin, 1994) since ready-made and self-made
components can be used and re-used.

1.3.1 Component-based software development

The development organisation for CBSE differs from the ‘traditional’ engineering process
that focused on developing each application from scratch. The component-based approach
links many application development projects with four concurrent processes that are re-
sponsible for creation, management, support and re-use of the components (Figure 1.3). A
creation process identifies and provides re-usable assets aimed at the needs of the re-users
—developers using the existing components to build new applications. A supporting pro-
cess maintains and distributes from the re-usable asset collection. The actual application
development takes place in a re-use process. This process also is responsible for collecting
and analysing the end-users’ needs. Since the creation and deployment of components are
disconnected, a framework in which the usability of the individual component can already
be assessed after its creation is of course welcome. Again, the validity of such an assess-
ment depends on the extent to which the usability of a component can be isolated from
the context of the application.

new
S
A\ 4

components
feedback from repository

= Support
\4
feedback

Reuse —>

Product requirements products
and existing software

Figure 1.3: Four concurrent processes are involved in component-based software engineer-
ing (Jacobson, Griss, & Jonsson, 1997).

1.3.2 Software architecture

Whether control loops can be identified and component-based usability testing might be
feasible in a particular interactive system depends on the extent to which the underlying
software organisation supports the notion of control loops. In principle, all interactive sys-
tems can be described within LPT control loops since the complete system can be regarded
as the control object of one large control loop. However, some software organisations may
allow multiple control loops, or even joined control loops. Several software models have

been suggested to organise the components of interactive systems. These models guide
developers of new systems and help maintainers to understand the organisation of existing
systems. Models are classified according to the following three levels of abstraction that
they address: the conceptual, the architectural and the realisation level (Duce, Gomes,
Hopgood, & Lee, 1990). Conceptual models as the Language model (Foley & Dam, 1983),
the Seeheim model (Green, 1983), the Arch-Slinky model (The UIMS Tool developers
workshop, 1992) and the Lisboa model (Duce et al., 1990) provide no insight into the
support of control loops. They focus on the identification of the different functionalities
that should be presented in an interactive system. On the other hand, realisation models
are too detailed because they focus on how components are implemented (e. g. imperative
or object oriented program environment) and how the communication between them is
established (e.g. components’ interface definition). Support for control loops is best stud-
ied on the architectural level. Here, models focus on how components are combined to
form a system. A group of models proposed on the architectural level are the so-called
agent-based models. Agent-based models structure an interactive system as a collection
of agents. An agent has a state, possesses an expertise, and is capable of initiating and
reacting to events (Coutaz, Nigay, & Salber, 1996).

User
input sensors

Display
Output

Figure 1.4: Two examples of an agent according to the Model-View-Controller (MVC)
model (Krasner & Pope, 1988).

The Model-View-Controller (MVC) model (Krasner & Pope, 1988) (Figure 1.4) is an agent-
based model that was first applied in the user interface of the object-oriented programming
environment Smalltask-80. Each MVC agent presents at least one control loop because
users interact with a Controller to control the content of the Model, which is presented
by a View. The Model links the agent with the underlying application domain. The
relation between the agents, and therefore the relation between the control loops, is not
specified in the MVC model. Each View may be thought of as being closely associated

7

with a Controller. Controllers and Views have exactly one Model, but a Model can have
one or several Views and Controllers associated with it. Views can also contain subviews
or be contained within superviews. Display messages, for instance, are passed from the
top-level View through to the subviews. In a standard interaction cycle users perform
some input action and the Controller notifies the Model to change itself accordingly. After
this the Model broadcasts to its dependent Views and Controllers that it has changed.
Views can then ask the Model about its new state, and update their display if necessary.
Controllers may change their method of interaction depending on the new state of the
Model. Controllers may also contact the View directly if the Model’s state is not changed,
but a change in the View is requested (e.g. zooming into a graph).

Figure 1.5: Example of five agents according to the Presentation-Abstraction-Control
(PAC) model (Coutaz, 1987).

PAC (Presentation, Abstraction, Control) (Coutaz, 1987) is another agent-based model
(Figure 1.5). This model also has a three-way division, but orders the agents in a hi-
erarchical fashion. Contrary to MVC, the input and output is handled by one part, a
Presenter. An Abstraction part maintains the data model that underlies the agent, and
provides functionality that operates on this data. A Control part connects the Presen-
tation and Abstraction part, and provides communication with other agents. In PAC,
no direct communication between the Presentation and the Abstraction is allowed. All
internal as well as external communication is directed through the Control part. The
hierarchical structure of the external communication reflects LPT’s idea of diviplexing,
but not of multiplexing. For instance, the Control of a so-called cement agent combines
user actions distributed over multiple lower agents into higher abstraction (e.g. command)
(Nigay & Coutaz, 1991). Furthermore, the Control of a higher agent can also maintain
the consistency between multiple presentations of the same concept in lower agents; any
user action on one presentation is reported to the other agents, which presents the same
concept, via the higher level agent. A hybrid model between the conceptual Arch-Slinky
model and architectural PAC model has been proposed in the shape of the PAC-Amodeus
model (Nigay & Coutaz, 1991, 1993). This model was suggested to handle multimodal
user interfaces.

Of the three agent-based models presented here, the CNUCE model (Paterno, 2000) ex-

8

Application

output receive
l input send

output trigger
=

Interactor

l input receive

output send

input trigger

User

Figure 1.6: An agent according to the CNUCE model (Paterno, 2000).

presses the ideas of LPT in most detail. The model supports both multiplexing and
diviplexing. In the model, agents, called interactors, can be seen as black boxes commu-
nicating bi-directionally with the user and application by channels called gates, of which
there are six different types (Figure 1.6). Each interactor may receive input and output
from other interactors and not only from the user or the application. Connecting these
interactors creates a user interface. The input-send gate of one or more interactors can be
connected to the input-receive gate of one or more other interactors, which means diviplex-
ing and multiplexing on the receiver side in terms of LPT. Diviplexing and multiplexing
on the sender side also is possible within the CNUCE model as the output-send gate of
one or more interactors can be connected to the output-receive gate of one or more other
interactors.

1.4 Usability evaluation

Usability is the extent to which a product can be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfaction in a specified context of use (ISO, 1998).
Within LPT, the focus on usability is the focus on control. Therefore, the ISO usability
definition at the beginning of this section can be reformulated as follows. Usability is the
extent to which a product can be controlled by specified users to match a reference value
with effectiveness, efficiency and satisfaction in a specified context of use. These ultimate
criteria of usability may be simple and direct, however, they can only really be measured

when users use the product in real life. As a result, other attributes are established, called
actual criteria, which are more easily measured (e.g. not in real life, or without users)
and are also believed to be effective predictors of the ultimate criteria (Hartson, Andre, &
Williges, 2001).

Several methods have been suggested to evaluate the usability of a product. They can be
divided into analytic and empirical evaluation methods. In analytic evaluations, people rea-
son about the usability without involving users. The reasoning can be based on theoretical
models. GOMS (Card, Moran, & Newell, 1983) and the Cognitive Walkthrough (Polson,
Lewis, Rieman, & Wharton, 1992) are examples of theoretical model-based methods that
simulate the cognitive and sometimes physical steps needed to fulfill a task. Analyses of
the dialogue context and interaction points (Rauterberg, 1995) are methods that quantify
usability based on product features. On the other hand, Heuristic Evaluation (e. g. Nielsen
& Molich, 1990) is not based on a theoretical model, but on a set of usability principles
(the ‘heuristics’).

Usability testing, questionnaires and field studies are examples of empirical evaluation
methods. Empirical methods, for their part, can be classified according to the nature
of the data they rely on, qualitative or quantitative. Qualitative analyses are common
in naturalistic research traditions because they focus on the plausibility and soundness
of the interpretation of observations; i.e. examining interview transcripts, thinking-aloud
protocols or video recordings. Characteristic of these analyses is their subjective and
often time-consuming nature. Quantitative analyses are more related to cognitive and
behavioural traditions (Sanderson & Fisher, 1997) because they focus on replicability and
generality, and call on statistical analyses.

The formative versus summative classification, often made for evaluation methods (Hart-
son et al., 2001), is somewhat problematic in the case of an empirical component-based
usability test. Formative evaluation is done during the construction of a product to find
usability obstacles for improvement and has a more explorative and qualitative nature.
However, what should be considered as the formative period in CBSE, the creation or the
re-use process? On the other hand, summative evaluation is used to assess or compare the
level of usability achieved in an entire product when finished. Summative evaluation is
generally regarded as requiring formal experimental design, including statistical analyses
and is often used to compare design factors in a way that can contribute to the accumu-
lated knowledge within the research field. However, instead of the entire product, multiple
versions of a component can be compared. In such a case, the evaluation is not intended
to extend the knowledge of the research field, but to select the most usable version of a
component that can be offered for re-use.

10

1.5 The research objectives

1.5.1 An empirical component-based testing framework with a
theoretical background

LPT can support designers during the design and evaluation of a product by offering
a theoretical background. Cases are reported where designs are analytically evaluated
according to guidelines derived from LPT (Edwards & Sinclair, 2000; Farrell et al., 1999;
Farrell & Semprie, 1997) and consequently, empirical testing has been done to show that
these guidelines can produce more usable products (Eggen, Haakma, & Westerink, 1996;
Haakma, 1998). The benefit of LPT, compared to the original GOMS method (Card et al.,
1983), is that it allows for product analysis of the product’s initial use phase, and not only
of its long-term use phase (Eggen, Haakma, & Westerink, 1993). However, another member
of the GOMS family, NGOMSL (John & Kieras, 1996), can predict the learning time for
both procedural knowledge and memorizing chunks of declarative information. Still, all
members of the GOMS family only focus on error-free task execution and do not consider
the system’s support to prevent or to overcome user errors, which is especially crucial in the
initial use phase. The cognitive model on which GOMS but also the Cognitive Walkthrough
is based does not consider layered user-system interaction. Although the cognitive model
has a goal hierarchy, it considers the system only at the lowest-level layer. The system is
reduced in more or less the same way as the cognitive process is reduced to the keystroke
level by the Keystroke-Level Model (KLM) (Card, Moran, & Newell, 1980), which is the
simplest member of the GOMS family. Each layer in LPT includes a system part, which
the cognitive model lacks. This makes it possible to trace back usability problems to
higher-level system layers too, instead of only the direct relation between unclear labels or
icons and the lowest-level system layer.

The research, reported in this thesis, aims to establish an empirical test method in which
the usability of a component can be assessed. Although, LPT is suggested as an approach
to test components empirically (Haakma, 1998; Hilbert & Redmiles, 2000; Taylor, 1988b),
it has not yet been applied. Therefore, this is seen as a first attempt to establish a formal
observation method on whether users successfully controlled their perception in each of the
different layers. Again, the benefit is that such a method points out troubling components
to designers, and does not leave them in the dark about what to change in the case of
disappointing overall performance (Olsen & Halversen, 1988).

The research approach is to evaluate a component within the context of a complete user
interface. Attempts to empirically study a component without other components would
face a very artificial situation especially for higher-level components. In an effort to study
a Internet web-site without a browser, testers would have to offer the users another way
to navigate through it, which again would mean creating some kind of browser after all.

11

1.5.2 1Is the whole more than the sum of its parts?

With the component-based usability testing framework established, the question is ad-
dressed whether the component’s assessed usability holds outside the context of the user
interface in which it was tested. LPT claims that layers can be designed almost indepen-
dently of each other. Control loops are said to be unaffected when lower-level protocols
are replaced as long as they provide the same message services to the layer above it (Tay-
lor, 1988a, 1988b, 1993; Taylor et al., 1984). If this were the case, the overall usability
of new user interfaces could be solely based on the usability of the separate ready-made
components. On the other hand, Hertzum (2000) suggests that software re-use can cause
conceptual mismatches. The same concept may be used in several components, but it
may not mean the exact same thing. This basically means that components influence each
other’s usability. If so, designers should control possible negative impacts, while re-users of
the components should avoid compositions that amplify them. Furthermore, when looking
at usability test results, testers should be alert to the possibility that the root of a usability
problem may be located partly outside the component.

1.6 Overview thesis

The organisation of this thesis chronologically follows the research conducted on the main
theme —Is usability compositional? The research starts with the assessment of the com-
ponent’s individual usability. Chapter 2 describes an explorative experiment conducted on
a fictitious user interface. The experiment is a first attempt to record the interaction on
multiple layers and to describe the elements of the user interface involved. Based on the
results and the experience, an objective component-specific usability measure is suggested
of the users’ effort to control their perception of a component. In chapter 3, a complete
testing framework is worked out in which the usability of individual components of a user
interface can be tested. Three component-specific usability measures are proposed: an
objective performance measure, a perceived ease-of-use measure and a satisfaction mea-
sure. The objective performance measure is derived from the message exchange between
the components recorded in a log file, whereas the other measures are obtained through
a questionnaire. The chapter also describes how a component-specific usability test can
be performed when only one or when multiple component versions are available. Chapter
4 describes an experiment conducted to evaluate the suggested testing framework. Eight
prototypes of a mobile telephone were subjected to a usability test. The power of the
component-specific measures is compared to overall measures such as task time, number
of keystroke, ease-of-use and satisfaction related to the entire mobile telephone.

The second part of the research is concerned with the related question whether the usability
of a component is independent of the other components in the user interface? Two factors
are studied that might cause components to influence one another, i.e. consistency and
mental effort. Chapter 5 describes three experiments in which the effect of inconsistency is

12

examined between components on the same or a different layer, and between components
and the application domain. Prototypes of a room thermostat, a web-enabled TV set,
a microwave and an alarm clock radio served as evaluation objects in these experiments.
An experiment on the impact of mental effort is presented in chapter 6. The hypothesis
is tested that the mental effort, related to the interaction of lower-level component, can
affect the users’ strategy to control a higher-level component. Two calculator prototypes
were put to the test in this experiment.

Chapter 7 reflects on the conclusions drawn in the prior chapters and discusses the theo-
retical and practical implications of the results, limitations of the research, and possible
further research.

13

14

Chapter 2

An explorative study on control and
the comprehension of user interface
components

2.1 Introduction

Overall usability measures suit a world where the entire user interface is considered as
a single entity. However, in a world where a user interface is considered as an assembly
of different components, these measures seem too global. Component-specific usability
measures would then be more appropriate. These kinds of measures may distinguish com-
ponents that limit the overall usability of a user interface and they may also shed light
on the interaction between the components of a user interface. Until now, no such mea-
sures have been developed. Therefore, a first step forward requires an explorative study,
where observation of users’ control could help to generate ideas for potential empirical and
component-specific measures. When observations are recorded in a log file, measures can
be derived and studied at a later moment. However, what exactly should be recorded? The
Layered Protocol Theory (LPT) may give some directions here. However, the description
of the state-of-the-art on LPT in chapter 1 does not present the exact recipe for describing
the interaction or the user interface architecture. This means that attention needs to be
paid to operationalising LPT’s concepts as well.

2.1.1 Description message exchange between components

In LPT, control is established by the exchange of messages between the user and the
system on several layers. Therefore, recording the message exchange implies recording
both the user and the system behaviour on several layers. Whereas the messages sent and
received by the users on higher-level layers are not directly observable, the messages sent
and received by the system are unambiguously and known.

15

Feedback Reference to recipient’s state, Primal Reference to see
message Primal messages message originator satisfied

A l A l
Perceived state Error signal higher-level layer Perceived state Error signal
of recipient of originator

Feedback messages Message that serve A Feedback messages Feedback message
from lower-level as primal messages from lower-level that serve as primal
layers for lower-level layers layers messages for lower-
level layers
N NS PAYA JAYA
N7 A4 A4 A4
A
physical layer
Originator Recipient

Figure 2.1: The relation between an originator and recipient protocol node according to
the Decoder-Model-Coder arrangement.

Different kinds of messages can be distinguished in the message exchange within the
perception-control loops that operate in each of the layers. To include E-feedback mes-
sages and to focus more on the user-system interaction, a new arrangement, the so-called
Decoder-Core-Coders arrangement (Figure 2.2), is introduced here, which is a slight vari-
ation on the Decoder-Model-Coder arrangement (Figure 2.1) mentioned in the previous
chapter (Figure 1.2). The Model in a receiving protocol node performs an evaluation
function similar to the one that takes place at the user side of Decoder-Core-Coders ar-
rangement. The Model compares the system reference value, which is always the originator
18 satisfied in a co-operative dialogue, with the perceived satisfaction of the user. Receiving
a user message is always seen as an indication that the user is not satisfied, which makes
the Model in a receiver protocol node a more or less artificial construct. On the other
hand, the Core is simply regarded as the element that acts on the user’s messages and
sends both interpretation and expectation feedback to the user. The message the Core re-
ceives from higher-level layers is not a reference value, but a higher-level feedback message,
which has to be passed on to the user. The Core can only send feedback directly at the
physical layer. In all the other layers, a Coder has to transform a feedback message into
one or more lower-level messages. In contrast to the Decoder-Model-Coder arrangement,
two Coders are distinguished. The I-Coder transforms the I-feedback and the E-Coder the

16

Reference Perceived Higher-level Higher-level
value (goal) value action feedback

R

higher-level layer
Action E-feedback l \l-fEEdback

Control process

Action
execution

Action
selection

Intention
formation

E-feedback I-feedback E-feedback Action [DecTﬂdef j (Froe j ("C°|def j
A A A A A RS NS
physical layer
)
User System

Figure 2.2: Perception-control loop in which a user controls a system component according
to the Decoder-Core-Coders arrangement.

E-feedback. The Decoder performs the opposite function; it transforms lower-level mes-
sages into one user message at that level and sends it to the Core. This again differs from
the Decoder-Model-Coder arrangement, where the Decoder sends messages to the Model
and also to higher-level protocol nodes. Instead, the Core sends messages upwards since
only it can interpret the received messages in the light of the previous received messages
and its current state.

2.1.2 Objectives

The aim of this explorative experiment is to apply the Decoder-Core-Coders arrangement
and to search for a component-specific usability measure that can be constructed from the
recorded messages sent and received on the system side of the interaction. Furthermore,
the aim also was to form an idea of how likely it is that a component’s usability influences
the users’ control of other components.

17

2.2 Method

The experiment was conducted under the control of a PC application written in Visual
Basic 5. In the experiment, the subjects had to execute a task with a fictitious user
interface. Systematically manipulating the subjects’ initial knowledge of the user interface
created usability variations in this experiment.

2.2.1 Prototype

A user interface was designed with components on different layers. This user interface
presented an abstraction of a dialogue that is essential in multi-layered user interfaces. In
this dialogue the effect of a user action depends on the current system mode. For example
in time setting, users first have to select the hour-digits (select the right mode) before they
can change the hours of a digital watch. In the time-setting example, three components can
be distinguished: the physical buttons, a component to select the digits of the current time
(hours, minutes, or seconds), and third a component to set the digits. Similar components
were used in the user interface studied in this experiment.

Reference symbol
(apple -> drum)

Next reference Rotate selected
symbol musical instrument

Figure 2.3: Computer screen with the fictitious user interface.

The subjects were confronted with a fictitious interface on the computer screen. The user
interface (Figure 2.3) used symbols in which the signifier (the form which the sign takes)
had no direct relation with the signified (the mental concept it represents). In terms of
semiotics (Chandler, 2002), this is a truly symbolic relation in which the signifier does
not resemble the signified but which is fundamentally arbitrary. In other words, this
relationship had to be learnt. Instead of setting the current time, the subjects were asked
to rotate the symbol of a specific musical instrument. The system consisted of two buttons

18

Figure 2.4: State diagram of the Rotate component. A click on aeroplane symbol, in
combination with the visible fruit symbol, triggered a particular state transition.

components (Bike and Aeroplane), a Select component to select a musical instrument, and
a Rotate component to set the orientation of the musical instruments (Figure 2.6).

To rotate a musical instrument, subjects had to click on an aeroplane symbol. Which
musical instrument would rotate depended on a fruit symbol visible (Figure 2.4). If the
apple was visible, the drum would rotate. If the pear was visible, the guitar would rotate.
And if grapes were visible, the trumpet would rotate.

To change the visible fruit symbol, subjects had to click on a bike symbol. Each click on
the bike symbol changed the fruit symbol in turn (Figure 2.5). For example, a click on the
bike symbol in Figure 2.3 would change the apple into a pear symbol. However, a click on
the aeroplane symbol would rotate the drum. If the subjects wanted to rotate the trumpet
in Figure 2.3, they first had to change the apple into grapes by clicking twice on the bike
and finally once on the aeroplane.

The structure of the message exchange between the components is given in Figure 2.6. The
Rotate component was on the highest-level layer of the interface structure. The [-Coder of
this component presented the musical instruments in a normal or upside-down orientation
according to their current status. The E-Coder split the E-feedback into a message for the
Aeroplane Button components that represented the rotate ‘button’, and a message for the
Select component that was engaged in selecting the musical instrument. When the Decoder
of the Rotate component received an Aeroplane button pressed message, it combined this

19

OO

4

Figure 2.5: State diagram of the Select component. A click on the bike symbol triggered

a state transition.

Rotator

Map

Rotate [object]

Rotate
objects

Rotate A
Rotate B
Rotate C

Orientation
objects

[Decoder j [E-Coder j [I-Coder j

Selector

Selected object

Select
object
Next Next l

Selected
object

Decoder]

G C=)

Bike button Bike
pressed symbol

Blke
button

Click Status Bike
button

Click on Bike

Bike symbol
symbol

(in)visible

\4

Fruit
symbol

Aeroplane
button pressed

Aeroplane
symbol

Aeroplane
button
Clicl/ Vatus Aeroplane

button

Click on Aeroplane
Aeroplane symbol
symbol (in)visible

\4

Musical
instruments
symbols

Figure 2.6: Compositional structure of the fictitious user interface in which the message
exchange is presented by the arrows. The grey areas refer to the different parts of knowledge

given in the training.

20

trigger with its information about the selected object into a Rotate message for a specific
object.

The Select component informed the Rotate component of the currently selected object
each time the subjects selected another object. Presentation of the Select component’s
E-feedback was delegated to the Bike Button component, which in return informed the
component when the subjects click on the Bike symbol. The I-feedback of the Select
component was presented as a fruit symbol on the screen.

The E-feedback of the button components was based on the rule that ‘clickable’ symbols
were all means of transport, e.g. the bike or the aeroplane. To indicate to the subjects
that they had clicked on a clickable symbol, the symbol disappeared for half a second from
the screen. Both the Bike Button and Aeroplane Button components did this. After the
subjects clicked on a bike symbol, the Bike Button component sent a Bike button pressed
message to the Select component. Likewise, after the subjects clicked on the aeroplane
symbol, the Rotate Button component sent an Aeroplane button pressed message to the
Rotate component.

2.2.2 Experimental design

The subjects’ initial knowledge, obtained in a training, and the experience obtained when
using the system, was expected to influence the subjects’ control on the different compo-
nents (Figure 2.7). In the training, prior to the task, the subjects received either relevant
or irrelevant information about the system response to particular user actions. The dif-
ference in foreknowledge was assumed to affect the overall performance of the interactive
tasks, as it did in other studies (e.g. Kieras & Bovair, 1984; Halasz & Moran, 1983). The
subjects were instructed to perform the same task nine times. The expectation was that
over the trails the subjects would extend their knowledge, which consequently improved
their control.

Training

> Knowledge |——»| Control

Experience

Figure 2.7: Conceptual model of the experiment: on the left the independent variables,
training and experience; in the middle the intermediate variable knowledge; and on the
right the dependent variable control.

The subjects were assigned to one of eight instruction sets (Table 2.1) in the training.
The following three parts of information about the fictitious user interface were given or

21

Table 2.1: Knowledge about the fictitious user interface given to or withheld in the eight
instruction sets.

Instruction sets

Knowledge I 1Ir 1v.v VI VII VIII

I
Rotator o0 o o0 + + + +
Map o0 + + 0 O + +
Selector o+ 0 + 0 + 0 +
Note. + = Relevant knowledge; 0 = Irrelevant knowledge.

Ten subjects were assigned to each instruction set.

withheld in each instruction set: first, the Rotator knowledge, the knowledge that a click
on an aeroplane would lead to the rotation of the selected musical instrument; second, the
Map knowledge, the knowledge of which piece of fruit refers to which musical instrument;
third, the Selector knowledge, the knowledge that a click on a bike would lead to the
selection of the next fruit symbol and that clickable symbols were means of transportation.
Consequently, the Rotator knowledge related to the higher-level layer of the compositional
structure, the Selector knowledge to the lower-level layer, and the Map knowledge served
as an intermediary between those layers.

2.2.3 Training

In the training, the subjects were simultaneously give six examples of two images of a
computer system on the PC screen (which means twelve computer systems were displayed
on the PC screen at the same time). Each example presented how the computer would
react to a click on a symbol. A single example consisted of an image of two computers,
one below the other, a arrow connecting them, and an illustration of a hand pressing a
mouse button (Figure 2.8A). The upper computer presented the system state before the
action. A mouse arrow indicated which symbol was about to be clicked on. The lower
computer showed the system state after the click action. The arrow and the hand were
put into the example, so the subjects would interpret the example as a transition between
system states.

Part A of Figure 2.8 is an example that the subjects with instruction set VI and VIII had
to study. They had to notice that a click on a bike would change the pear into grapes.
The subjects had to study two more examples of a next action to understand all the state
transitions of the Select component (Figure 2.5). In the instruction set II, IV, VI and VIII
this meant an example of a transition of grapes into an apple and in the other example
an apple into a pear. Part B of Figure 2.8 presents the signified element of the symbols in
these examples. The subjects with another instruction set also studied these three change

22

Rotate-
able
symbol Y

Next Change- Rotate-
+ able able
Arrow symbol Z | symbol Y

Refers to

Next symbol Z

Rotate- Rotate-
able able Rotate
symbol X | symbol Z

Rotate- Rotate- Rotate
able able +
symbol X | symbol Z Arrow

Rotate-
able
symbol Y

Change- | Rotate-
Next able able
symbol X | symbol Y

Refers to
Next symbol Z

Rotate- Rotate-
able able Rotate
symbol X | symbol Z

Rotate- Z loquiAs
able Q|qe Rotate
symbol X -ajej0y

B

Figure 2.8: One of the six examples. Left (A) a real example of a nezt action that the
subjects with instruction set VI and VIII had to study. In the middle (B), the signified
element of the symbols in a next example. Right (C) the signified element of the symbols
in a rotate action example.

examples; however, dummy symbols (symbols of animals and instead of a bike a kite) were
used to withhold the Selector knowledge them from. Table 2.2 shows all the symbols that
were used in the eight conditions. Besides the three next examples, subjects had to study
three rotate examples. Part C of Figure 2.8 presents the signified element of the symbols
in this example type. The actual rotate examples the subjects had to study can again be
constructed with the help of Table 2.2. With the rotate examples, subjects received or
were deprived of the Rotator and Map knowledge, and a part of the Selector knowledge
that told them that only means of transport were clickable symbols.

When subjects felt that they had thoroughly studied the examples, their knowledge was
tested. In the test, the subjects received (one by one) the six examples in a random order
in which only the upper part of the example was filled out. The task of the subjects was
to complete the screen of the computer below, i.e. to predict the reaction of the system
to the action presented in the upper computer. To do this, the subjects had to pick a
symbol from a set and place it in the image of the lower computer screen, which was left
blank. After the subjects had completed the six examples, the application checked whether
their answers were correct and showed the subjects the result. The application gave the
number of rotation errors and the number of displacement errors. The six before and after
situations, as the subjects had filled them out, were all presented on one screen at the
same time. The application indicated with a red cross which symbols were wrong or were
wrongly orientated. The subjects could study their results. After this the subjects could
again study the six examples and do the test again. The subjects finished the training
when they were able to pass the test without making any errors.

To make sure that the subjects studied the symbols and not the location of symbols, the
places of the symbol in the upper computer system were randomly chosen each time that

23

Table 2.2: Symbols used in the 6 examples of the instruction sets.

Instruction sets (signifiers)

Knowledge Signified I IT 11 v \Y VI VII VIII
Rotator / 1 Rotation symbols Figures Figures Music Music Music Music Music Music
Map l.a Rotate-able symbol X ¢ ¢ e g e e e e
1.b Rotate-able symbol Y A4 A4 wgl wgl wgl wgl wgl wgl
l.c Rotate-able symbol Z » » @WNK @WNK @Nx @Nx @Nx @x
Map 2. Reference symbols Tools Tools Fruit Fruit Tools Tools Fruit Fruit
2.a Refers to symbol X 7 Va 4 4 Va Va 4 4
2.b Refers to symbol Y O Dot * ‘ Do Dot ‘ ‘
2.c Refers to symbol Z o o h h o , o h h
Selector 3. Clickable objects Sky Transport Sky Transport Sky Transport Sky Transport
Rotator 3.a Rotate J - J - l]. l]. l]. l].
Selector ~ 3.b Next \ﬁf @9 \&/r <) \@zr ¥ &f ¥
Selector 4. Changeable objects Animals Fruit Animals Fruit Animals Frugt Animals Fruit
4.a Changeable symbol X g 4 1 4 iw 4 ~ 4
4.b Changeable symbol Y b) ‘ b o] ‘ "~ ‘ - *
4.c Changeable symbol Z Gaol h Gaol h Gaol h Gl h

Note. In instruction set I, only dummy symbols were used, whereas in instruction set VIII, only symbols were used from the fictitious user

interface. Symbols in the column with a label printed in italics were linked with relevant knowledge about the fictitious user interface.

the application presented the examples. Next, the position of the six examples on the
screen was also randomly chosen, thus avoiding the idea that the order of the examples
would in some way help to predict the reaction of an action. A pilot study of the experiment
had shown that subjects suffer from concentration problems, if the learning task took too
long. This appeared to affect their performance on other tasks. Therefore, the subjects
who had not passed the test after 20 minutes received an oral explanation of the written
instruction about how to study the examples. The subjects who still had not successfully
passed the test after 40 minutes were given help in studying the examples until they were
able to construct the examples successfully.

2.2.4 Hypotheses

In the experiment both the intermediate variable knowledge and the dependent variable
control were measured. The knowledge measuring served as a confirmation check, to justify
the interpretation that the knowledge the subjects obtained as they performed the rotation
tasks influenced their control. Furthermore, the knowledge about a component, which they
obtained in the training, was expected to influence their control on the specific component
as well. The last expectation was that the Rotator, Map and Selector information provided
in the training would not cause interaction effects in the control of a component. In other
words, the components’ usability, presented here as the subjects’ initial knowledge, did not
affect each other.

Measuring knowledge

The subjects’ knowledge about the system was measured before and after the subjects
performed all the rotation tasks. The measuring was done in a similar way to that in the
training. However, subjects were asked to complete eight action-reaction combinations and
this time the symbols were taken from the fictitious user interface (similar to instruction
set VIII in Table 2.2). Of the eight images, two images presented a click on an aeroplane,
two on a bike, two on a piece of fruit, and two on a musical instrument. The subjects were
not informed about their performance in this test. The subjects were expected to complete
more images correctly than before after they had performed all the rotation tasks.

Measuring control

The reported control measuring focused mainly on the user messages. At first, it might
seem more obvious to analyse the relation between the reference value and the perceived
value (i. e. I-feedback). A high correlation would indicate a highly accurate control over the
system. However, these analyses would face two problems in this experiment. First, con-
trary to other analyses conducted within the framework of the Perception-Control Theory
(e.g. Bourbon & Powers, 1999), both reference and perceived values were not continuous

25

variables that could be placed on one scale, but nominal (or categorical) variables; they
were discrete system states for which the only direct comparison available was whether
they were the same or not. Second, only the highest-level reference value was known since
this was given in the task instruction (e.g. to see the trumpet rotated). Reference val-
ues on lower-level layers (e.g. to see the grapes) changed as the subjects set the right or
wrong ones in an attempt to send the higher-level user messages. Still, in this experimental
set-up, the subjects continued with sending messages as long as the high-level reference
and the perceived values were not similar (Figure 2.9). The number of messages indicated
the number of times the subjects went through a cycle of the control loop, which can be
regarded as the amount of effort the subjects had to spend to change the perceived value
into the reference value. Although sending a user message always took some effort, not
all user messages resulted in an I-feedback message; for example, the system would not
sent I-feedback after a click on a musical instrument. Therefore, analysing the user mes-
sages instead of I-feedback seemed a more effective approach to studying the user effort
invested in the control. Analysing the users’ effort through the E-feedback messages was
expected to give little insight since E-feedback was not the object of control, but merely
guided the subjects in controlling it. An extra differentiation of the user messages per
[-feedback, a kind of stimulus-response combination, was considered too detailed in this
experiment since subjects were expected to understand the difference states of a component
(I-feedback) equally well.

Start task

Refi
eference value Task

finished

Perceived value True

False

Send user
message

Figure 2.9: Process of the task execution within the experimental set-up.

The user messages led to one overall measure, three lower-level measures and three higher-
level measures. The overall measure was the number of times the subjects clicked on a
symbol. The three lower-level measures made a selection in the symbols clicked on. The
three lower-level measures were the number of times the subjects click on the bike, the
aeroplane, or on another symbol, respectively. The expectation was that effects for the

26

different instruction sets would be found in the corresponding lower-level measures (Figure
2.10). An effect for the Selector knowledge was expected to be found in the number of
clicks on the bike and the other symbols because this knowledge concerned the control
of the Select component and the rule about a clickable symbol. An effect for the Map
knowledge was expected to be found in the number of clicks on both the bike and the
aeroplane symbols because this knowledge concerned the selection of musical instruments.
If this knowledge was missing, subjects had to click on both these symbols to obtain this
knowledge by trail and error. Finally, an effect for the Rotator knowledge was expected to
be found in the number of clicks on the aeroplane symbol because this knowledge concerned
the triggering of a rotation.

Knowledge provided Symbols clicked on
or withheld

Effect expected

Aeroplane

-

Selector @@=/ — — — —

Figure 2.10: The effects expected for Rotator, Map and Selector knowledge in the three
lower-level measures. A click on the aeroplane symbol would trigger a rotation. A click
on the bike symbol would result in the selection of another musical instrument. A click on
the other symbols (musical instrument and fruit) caused no system-state transition.

The three higher-level measures were the three Rotate [object] messages passed on by the
Decoder to the Core of the Rotate component. The Decoder combined the aeroplane button
pressed and the selected object message into this higher-level message. The three higher-
level messages were the number of Rotate [target], Rotate [target-1] and Rotate [target-2]
messages corresponding to the different states of the Select component (Figure 2.5). The
‘target’ was interpreted as the musical instrument the subjects were supposed to rotate,
‘target-1" as the musical instrument selected before the target, and ‘target-2’ as the musical
instrument that was selected before target-1 (or after the target). The expectation was
that only effects for the Map and Rotator knowledge would be found in these measures.

Another potential measure of the subjects’ control on the component was the time between
two user messages. The initial expectation was that this time could be attributed to
evaluation of the E- and I-feedback. However, this measure suffered from pre-selection
because the user messages preceding or succeeding the user messages of interest was also

27

exposed to the effect of the subjects training. This made it impossible to explain the
effects found solely in terms of the user messages of interest. Therefore, reports about this
measure are not given in the result section.

2.2.5 Procedure

Eighty students (54 male and 26 female) between 17 and 27 years old of the Eindhoven
University of Technology participated in the experiment, for which they received NLG
15 (€ 6.81). In the experiment, the subjects went through the following five phases:
welcome phase, training phase, pre-experimental test phase, task execution phase and
post-experimental test phase. In the welcome phase, the subjects were brought into a
test room of a usability laboratory. Here the test procedure was explained to them. In
the training phase, the application showed the six action-reaction examples, which the
subjects had to learn by heart. After completing the training, the subjects were tested
for their knowledge of predicting the fictitious user interface reaction to an action. In the
task execution phase, the subjects performed three rotation tasks in succession as quickly
as possible. In a rotation task, the subjects had to operate a working version of the
fictitious user interface. In each task, the subjects had to rotate a specific symbol. The
three rotation tasks, each aimed at rotating a different musical instrument symbol. Before
the subjects carried out the task, the system was reset to the same system state assuring
that everyone had the same starting-point to begin with. To study the learnability (or
experience), the subjects had to perform the rotation task nine times divided over three
sessions. However, to prevent the subjects from establishing fixed action sequences without
evaluating the I-feedback, the initial state of the fictitious user interface was different in
each session. Between these sessions, the subjects performed a filler task; they operated
a simulation program of an aquarium (Freudenthal, 1998; Vollmeyer, Burns, & Holyoak,
1996) for three minutes between the sessions. Here their task was to establish a specific
population of sea animals by manipulation of environmental parameters. In the following
phase, the post-experimental test phase, the subjects again were asked to complete eight
after images, as they had done in the pre-experimental test phase.

2.3 Results

2.3.1 Control tests

Before the effects on the depended variable control were analysed, two analyses were con-
ducted to confirm assumptions about the difficulty of the different instruction sets and
about the effect experience had on the intermediate variable knowledge.

28

Table 2.3: Mean subject variables and global performance data.

Training
Instr. Help Over all rotation tasks
set Age Male Female Tests Time® 20<® 40<¢ Help? Time® Clicks
I 21 5)) 2.9 22 4 0 4 6:03 166
II 23 5) 5) 3.9 28 6 2 1 4:23 102
I1I 20 9 1 3.1 29 7 1 2 3:54 87
1AY 23 7 3 3.5 31 8 1 3 4:22 66
A% 21 7 3 2.8 23 5 0 1 3:53 112
VI 23 6 4 3.6 29 7 1 1 4:11 92
VII 22 8 2 4.3 29 8 1 0 3:40 64
VIII 23 7 3 3.4 27 8 0 1 3:01 42

®Time in minutes. °Number of subjects that received an oral explanation of the instruction when
a subject was not able to complete the training after 20 minutes. “Number of subjects that received
assistance in studying the examples when a subject was not able to complete the training after 40
minutes. “Number of subjects that requested and received an oral explanation of the instruction

on the rotation task. ¢Time in minutes : seconds.

Difficulty training

Table 2.3 shows the general results of the experiment. The assumption was that the
different instruction sets were equally difficult to learn. If this was not the case, effects
found in the control could also be explained as fatigue or motivational effect. However,
Kruskal-Wallis tests on the number of times help was given, both after 20 minutes (x? =
7.01, df = T7; p. = 0.483) and 40 minutes (x? = 4.98, df = 7; p. = 0.907) did not reveal
a significant effect for the instruction set. Therefore, it seems that none of the instruction
sets was more difficult than the other ones to learn.

Knowledge gain by experience

The knowledge was measured to study whether it improved after the subjects performed the
rotation tasks, which confirmed the expected effect of the independent variable experience
on the intermediate variable knowledge (Figure 2.7). A doubly multivariate analysis of
variance (doubly MANOVA) was conducted on the errors made in the knowledge tests on
the system response of a click on the following symbols: the bike symbol, the aeroplane
symbol, a fruit symbol, and a musical instrument symbol. The within-subjects variable
was the Moment (2) of the test —before or after the task execution phase. The analysis
found an effect for the Moment (F'(4,76) = 7.60; p. < 0.001). Univariate analyses also

29

found this effect in the number of errors made in prediction of a click on the bike symbol
(F(1,79) = 7.82; p. = 0.006), the aeroplane symbol (F(1,79) = 7.09; p. = 0.009), a fruit
symbol (F'(1,79) = 24.42; p. < 0.001), and a musical instrument (F(1,79) = 22.11; p. <
0.001).

musical | O pre-test

instrument [] @ post-test

fruit

aeroplane
(rotate) [

bike (next)

Response to a click on

Number of errors

Figure 2.11: Number of errors made in the prediction of the system response on a click
on a specific symbol. Maximum number of error a subject could make for the click on a
symbol was 4 (2 x (1 rotation and 1 displacement error)).

The subjects made better predictions after they performed the rotation tasks than before
(Figure 2.11) for all the system responses. This finding indicates that the subjects’ knowl-
edge of the components increased when the subjects interacted with them. Therefore,
possible monotonous change over the three sessions in the dependent variable control was
more likely caused by the increase of knowledge and was less likely solely caused by another
factor such as the motivation to explore the user interface.

2.3.2 Overall performance

The overall measures were analysed to confirm the assumption that the subjects’ foreknowl-
edge would be reflected in the overall performance. A doubly MANOVA was conducted on
the session time and the number of clicks on a symbol in a session. Withholding or pro-
viding the following parts of knowledge were taken as between-subjects variables: Selector
(2), Map (2), and Rotator (2). The only within-subject variable used in the analyses was
Session (3). The analyses found main effects for Selector (F'(2,71) = 4.76; p. = 0.011),
Map (F(2,71) = 10.97; p. < 0.001) and Session (F'(4,69) = 32.09; p. < 0.001). These find-
ings show that the subjects’ knowledge affected the way they interacted with the system.
More specific analyses on the average session time combined with inspection of the means
(Figure 2.12) revealed that less time was spent when the subjects received relevant Map
(F(1,72) = 4.88; p. = 0.030) and Rotator (F(1,72) = 6.04; p. = 0.016) knowledge than
when the subjects received irrelevant knowledge in the training. Furthermore, analyses

30

240 O withheld

é [provided
e}
& 180
(2]
£
g 120 -
= T T
. T B R
1]
Jog
(%}
0
Selector Map Rotator
Knowledge

Figure 2.12: Time spent on average in a session with a 95% confidence interval.

on the averaged number of clicks combined with inspection of the means (Figure 2.14)
revealed that the subjects made fewer clicks when they received relevant Selector (F(1,72)
= 6.52; p. = 0.013), Map (F(1,72) = 18.19; p. < 0.001) and Rotator (F'(1,72) = 4.92; p.
= 0.030) knowledge, than when they received irrelevant knowledge. This means that the
overall performance increased when the subjects could apply their knowledge.

The results of the prediction tests showed that the subjects’ knowledge of the user interface
increased after they performed the rotate task. Analysis of the performance over the
sessions would give insight if this growth in knowledge coincided with more efficient task
execution. Helmert Contrasts on the session time (F(1,72) = 125.48; p. < 0.001) and on
the number of clicks (F'(1,72) = 76.19; p. < 0.001) combined with inspection of the means
(Figure 2.13 & 2.15) revealed that on average the subjects spent more time and made more
clicks in the first session than in the later sessions. This effect seems to be a learning effect.
However, the initial state of the system was different in the three sessions. Therefore, in
theory, the effect found between the sessions can also be interpreted as an artefact caused
by different initial states instead of solely being a learning effect.

2.3.3 Control on the lower-level layer

The clicks on the different symbols presented the user messages on the lowest-level layer
in the structure of the fictitious user interface (Figure 2.6). Analyses of the number of
clicks on the various symbols should show if they were differently affected by the subjects’
knowledge of the different components, or in other words were affected by the usability of
the components. Therefore, a doubly MANOVA was conducted on the number of clicks
made on the following symbols: the bike, the aeroplane, the other symbols (fruit and
musical instruments). Selector (2), Map (2), and Rotator (2) knowledge were again the
between-subject variables and Session (3) the within-subject variable. The analysis found
the following main effects: Selector (F'(3,70) = 4.36; p. = 0.007), Map (F'(3,70) = 8.94; p. <

31

240 ~

»
°
[
3
& 180 1
»
£
© |
£ 120
&
g 60 1 % -
o} +
w

0

1 2 3

Session

Figure 2.13: Time spent on average in each session with a 95% confidence interval.

5 80 - O withheld
F [provided
[0]
@ 60
@
=
2 40 T
&) T T T
& I I I
5 20 I
Qo
§
Z 0
Selector Map Rotator

Knowledge

Figure 2.14: Average number of clicks made on a symbol with a 95% confidence interval.

@
o
|

[«2]
o
I

Number of clicks in a session
N B
o o
‘ ‘

o

1 2 3
Session

Figure 2.15: Average number of clicks made on a symbol in each session with a 95%
confidence interval.

32

S 35 - O withheld
% 30 - O provided
© 25

£

o 20

S

5 15

S 10

8 5

§ 0 T T T T T T T T 1

bike aeroplane others bike aeroplane others bike aeroplane others
Selector Map Rotator

Symbols clicked on

Figure 2.16: Average number of clicks in a session made on a bike, an aeroplane or another
symbol with a 95% confidence interval.

0.001) and Session (F'(6,67) = 14.08; p. < 0.001). The findings of this multivariate analysis
are identical to those of the analysis of the overall performance measures. Therefore, more
specific analyses were done on the number of clicks on each symbol averaged over the
sessions combined with inspection of the means (Figure 2.16). The univariate analyses
found no significant effect (F'(1,72) = 0.41; p. = 0.527) for the Selector knowledge in the
number of aeroplane clicks. However, it turned out that the subjects who received Selector
knowledge in the training less often clicked on a bike (F'(1,72) = 11.17; p. = 0.001) or on
the other symbols (F'(1,72) = 6.06; p. = 0.016) than the subjects who did not receive this
knowledge. Furthermore, the subjects who received the Map knowledge less often clicked
on the bike (F(1,72) = 9.29; p. = 0.003), on the aeroplane (F'(1,72) = 25.83; p. < 0.001)
or on the other (F(1,72) = 12.08; p. = 0.001) symbols, than the subjects that had not
received this knowledge. Finally, the subjects who received the Rotator knowledge less
often clicked on the bike (F(1,72) = 5.97; p. = 0.017) and on the other (F(1,72) = 4.10;
p. = 0.047) symbols, than the subjects that did not receive this knowledge.

The results of the multivariate analysis on the number of clicks on the various symbols
showed an effect for the sessions. This effect was also found in the univariate analyses of
symbols clicked on. Helmert Contrasts on Session combined with inspection of the means
(Figure 2.17) revealed that more clicks were made on the bike (F(1,72) = 67.63; p. <
0.001), the aeroplane (F(1,72) = 48.90; p. < 0.001) and the other (F'(1,72) = 60.50; p. <
0.001) symbols in the first session than the later sessions. Again, it seems that an increase
in knowledge reduced the number of clicks on all symbols.

33

s 35 —e— Bike
% 30 4 - -4 - Aeroplane
: 25 1 R —-m—- Others
<
n 20 7 s
S
5 15 1
© 10 A
2
£ 57
p=]
Z 0
1 2 3
Sessions

Figure 2.17: Number of clicks made on a bike, an aeroplane or other symbols in each
session with a 95% confidence interval.

2.3.4 Control on the higher-level layer

Instead of the number of clicks on the aeroplane symbol, the translated message, ‘Rotate
[objects]’, passed on by the Decoder to the Core of the Rotate component was analysed.
The number of Rotate [target], Rotate [target-1] and Rotate [target-2] messages served as
dependent variables in a doubly MANOVA. Once again, the between-subjects variables
were Selector (2), Map (2), and Rotator (2) and the within-subjects variable was Session
(3). The analysis found main effects for Map (F'(3,70) = 10.49; p. < 0.001) and Session
(F(6,67) = 11.86; p. < 0.001). These results agree with the previous observation that the
knowledge related to the lower-level component did not affect the messages sent to the
higher-level component, since no effect was found for the Selector knowledge (F(3,70) =
0.35; p. = 0.79). Again, the Map knowledge with its intermediate nature also affected the
number of higher-level messages.

As was done with the analyses of lower-level messages, univariate analyses on the number
of specific Rotate [object] messages averaged over the sessions combined with inspection
of the means (Figure 2.18) were performed to study the effects on the specific Rotate
[object] messages. The subjects who received the Map knowledge sent fewer Rotate [target]
(F(1,72) = 9.31; p. = 0.003), Rotate [target-1] (F(1,72) = 23.66; p. < 0.001), and Rotate
[target-2] (F'(1,72) = 10.98; p. = 0.001) messages than those that did not receive this
knowledge. Furthermore, the subjects who received the Rotator knowledge sent fewer
(F(1,72) = 4.10; p. = 0.047) Rotate [target-1] messages than those who did not receive
this knowledge. This latter effect indicates the usefulness of the analyses of the higher-level
messages since no effect for the Rotator knowledge was found in the analyses of the number
of click on the aeroplane symbol.

The extension of the subjects’ knowledge over the sessions was also found in the higher-
level messages. Helmert Contrasts on Session combined with inspection of the means

34

8 - @ withheld
Oprovided

HH
HH

Number of rotate messages
in a session
N
|

0 T T T T T T T T 1
target target-1 target-2 target target-1 target-2 target target-1 target-2

Selector Map Rotator

Rotate objects

Figure 2.18: Number of rotate messages on average in a session made to rotate the target
instrument, an instrument selected before the target (target-1), or the instrument selected
even before that (target-2) with a 95% confidence interval.

(Figure 2.19) revealed that more Rotate [target] (F'(1,72) = 6.33; p. = 0.014), Rotate
[target-1] (F'(1,72) = 22.29; p. < 0.001), and Rotate [target-2] (F'(1,72) = 5.23; p. < 0.001)
messages were sent in the first session than in the later ones, and that more Rotate [target-
2] messages were sent in the second session than in the third session (F(1,72) = 9.62; p.
= 0.003). Furthermore, in the number of Rotate [target] messages, a variation in the first
session and the later sessions was found for a two-way interaction effect between Session
and Map (F(1,72) = 5.23; p. = 0.025). Inspection of the means showed that between the
first and later sessions the decline in the number of these messages was greater for the
subjects who did not receive the Map knowledge compared to those that received it. The
latter group of subjects already made almost no extra Rotate [target] messages after they
rotated the required musical instrument.

2.4 Discussion

The results clearly show the expected effect on control by the knowledge that was obtained
in the training by the subjects. The results of the analysis on their knowledge before and
after the rotation tasks also make it likely that the knowledge gained by the experience
of performing these tasks had a positive effect on the subjects’ control. The analyses
found no significant interaction effect for knowledge combinations on the control of the
components. This means that in some cases the usability of components do not effect each
other, which gives some justification for LPT’s claim on the independence of components.

35

c
.; 8 -
3 —e—target
% — —— —target-1
(2} 6 4
3 b ---m- - - target-2
ES RN
—_ ~
L a9 i REN
T4 N _
ed =t
8 2 .".7.?.7:.._,%
)
o
IS
Z o0
1 2 3

Sessions

Figure 2.19: Number of rotate messages in each session made to rotate the target instru-
ment, an instrument selected before the target (target-1), or the instrument selected even
before that instrument (target-2) with a 95% confidence interval.

The expectations about the component-specific control did not seem completely correct.

A plain one-to-one relation between a component’s usability and a component-specific
measure is a useful property for locating usability problems, especially in a usability test
were only one version of a user interface is examined. The measure would directly reflect
the usability of a component. However, the results show one-to-many relations between the
subjects’ knowledge and the effect found in symbols clicked on (Figure 2.20). Variations in
the number of clicks on a specific symbol could not solely be linked with the variation in
a particular part of the knowledge, as was more or less expected (Figure 2.10). Still, some
kind of pattern seems to emerge. The Selector knowledge did not affect the clicks on the
aeroplane symbol. Since a click on the aeroplane symbol changed the state of the Rotate
component, it seems that knowledge of lower-level component did not affect the messages
sent to higher-level components. However, the opposite can not be said for the effect that
the knowledge about the higher-level component had on the messages directed to the lower-
level component. After all, an effect for the Rotation and the Map knowledge was found
in the number of clicks on the bike symbol. A click on the bike symbol changed the state
of the Select component, which related the bike symbol to this lower-level component. To
explore the higher-level interaction, the subjects probably had to make more clicks on the
bike to understand how this would affect the Rotate component indirectly.

At first, the Map knowledge seems to be more related to the higher-level component than
the Rotator knowledge, because only a significant effect for the Map knowledge was found in
the number of clicks on the aeroplane symbol. The subjects who could not draw the relation
between the pieces of fruit and the musical instruments probably needed more exploration
to understand how to rotate the target musical instrument, whereas the subjects without
the Rotator knowledge only searched for the symbol that triggered a rotation. This explains
the significant effects found in the number of clicks on a bike or other symbols and the lack

36

Knowledge provided Symbols clicked on
or withheld

Effect found in

Rotator Aeroplane

Selector @=f — — — — Others

Figure 2.20: Significant main effects found for Rotator, Map and Selector knowledge in the
three lower-level measures. A click on aeroplane symbol would trigger a rotation. A click
on the bike symbol would result in the selection of another musical instrument. A click on
the other symbols (musical instrument and fruit) caused no system state transition.

of a significant effect for the Rotator knowledge on the number of clicks on the aeroplane
symbol. Clicking the aeroplane symbol would probably end the search almost directly,
which could explain the limited systematic variation for the Rotator knowledge. The
analysis of high-level rotate messages revealed the effect of the Rotator knowledge on
the Rotate component. The higher-level analysis divided the variation in the number of
aeroplane clicks across the three measures, probably reducing the unexplained part of the
variation and allowing the variation for Rotator knowledge to be more noticeable.

The Map knowledge cannot be solely allocated to the Rotate or to the Select component.
Instead, it demarcated the border between these two components, in which a piece of fruit
transformed from a symbol that can be changed into a symbol that refers to a musical
instrument. Because this knowledge had a clear impact on the control, a place in the
compositional structure of the user interface should be considered.

2.5 Conclusions

One of the main conclusions that can be drawn from this explorative experiment is that
the number of messages a component receives is a potential objective component-specific
control measure. The results show that the subjects’ knowledge of a component directly
affected the number of user messages the component received. The measure reflects the
users’ effort to control their perception of a component. However, the experiment also
showed that this is not a plain one-to-one measure, since an effect for the subjects’ knowl-
edge of the higher-level component was found in the number of lower-level messages. Still,

37

this measure is potentially useful when it can signal usability differences earlier than overall
performance measures do.

Another reason for conducting the experiment was to see whether the Decoder-Core-Coders
arrangement provides an adequate way of describing the interaction and the user interface
architecture. It seems too extensive when only the number of user messages is studied.
Instead of specifying all elements of a component and their mutual message exchange, the
message exchange between the components would be sufficient to understand the compo-
sitional structure. Furthermore, the compositional structure should be presented with a
method that is more common in the design field, so more designers could make use of
the achieved knowledge. The unified modeling language (UML) (Booch, Rumbaugh, &
Jacobson, 1999) might be a good candidate as already suggested by Paterno (2000).

No interaction effect was found between the different knowledge parts, which supports the
claim of LPT that components do not affect each other’s usability. However, it should not
be concluded that this never can be the case. The experiment was not set up to push the
components’ dependencies to the limit by introducing very plausible combining factors.
Further research is needed to understand the independence of a component.

The research described in the following chapters aims to confirm to what extent the control
measure is component specific. In an attempt to generalise this measure into a usability
measure, other usability factors besides foreknowledge are studied. Consequently, a more
realistic user interface is considered to ensure the validity of the measure. This also makes
it possible to search for other component-specific measures next to this objective one, such
as perceived ease of use or the satisfaction.

38

Chapter 3

Usability testing in a
component-based environment

3.1 Introduction

After implementing a prototype, software engineers need a usability test to answer two
questions: are changes required in the user interface, and if so, what exactly should be
changed? The first question can be answered by the currently available usability measures.
These are overall measures since they measure the usability of the entire user interface.
The second question is a much harder one. Evaluators can estimate the task duration or
the number of keystrokes, but have to make an educated guess about the troubling part
of the user interface. Several authors (Taylor, 1988a, 1988b; Haakma, 1998; Hilbert &
Redmiles, 2000) have proposed the Layered Protocol Theory (LPT) as a candidate for
analysing user behaviour to assess the usability of individual parts of a user interface.
Usability measuring per protocol is expected to be even more effective in finding usability
difference between two protocol variants than overall measures (Haakma, 1998). Measuring
usability at various interaction layers is feasible because LPT treats protocols as user
interfaces in their own right. To reduce the amount of work and to increase the reliability
of usability measurements, Haakma suggests employing automatic procedures to determine
the performance-oriented aspects of usability on the basis of usage logs.

3.1.1 Objectives evaluation method

The main objective of the usability evaluation method described in this chapter is to
create a testing framework in which user interface components can be evaluated for their
usability. The testing framework can be used in the following two situations: in cases where
multiple versions of one component are compared, or in cases where entire user interfaces
are evaluated. In the first situation, the benefit of the evaluation method lies in its potential
power in finding usability differences. In the second situation, the benefit lies in its ability

39

to evaluate the usability of the components individually, something overall measures can
not offer in this situation. Another aim of the method is to provide a reliable usability
evaluation. Therefore, the method includes a description of how to analyse the components
systematically. For its validity, the method appeals to its underlying theoretical principles
of LPT and Perceptual Control Theory (PCT).

3.1.2 Overview of the evaluation method

A testing framework is proposed in this chapter for component-based usability testing.
As a starting point, the framework takes the elementary components of user interfaces
on which behavioural-based evaluation is possible, and defines their places in the control
hierarchy based on the required mediation of other components to interact with users.

The testing framework supports two testing paradigms, the single version and the multiple
versions testing paradigm. In the single version testing paradigm, only one version of each
component is tested. The focus is to identify components that may hamper the overall
usability of the user interface. In the multiple versions testing paradigm, different versions
of components are compared with each other. The question in this case is which version
has the highest usability.

The testing framework includes component-specific perceived ease-of-use, satisfaction, and
performance measures. The component-specific perceived ease-of-use and satisfaction mea-
sures are obtained through a standard questionnaire. These component-specific measures
are expected to be more powerful because the specific questions can assist users in the
recall of their control experience of individual components.

The number of messages a component receives is proposed as the component-specific perfor-
mance measure, which reflects the users’ effort to control their perception of a component.
In the multiple versions testing paradigm, the power of this component-specific measure
comes from the reduction in statistical variance by limiting its focus to one control loop,
and consequently, lock out the variance caused by the users’ effort to control other com-
ponents. For the single version testing paradigm, the number of messages a component
receives is set against the performance of an ideal user and is corrected for control effects
of lower and higher-level components. The measure allows evaluators to order the com-
ponents according to their usability improvement potential. However, when it comes to
applying this measure, it is presumed that components only receive messages that were
sent with the intent to control the components. The Standardised Reception Coefficient is
introduced to help evaluators check whether messages were sent unintentionally as a side
effect of lower-level control loops.

3.1.3 Overview chapter

The following section gives a formalisation of LPT for a component-based environment.
The formalisation provides a frame in which the evaluation method can operate. The ar-

40

chitectural elements of a user interface are presented, and the effects control loops may
have upon each other are further examined. After this, the evaluation method is de-
scribed in more detail. The description starts with the test procedure and moves on to the
component-specific measures. First, the objective performance measures and then subjec-
tive measures are discussed. The objective measures for the two paradigms are discussed
separately. The chapter ends with comparing the method with other evaluation methods.

3.2 Formalisating LPT

3.2.1 Architecture

The following three sections introduce the concepts: interaction components, layers, and
routers. With these concepts user interface architectures can be described.

Interaction component

Interaction components define the elementary units of user interfaces, on which behaviour-
based evaluation is possible. An interaction component is a unit within a device that
directly or indirectly receives signals from the user. These signals enable the user to change
the physical state of the interaction component. Furthermore, the user must be able to
perceive or to infer the state of the interaction component. Therefore, an interaction
component should provide I-feedback. Without the possibility of perceiving the state,
users cannot separate the component from the whole system and are not able to control it.
Without the ability to control their perception, users’ behaviour is pointless. E-feedback,
although often essential for easy control, is not required for behaviour-based evaluation.

The idea of a physical state agrees with the notion that interaction components are the
instantiation of functional definitions (Holyer, 1992; Kobryn, 2000). An interaction com-
ponent is not a concept or an abstract description in someone’s mind of how a system
operates; it is a physical entity in the world. It may be very prominent like mechanical
parts in a device, or it may be present in the background like an electric charge inside
a chip. Furthermore, its state should be controllable. A minute label of an alarm clock
is not an interaction component on its own because users cannot change it (Figure 3.1).
A behaviour-based assessment of the quality of this label can only be made as part of
an interaction component responsible for the minute digits, whose state users can con-
trol. From this point onwards, the graphical representation of Unified Modified Languages
(UML) (Booch et al., 1999) for a component is used to represent interaction components
(Figure 3.2).

41

jat
. IC
L.
() ()«)«)
Mode Hour Minute On/Off

Figure 3.1: The front of an alarm clock, in which the alarm time is visible and the alarm
is deactivated.

Layers

The points where input and output of different interaction components are connected
demarcate the border between layers. An interaction component operates on a higher-level
layer than another interaction component, when the higher-level interaction component
receives its user’s messages from the other interaction component. With the definition of
interaction components and layers it is possible to describe the architecture of a regular
alarm clock (Figure 3.1) to illustrate these concepts. With this alarm clock, users can set
the alarm time by setting the clock in the right mode, changing the hours and minutes
digits, and finally activating the alarm. Figure 3.2 shows the interaction components
involved. The Hour and Minute interaction components are located on the lowest-level
layer, where they manage the state of the hour and minute digits. The Mode interaction
component is placed on the middle-level layer. The component is responsible for the mode
of the alarm clock, and consequently whether the current or the alarm time is visible
or set. To indicate that the alarm time is displayed, a small icon of a bell is shown
in the top-left corner of the display (Figure 3.1). The Alarm Time and Current Time
interaction components, which keep the corresponding times, make up the top-level layer
in the architecture. The Alarm Time interaction component shows a small icon in the
top-right corner of the display (Figure 3.1) to indicate whether the alarm is activated or
not.

Router

Another element in the architecture of user interfaces is the Router. Routers are binding
elements that direct the communication flow between interaction components, and do not
have to have an own state. The connection between lower and higher-levels interaction
components can either be direct, as shown in Figure 3.3A, or indirect, as shown in Figure
3.3B. The in-between component in Figure 3.3B is a Router. This component’s only
function may be merging of the messages of the two lower-level interaction components into
a message for the high-level interaction component. Routers can transform (or redirect)

42

Control Alarm
Wake-up time
time

Set alarm Alarm
time Setting
Alarm time %
set alarm
Control Control
alarm time alarm
activation
A
Selected Alarm time
Mode
Select set ? ?
Mode
Control
mode Mode
A

|
Hours

Set Minutes Set Hours set Set
minutes set hours set hours

i M
Control Control Press > On/off button
minates hours Clock/bell symbol g Hours % Minutes
A Press | Mode button
Hour digits f

Press | Hour button
Ll

Current
time

Setalarm
time

Minutes
set

On/off symbol

Minute button

| Minute digits
<

User Alarm clock

Figure 3.2: Layered interaction structure between a user and an alarm clock, when setting
the alarm time. The Expectation feedback is left out.

output messages from different interaction components into input messages towards other
interaction components. Although they are not required to have their own physical state,
they may copy and store the state of other components to transform input messages or to
direct output messages. A router can be both a multiplexer and a diviplexer (Taylor &
Waugh, 2000).

Users are unaware where the merger or splitting of messages exactly takes place in the
architecture. Consider the alarm clock once again with its Minute and Mode interaction
component. Whether a press on the minute button should result in a message to set the
current time or the alarm time one minute later will be determined when the information
from these interaction components comes together. For all the users know, they come
together inside the higher-level interaction component itself (Figure 3.3A) or inside one of
the lower-level interaction components (Figures 3.3C and 3.3D) that receives the output
of the other lower-level interaction component. Note that the architecture in Figure 3.3C
and 3.3D even has an extra layer. Only the software engineer knows which component
is really responsible for the merger; the architecture does not enforce a specific location.

43

Current Alarm Current Alarm Current Alarm
time time time time time time

%# v *# v v v

Router Minutes Mode

Current Alarm
time time

A

Mode Minutes % Mode % Minutes % Mode Minutes

vbob v v & v é v oo
A B C D

Figure 3.3: Various ways in which the higher-level interaction components can be connected
with lower-level interaction components.

Although users may not control the router, the coupling knowledge helps users to control
their perception of a higher-level interaction component. When deciding whether or not to
press the minute button of the alarm clock, it helps to know that the alarm time currently
displayed will change and not the current time. Therefore, by specifying these couplings
the factors become more clear that influence the user’s ability to control their perception.

3.2.2 Control effects

There are basically two ways in which the user interface architecture itself can cause the
number of messages received by an interaction component to be affected by another inter-
action component. An interaction component can affect lower and higher-level interaction
components by requesting more low-level messages or sending more messages upwards than
required. The first is defined as inefficiency, the second as ineffectiveness.

Efficiency

An efficiency improvement would only have an effect on the interaction component itself
and its lower-level interaction components because the same number of messages would be
sent to higher-level interaction components. Figure 3.4 shows this situation. Interaction
component X has an efficiency problem. As a result, more low-level messages are requested.
To make this higher-level effect more concrete, take for example the situation where users
want to hear the alarm of the alarm clock; but, when they set the alarm time to go off the
next minute, they forget to activate the alarm. Once the new minute comes and the alarm
clock remains silent, users may realise that they also have to activate the alarm. They set
the alarm clock for the following minute and activate the alarm this time. Because of the
inefficiency problems with controlling the higher-level Alarm Time interaction component,

44

o o
[| l |

: =R
g Qg y iy
- =2 |2 |=z |=2 |85

Figure 3.4: The lower-level interaction components of interaction component X will receive
fewer messages after an efficiency improvement of interaction component X.

the users also had to interact with the lower-level Minute interaction component more
times.

Effectiveness

A problem in an interaction component may also unintentionally increase the number of
messages sent upwards. Variation in the number of messages unintentionally sent upwards
is defined as variation in effectiveness. Take for example the case where users would
misunderstand the bell icon in the alarm clock, and set the current and alarm time in
exactly the opposite way to that intended. Once they recognise the error, they have to
reset both the current and alarm times. The Mode interaction component, which manages
the mode state, operates ineffectively because more messages need to be sent upwards to
both higher-level interaction components than would be required if the users had not mixed
up the modes of the alarm clock. Effectiveness problems could trigger more messages to
undo the effect of the initial message sent upwards. These recovery messages might even
come from other lower-level interaction components than the interaction component that
created the problem in the first place. Figure 3.5 illustrates how a usability problem of
the interaction component X can spread through the system. Interaction components that
have a common higher-level interaction with interaction component X can be faced with
the ineffectiveness of interaction component X.

45

—O—]

o o
I

[e
=== ==

= = |z

Figure 3.5: Higher-level interaction component (Y) is affected by ineffectiveness of interac-
tion component X, whereas interaction component Z is not. The dark arrows show which
interaction components will be affected.

3.3 Evaluation method

3.3.1 Test procedure

The test procedure of the evaluation method roughly corresponds to the normal procedure
of a usability test. Subjects are observed while they perform a task with a system. In the
case of multiple versions testing paradigm, the subjects perform the same task but with
different versions of a system. The versions are created by applying different versions of the
interaction component in the system and keeping the rest of the system the same. A task
is finished once subjects attain a specific goal that would require them to alter the state of
the interaction component under investigation. In advance, subjects are instructed to act
as quickly as possible to accomplish the given goal. Before the test, a threshold time should
be determined after which the experimenter helps the subjects, otherwise they might end
up trying to solve a task endlessly. The threshold time might be based on the performance
of subjects in a pilot study. A threshold time can be the average task time plus three times
the standard deviation. This threshold is often used in statistical analyses to find outliers.
As subjects perform the task, messages sent to the various interaction components are
recorded in a log file. Once they reach the goal, the recording stops. After the subjects
perform the task, they fill out a questionnaire about the perceived ease-of-use and the
satisfaction.

The message exchange between the higher-level interaction components can also be ob-
tained afterwards, if the low-level events only are recorded. In that case, a conversion
process should construct the higher-level messages. An example can be found in the work

46

of Docampo Rama (2001). She applied a conversion tool to transform a log file that
consisted of only the button presses on a television remote-control prototype to a log file
with high-level description of the user’s executed actions. As the conversion tool read the
low-level action log, it simulated parts of the internal message exchange of the prototype
and logged this into a new log file.

3.3.2 Objective performance measure in the multiple versions
testing paradigm

Once the task is completed, the normal overall measures, such as task duration and total
number of keystrokes, can be calculated from the log file. In addition, the number of
messages received by an interaction component can be calculated, which is put forwards as
a component-specific performance measure within this paradigm. The explorative study
described in chapter 2 indicated that the interaction component version that received the
fewest messages is the most usable one. The number of messages indicates the users’
effort to control their perception of the interaction component, provided that the subjects
attained only one goal. Therefore, once they reached the goal, the measuring is stopped.
Otherwise, an increase in the number of messages can also indicate the users’ ability to
control their perception better as they achieve more goals (e. g. Neerinex & Greef, 1998).

Taking the analysis of the total number of keystrokes as a point of reference, the component-
specific performance measure is expected to increase the statistical power of the evaluation
method. Statistical power in this case is defined as the chance of finding a difference
provided there is a difference. The power of the measure is increased because the variance
in the data is reduced by looking only at the number of messages received by an interaction
component instead of the total number of keystrokes received by the whole user interface.
The additional variance, created as users try to control other interaction components, is
left out. This variance reduction can be apparent in the analysis of lower-level interaction
components, but this can apply to higher-level interaction components as well. A low-level
message does not always lead to a high-level message. Therefore, the effect of replacing a
high-level interaction component can be more obvious in the number of high-level messages
than in the number of keystrokes. The effect size might be too small to be discriminated
in an analysis of variance on the number of low-level messages.

Example

Consider a drawing application. In this application, users can change the typeface of texts
they have put in their drawing. After users select a text, they can use a Right Mouse
Button Menu (RMBM) to activate a property window from there. In the property window
the users can change the typeface. When software engineers are not sure how to present
the typeface in the property window, they can make two versions, and test them: one that
only states the name of the typeface, and another one that also gives an example text

47

of the typeface. The most usable version has the smallest number of messages received.
This variation is easier to notice than the variation in the total number of mouse-clicks
received by the whole application. The latter one fluctuates more because it is affected
by all other control problems in the user interface. Therefore, monitoring the number of
messages received by the property window is more effective in choosing the best version
than monitoring the low-level messages.

Limitations

The test assumed that the users have to spend the same amount of effort each time they
send a message on the level of the interaction component. When high-level interaction
components are tested, this assumption is reasonable between the two versions, because the
low-level interaction components are the same. However, when the lowest-level interaction
components are evaluated, more attention should be given to this point. Take for example
the evaluation of the sam text editor by Thomas (1998). He tried to compare the relative
command frequencies of the sam text editor to other systems reported in the literature. The
sam’s logging system recorded low-level mouse actions, like mouse clicks and positioning,
whereas the unix application reported in the literature recorded action on a higher-level
layer (e.g. sending command lines). He concluded that different things were measured,
and therefore that they were difficult to compare.

The total number of keystrokes could be more powerful than the component-specific mea-
sure when the usability variation of one interaction component influences the number of
messages received by another interaction component. This can be caused by three factors:
the user, the environment and the user interface architecture. Because of poor usability,
users can start misusing other parts of a device while keeping the number of messages sent
to the targeted interaction component the same. The cause is twofold, the E-feedback of
neither two interaction components triggers the proper user’s intention and actions. This
problem may be observed in the total number of keystrokes, while it is not seen in the
input of the interaction component itself.

Besides the user, the environment is a factor too. Users can use a device to change their
perception of the environment. The environment can for example be another person. Users
may try to send a text message to a person with their mobile telephone. Imagine that when
this person tries to understand the text message he or she runs into the problem that the
message is not interpretable because of many typing errors. Instead of sending back a text
message asking to repeat the message with the risk of again receiving a message with a
lot of typing errors, the receiver calls the user of the mobile telephone and asks him or her
to give the message verbally. The number of calls the user received is now related to the
usability of the interaction component responsible for making a character. The statistical
power of the keystrokes would in this example be greater than that of the number of
messages received by the troublesome interaction component.

Finally, an analysis of the number of keystrokes can sometimes better pick up ineffec-

48

tiveness problems than of the number of messages received by an interaction component,
because multiple interaction components can be involved as the problem spreads through
the system.

3.3.3 Objective performance measure in the single version test-
ing paradigm

In the single version testing paradigm, the performance of a (fictional) ideal user is com-
pared with that of subjects. On the assumption that lower-level layers have no effectiveness
problems and messages sent by an ideal user are also sent by real users, it is possible to es-
timate the performance of an interaction component in the single version testing paradigm.
The estimation only looks at performance of the interaction component as if the higher-
level interaction components operated optimally. This way the inefficiency of higher-level
interaction components is compensated for.

Valuable information for evaluators in the single version testing paradigm is related to
which interaction components should be changed to create the largest usability improve-
ment of the whole system, i. e. impact assessment and effort allocation (Hilbert & Redmiles,
2001). The impact an interaction component has on the overall performance can be esti-
mated by assigning an effort value to each message received. These effort values are based
on the effort value of the lowest-level messages that are linked to higher-level messages.
At the lowest-level layer, weight factors of an arbitrary unit are assigned to the messages,
which present the user effort value to send a single message. This can be a number for
each keystroke or for the time users need to make an elementary message. The users’
effort, to make these elementary actions, is regarded as similar throughout task execution.
By expressing all elementary messages in time, instead of keystrokes, analyses can even
compare messages from different input devices.

In the next section, an example is worked out to explain the performance evaluation in
detail. The referred formulas and predicates can be found in the appendix A on page 181.

Example

Description of the application and the task Imagine the drawing application again.
A circle and polygon are drawn; both the circle and polygon are white and have a black
outline. Now, the task is to change the circle’s colour into red and remove its black outline.
Table 3.1 shows the actions and the application response to perform this task optimal. If
users perform the task optimally, they first select the circle by clicking on it, then they open
the RMBM and choose the option Properties. The application comes up with a property
window, where the users select the red box in the Fill tab sheet (Figure 3.6). They also
check the No Line check box on the Outline tab sheet. Finally, the users click on the Ok
button of the property window and the circle changes accordingly. Figure 3.7 presents the

49

Generall Detail Fil |Dut|ine| Internetl EIIipseI

Color

(|
_ N il
ETT T ..
C ey 0))]
ENEEEEEN
EENENT .

o Dk

Figure 3.6: Property window for setting the fill colour of the selected circle to red. The
selection is made visible by a dashed outline of the object.

message exchange between the relevant interaction components of the drawing application
when the task is conducted in the optimal way.

In this example, (imaginary) recordings are also made of the behaviour of an (imaginary)
real user who has three problems: first, with selecting an object; second, with setting the
right properties; and third, with distinguishing a circle from a polygon. Table 3.2 shows
the real user’s actions. The real user selects objects with a selection window instead of
clicking on the objects themselves. Furthermore, the real user takes the polygon for a
circle, and consequently makes two selections. After the circle is selected, the real user
changes the borderline’s colour into red by mistake, instead of the circle area. Figure 3.8
shows the message exchange between the same interaction components as before, for the
real user.

Analysis of the example In the circle example of the drawing application, a value 1
is assigned to all Click messages (Figure 3.7 and 3.8). After effort values are assigned to
the lowest-level messages, the effort values are calculated for the messages sent upwards.
The effort value of a message sent upwards is, in principle, the sum of the effort values
of the messages received between this and the previous message sent upwards (Appendix,
Predicate A.11). Figure 3.7 gives the effort values for the messages sent upwards in the
case of the ideal user. Take for example the Call message sent upwards by the RMBM
at event 4. Two Click messages, each having an effort value 1, were received before this

50

Table 3.1: Actions and application responses of setting the fill colour of the circle to red
and removing its borderline in the case of optimal task execution.

User action Application response

click left on circle circle marked (dashed outline)

click right Right Mouse Button Menu open
click right on Properties option menu closed, property window open
click left on Fill tab Fill tab sheet visible

click left on colour red red box marked

click left on Outline tab outline tab sheet visible

click left on No Line check box No Line check box checked off

click left on Ok button circle red without borderline

Set object «circle fill colour red, no border> {8} o

1 message {8}

Visual
Drawing
Objects

Set «fill colour red, no border> {7} @

1 message {7}

T
=
2

Select <(100,100»> {1} @ Properties
1 message {1}
{7} é
Call o 20
1 message {2}
. Right Mouse
Selection Button Menu
Click <left on Fill tab> {1}
Click <left on colour red> {1}
Click <left on Outline tab> {1} e . .
Click <left No Line check box» {1} Click <right>)) (1}] ©
Click <left (100,100)> {1} 0 Click <left on Ok button> {1} Click <left on Properties option> {1}
1 message {1} 5 messages {5} 2 messages {2}

Figure 3.7: Part of drawing application’s architecture, with only relevant interaction com-
ponents and connections for the task of setting the properties in the case of optimal task
execution. Effort values are given within brackets. The numbers in the black circles give
the event sequence of the task execution.

o1

Table 3.2: Actions and application responses of setting the fill colour of the circle to red
and removing its borderline in the case of an observed task execution.

User action

Application response

click left below polygon with button kept down
button released on spot right above the polygon
click left below circle button kept down

button released on spot right above the circle

click right

click right on Properties option
click left on Outline tab

click left on colour red

click left on Ok button

click right

click right on Properties option
click left on Fill tab

click left on colour red

click left on Outline tab

click left on No Line check box
click left on Ok button

corner of selection window visible
polygon marked (dashed outline)
corner of selection window visible
circle marked (dashed outline)
Right Mouse Button Menu open
menu closed, property window open
outline tab sheet visible

red box marked

borderline circle red

Right Mouse Button Menu open
menu closed, property window open
Fill tab sheet visible

red box marked

outline tab sheet visible

No Line check box checked off
circle red without borderline

52

Select «(25,25)-(75,150)> {1,1}
Select «(75,25)-(150,150) {1,1}

{2,2

2 messages

Set object <circle border red> {7,%}
Set object «circle fill colour red, no border> {7,8}

{14,8}

2 messages

Visual
Drawing
Objects

Set <border red» {5,%}
Set «fill colour red, no border> {7,7}

{12,7}

2 messages

Properties

Selection

Click <left down (25,25)> {l,li] o
Click <left up (75,150)> {1,1
Click <left down (75,25)> {1,1])] 9
Click <left up (150,150)> {1,1

Call ¢ {2,2}
Call o {2,2}

2 messages {4,4}

4 messages

Click <left on Outline tab> {1,1} Right Mouse

Click <left on colour red>» {1,1}] 0 Button Menu

Click <left Ok button> {1,1}

Click <left on Fill tab> {1,1} .

Click <left on colour red> {1,1} Click <right>)) {1,1}] e

Click <left on Outline tab» {1,1}| @ Click <left on Properties option> {1,1}

Click<left No Line check box> {1,1} Click <right> .) {1:1}] ®

Click <left on Ok buttony {1,1} Click <left on Properties option> {1,1}
{4,4} 8 messages {8,8} 4 messages {4,4}

Figure 3.8: Part of drawing application’s architecture, with only relevant interaction com-
ponents and connections for the task of setting the properties in the case of an observed
task execution (real user). Effort values are given within brackets; the second value within

the brackets is the effort value according the conservative method. The

“*’ means that the

message is ignored in the conservative method, because the message’s effect is different
from that of messages with the same type sent in the case of optimal task execution. The
numbers in the black circles give the event sequence of the task execution.

93

Table 3.3: Number of messages sent upwards in both optimal and observed task executions,
followed by total effort values, user effort, and finally the extra user effort.

Sent upwards Total effort
Optimal Observed Optimal Observed User effort Extra
Selection 1 2 1 4 2 1
RMBM 1 2 2 4 2 0
Properties 1 2 7 12 6 -1
VBO 1 2 8 14 7 -1

message was sent (see event 3); therefore, an effort value of 2 is assigned to this message.
The calculation starts at the lowest-level layer and works its way upwards. This means that
first the effort value for the Selection and RMBM interaction components is calculated,
followed by the effort value for the messages sent upwards by the Properties and finally by
the Visual Drawing Objects (VDO) interaction component.

If messages are sent upwards through actual task execution (the real user), the inefficiency
of lower-levels is removed from the effort value. The effort values of the messages that
are also sent upwards in optimal task performance receive a similar effort value as if these
messages are sent upwards in optimal task performance (Predicate A.12). If another type
of message or a message with another effect is sent upwards compared to that in optimal
task performance, it will receive the sum of the effort values of messages received. However,
if this message is of the same type as messages sent upwards in optimal task performance,
it may not exceed the maximum optimal effort value of messages of this type. For example,
the Select messages, sent upwards by the Selector in Figure 3.8 at event 2 and 4, have an
effort value of 1 because the ideal user made a Select message that has the same effect with
only an effort value of 1.

The total effort for the control of an interaction component is the sum of the effort values
of the messages received (Equation A.13 and A.14) (third and fourth column of Table 3.3),
which, in the case of real users, is later on corrected for the inefficiencies of a higher-level
(Equation A.15). Without correction, the total effort still may include inefficient high-
level demands, which should not be charged to the interaction component. Therefore, the
analysis only looks at the number of messages sent upwards that are required to fulfil the
optimal request of higher-level layers. This corrected value is called the user effort and is
also given in Table 3.3. It is calculated by multiplying the number of messages the ideal
user sent upwards (first column) with the total effort in the case of the real user (fourth
column) divided by the number of messages the real user sent upwards (second column).
This correction assumes that the same number of messages have to be received to send a
message upwards again, which is the case when the state of the interaction component is
reset after a message is sent upwards. When an interaction component state is not reset

o4

after sending a message, it may in some cases still be possible to determine the optimal
user effort. At the moment the message is sent upwards, the interaction components may
determine how much effort an ideal user would make to create this message and record this
in the log. Additionally, it can take into account the interaction component state when
the previous message was sent upwards, or lower-level messages received that cancel each
other out.

The extra user effort is a measure of the effort difference when a real user or an ideal user
controls an interaction component. The extra user effort is the result of the subtraction
of the total effort made by the ideal user from the user effort made by the real user
(Equation A.16). Table 3.3 shows the extra user effort per interaction component. The
Selection interaction component is charged with 1 extra keystroke. Although the real user
made an inefficient selection two times, only the average extra user effort per selection is
taken into account because the repetition is attributed to inefficiency of higher-level layers.
The RMBM interaction component, with its optimal performance, is subsequently charged
with no extra user effort. The extra user effort of the other two interaction components
is dubious because of the ineffectiveness of the Properties interaction component. Setting
the borderline’s colour to red, instead of the area (event 8) causes both the Properties and
VDO interaction components to end up with a negative result. Therefore, interpretation
requires the assumption that lower-level layers perform effectively, i.e. messages are only
sent upwards to fulfil the demands of higher-level layers and not as a result of a usability
problem of the interaction component itself.

Finally, ordering the interaction components by their extra user effort creates the priority
list of the most effective improvements.

A more conservative analysis of the example The effort value of messages sent
upwards can also be calculated in a more conservative manner, which is less affected by
the ineffectiveness of lower-level layers. The idea with the conservative view is that only
the messages sent upwards that are regarded as correct input can be attributed to the effort
value of the higher-level interaction component. The lower-level interaction component is
responsible for the creation of ineffective messages, and the impact these messages have on
other higher-level interaction components should be limited as much as possible. Therefore,
a message sent upwards is removed when, in optimal task execution, all the messages of
this type have another effects on a higher-level interaction component than this message
has (Figure A.1).

Figure 3.8 also gives the conservative effort value of the real user in the circle example
of the drawing application (second value within the brackets). The Set message with the
content <border red> sent by the Properties interaction component is ignored (see event
8). This Set message has a different effect from the only Set message <fill colour red, no
border> sent by the ideal user. Consequently, the Set Object message <circle border colour
red> sent upward by the VDO is also ignored (event 9). Furthermore, the effort value of
the two selection messages received by the VDO is attributed to the Set Object message

95

Table 3.4: Number of messages sent upwards in both optimal and observed task executions,
followed by total effort values, user effort, and finally the extra user effort according to the
conservative method.

Sent upwards Total effort
Optimal Observed Optimal Observed User effort Extra
Selection 1 2 1 4 2 1
RMBM 1 2 2 4 2 0
Properties 1 1 7 12 12)
VDO 1 1 8 9 9 1

<circle fill red, no border>, which is later sent upwards at event 14. Although the sum
of the effort values of the four messages received is nine, a value of only eight is assigned
—the optimal effort value. The ignored messages are not counted either when it comes
to the observed number of messages sent upwards (Table 3.4, second column), which has
its impact on the user effort. The last column of Table 3.4 shows the extra user effort
calculated according to the conservative method. The results of the Selection and RMBM
interaction component are the same as before. Quite the opposite can be said of the results
of the other two interaction components. The Properties interaction component is charged
with five extra keystrokes; the five keystrokes an ideal user would need to set the border
colour of the circle to red. The VDO interaction component is charged with only one extra
keystroke; the one keystroke, an ideal user would need to select the polygon.

The conservative view has the advantage of being more robust or, put into other words, less
sensitive to lower-level ineffectiveness. However, if the lower-level interaction component
sends more correct messages upward than required, it still can disturb the indication of the
user effort. Furthermore, the conservative view has the drawback of ignoring messages sent
upward with other effects, which users may send to test how the higher-level interaction
component works. If this effort should be attributed, it should certainly be attributed to
the higher-level interaction component. Still, the conservative view regards these messages
as the result of a problem on a lower-level layer.

Limitations

The performance measure in the single version testing paradigm has at least the same lim-
itation as the performance measure has in the multiple versions testing paradigm. Factors
like the user and the environment can make relations between the interaction components
that can disturb the usability analysis. As illustrated in the worked out example, an inef-
fectively operating interaction component can also make it difficult to interpret the results
for the interaction component, but also for the interaction component one layer higher.

56

However, instead of performing the complete calculation of the extra user effort there is a
quick and much easier way to determine whether an interaction component may perform
ineffectively. The next section shows how this indicator works and its limitation.

Indicator for ineffectiveness The calculation of the indicator, called the Standardised
Reception Coefficient (SRC), basically is the same as the calculation of the extra user
effort, although without the weight factors assigned to each message. The indicator is a
ratio between two other ratios: the ratio between the real numbers of messages received and
sent upwards, and the ratio between the number of messages received and sent upwards in
the case of optimal performance (Equation 3.1). Interaction components with an SRC of 1
suggest optimal performance, with an SRC below 1 suggest inefficiency, and with an SRC
above 1 suggest an ineffectiveness problem, which often is accompanied by a reduction in
performance as well. Although the SRC can reflect inefficiency, its benefit lies in predicting
whether messages are unintentionally sent upwards (ineffectiveness). The indicator is based
on the assumption that messages sent upwards that were established with fewer messages
than required when the task is optimally executed are probably the result of a usability
problem related to the component itself and were probably not needed to complete the
task. Therefore, SRC should not be regarded as a definition for ineffectiveness but as an
indicator, because it tries to tell whether users send messages upwards unintentionally.
Furthermore, the relationship between SRC and ineffectiveness is a logical implication,
which means that users can have sent messages upwards unintentionally without the SRC
having a value greater that 1. However, if the SRC has a value greater than 1, the prediction
is that messages were sent upwards unintentionally.

Sent upwards 4 % Received below,ptimal

observe

SRC =
Received belowopservea X Sent upwardsgptimal

(3.1)

Calculation example of SRC With the number of messages received and sent upwards
—both optimal and observed— the SRC value is calculated for the circle example of the
drawing application (Table 3.5). The SRC of the Selection interaction component is below
1, indicating reduced performance. The real user applied a less than efficient manner
to select the objects. The SRC of the RMBM interaction component is 1, indicating
optimal performance. The real user activated the property window in an optimal manner.
The SRC of Properties interaction component is above 1, indicating ineffectiveness and
probably reduced performance. The real user unintentionally changed the properties of
a circle twice because of a problem with setting the right properties. The SRC of the
VDO interaction component is 1, suggesting optimal performance. However, the real user
selected the polygon unnecessarily, which makes the performance sub-optimal. This is
not reflected in the SRC because of the additional property setting. Ineffectiveness of the
lower-level interaction component Properties makes the SRC of the higher-level interaction
component less interpretable.

o7

Table 3.5: The number of messages received and sent upwards in both optimal and observed
task executions; next, the corresponding SRC and their interpretation.

Received below Sent upwards
Optimal Observed Optimal Observed SRC
Selection 1 4 1 2 0.5 inefficient
RMBM 2 4 1 2 1 optimal
Properties 6 10 1 2 1.2 ineffective
VDO 2 4 1 2 1 violation

Limitation SRC Calculating the SRC for all the messages of an interaction component
demands that the optimal performance and the observed performance have similar ratios
between the messages type that are sent upwards. If this is not the case, separate SRC
should be calculated for each message type sent upwards by interaction component. A
small example in which this requirement is not met may help to make this limitation more
clear.

Polygon

Red 1 message sent upwards Green
Black outline

Black outline 4 messages received

Circle

White 1 message sent upwards Green
No outline

Black outline

6 messages received

Figure 3.9: A state diagram of setting the properties of the polygon and the circle. The
Properties interaction component will receive 5 messages on average per message sent
upwards, when the task is optimally executed.

The objective is to calculate the SRC value for the Properties interaction component in the
drawing application, but this time for another task. At the start of the task, the polygon is
red and has a black outline. The task is to set the colour of the polygon and circle to green,
and to remove the circle’s black outline. If the task is optimally executed, the Properties
interaction component receives ten messages: four for setting the polygon’s properties and
six for setting the circle’s properties (Figure 3.9). Furthermore, the interaction component
sends two messages upwards: one for the polygon and one for the circle.

Now, a ‘real” user performs this task, who has a problem with making a distinction between
the circle and the polygon; initially, the real user set the circle’s property according to the

o8

Polygon

Red 1 message sent upwards Green
Black outline Black outline

4 messages received

Circle

White 1 message sent upwards Green 1 message sent upwards

Green
i N v i . |4 i
Black outline 4 messages received Black outline 4 messages received No outline

Figure 3.10: A state diagram of setting the properties of the polygon and the circle by a
‘real’” user, who initially takes the circle for a polygon. The Properties interaction compo-
nent will receive 4 messages on average per message sent upwards.

desired polygon properties. As a result, the interaction component receives 12 messages:
four for only setting the circle’s fill colour to green, four for removing the outline of the
circle, and four for setting the polygon’s fill colour to green (Figure 3.10). The Proper-
ties interaction component also sent upwards one more message than in the optimal task
performance. This means that in the optimal situation five messages are needed to send
a message upwards on average, whereas in the real situation this is four. The SRC value
Property interaction component is (3 x 10) (12 x 2) = 1.25, which should not be misinter-
preted as an ineffectiveness problem since the interaction component operates optimally.
Calculating an SRC value for two types of messages (setting one property or setting two
properties at once) avoids this problem.

3.3.4 Subjective measures

Besides the performance measures, the perceived usability, scaled by subjects, can be
used to evaluate the usability of the components. These component-specific questions
are expected to be more sensitive than overall usability questions because they help the
subjects to remember their control experience with a particular interaction component
(Coleman, Williges, & Wixon, 1985). The difference between a component-specific and an
overall questionnaire is that instead of the system, the name of the interaction component
is used in each question. Besides the name of the interaction component, a description, a
picture, or even a reference in the system of the interaction component can help to support
the recollection.

Several questionnaires has been developed to determine the overall usability of a user
interface (e.g. Chin, Diehl, & Norman, 1988; Davis, 1989; Gediga, Hamborg, & Diintsch,
1999; Hollemans, 1999; Kirakowski & Corbett, 1993; Lewis, 1995; Lin, Choong, & Salvendy,
1997). The five ease-of-use questions of the Perceived Usefulness and Ease-of-Use (PUEU)
questionnaire (Davis, 1989) seems a suitable small set for a component-specific measure
(Appendix B). They make no reference to the system’s appearance and are able to capture

99

well-formed beliefs developed by individuals about ease-of-use after only a brief initial
exposure (Doll, Hendrickson, & Deng, 1998). The component-specific satisfaction questions
are taken from the Post-Study System Usability Questionnaire (PSSUQ) (Lewis, 1995), one
about how pleasant an interaction component was, and one about how much subjects liked
an interaction component (Appendix B).

3.4 Comparison with other evaluation methods

3.4.1 Sequential data analysis

Often, in sequential data analysis, only lower-level events are recorded, which are first
pre-processed before they are analysed. The three types of pre-processing are selection,
abstraction, and re-coding (Hilbert & Redmiles, 2000). Selection involves separating low-
level messages and sequences of interest from the ‘noise’. Abstraction involves relating
lower-level messages to higher-level concepts. Re-coding involves generating new event
streams based on the results of a selection and an abstraction process. The new event
stream operates on a lower frequency band than the initial event stream. A frequency
band is a range of frequencies in which messages are sent (Sanderson & Fisher, 1994). The
concept of frequency bands in sequential data analysis can be seen as nothing more than a
manifestation of the interaction layers in the user actions. Higher-level messages are sent
over a longer time interval than lower-level messages because lower-messages are needed
to create the higher-level messages.

In the proposed testing framework, the user’s control of an interaction component is anal-
ysed in the same frequency band that it operates. The analysis of higher-level interaction
component comes down to more than only an analysis of pre-processed keystroke data. The
higher-level messages are directly related to the control process of a higher-level interac-
tion component. The compound messages, constructed from low-level messages afterwards,
leave more room for discussion about the system interpretation of the lower-level messages
and therefore lack a direct relation.

Extending the low-level messages log file with the system’s state makes it possible to
construct the system interpretation of lower-level into higher-level messages. Still, it would
require the analysis to envision the system response to a low-level message when the system
is in a particular state. An example of such an approach can be found in the work of
Lecerof and Paterno (1998). They keep track of the system state in what they call a
Precondition Table, when they go through the user actions in a log file. This table is a set
of temporal constraints that is automatically drawn from their task model; e. g. a user has
to complete task A before beginning task B. When going through the actions in the log file,
they keep track of the subtasks that are completed and preconditions that are satisfied.
Simultaneously, they inspect whether preconditions are met for each action, and generate
an error if not. The system responses are implicit envisioned in the formulation of the

60

task model because the task model requires an understanding of what system responses
are acceptable to fulfil the user goal.

The analysis of temporal relations between the lower-level messages, which is often studied
when dealing with sequential data (e.g. Markov analysis, lag sequential analysis, prob-
abilistic finite state machine, Fisher’s cycles, maximal repeating patterns, and regular
expressions (Sanderson & Fisher, 1997)), becomes less important with the testing frame-
work. The temporal relations are normally analysed in an attempt to construct a model
with transition probabilities, or grammatical structure of messages. The grammatical
structure facilitates the understanding of the higher-level interaction. However, with the
recording of high-level messages this is no longer needed. On the other hand, analysing
temporal relations within the messages received by a single interaction component and
even combined with the states of the interaction component may give insight into why an
interaction component operates as it does.

3.4.2 Not log-file-based usability evaluations

Other usability evaluation methods, such as thinking-aloud, cognitive walkthrough and
heuristic evaluations, may in some cases be quicker in assessing the usability of an entire
user interface. However, they suffer from a substantial evaluator effect in that multiple eval-
uators end up with different conclusions when evaluating the same user interface (Hertzum
& Jacobsen, 2001). In the proposed testing framework, the systematic analysis that could
even be automated leaves very little room for such an effect.

Furthermore, current usability evaluation methods have also received criticism for their
ineffectiveness in finding real problems that lead to changes in a new version of the system
(John & Marks, 1997). The introduction of component-specific usability measures is ex-
pected to increase the power of the evaluation method. These measures also lead designers
unambiguously to the part that should be changed, because component-based evaluation
directly links the usability assessment to a component.

This chapter describes a component-based usability testing framework. The framework
gives rise to the idea of LPT as an approach to test components empirically. The benefits
of the framework within the multiple versions testing paradigm lies in the statistical power
of the measures, but also in the ability to study an individual component of the user
interface directly and not just their impact on the overall usability. The latter is especially
beneficial within the single version testing paradigm where the individual components can
not be assessed on the base of overall usability measures. The following chapter describes
an experimental evaluation of the testing framework. The claims made in this chapter will
be put to the test there. The result of that experiment will help to position the framework
with the set of other evaluation methods.

61

62

Chapter 4

An experimental evaluation of the
component-based usability testing
framework

4.1 Introduction

This chapter presents an empirical evaluation of the component-based usability testing
framework described in the previous chapter. The testing framework gives shape to the
claim that LPT can be employed to test the usability of interaction components. The
theoretical discussion of the framework in the previous chapter boils down to a comparison
of the power of component-specific and overall usability measures. The overall usability
measures mentioned, such as keystrokes and questionnaire, are not new, in contrast with the
proposed component-specific measures. The component-specific performance measures are
based on the number of messages received by interaction components, whereas component-
specific perceived ease-of-use and satisfaction measures are based on assisting users in the
recall of their control experience of individual interaction components. Furthermore, the
framework suggests a way to evaluate the usability of interaction component when only one
user interface is considered. The testing framework proposes an impact assessment of the
interaction components’ usability on the usability of the entire user interface. Additionally,
the framework offers an indicator to check whether, as a side effect, control loops disrupt
performance measuring of higher-level interaction components. Table 4.1 presents a list of
the claims, made within the testing framework. These five claims led to the design of an
experiment and prototypes that were tested.

63

Table 4.1: Claims made in the component-based usability testing framework.

No Claims

1 The objective component-specific performance measure is as
powerful or more powerful than the objective overall perfor-
mance measure based on the number of keystrokes.

2 Subjective component-specific usability measures are as pow-
erful or more powerful than subjective overall usability
measures.

3 The extra user effort to control an interaction component is
positively correlated with the overall performance and nega-
tively with the perceived ease-of-use and the satisfaction.

4 Ineffectiveness problems in an interaction component can in-
fluence the user’s effort to control higher-level interaction
components.

5 If an interaction component has an SRC value greater than 1,
it operates ineffectively.

4.2 Method

The experiment was set up to compare different prototypes with variations in their us-
ability. The use of predefined usability variations had to emphasise the validity of the
usability measures. In this experiment, all usability variations addressed the complexity
of dialogue structures that can be understood in terms of Cognitive Complexity Theory
(CCT) (Kieras & Polson, 1985). This theory holds that the cognitive complexity increases
when users have to learn more rules. Furthermore, the selected experimental design made
it possible to study the effects that interaction components might have on each other. In
other words, the robustness of the component-specific measures would be more clear, i. e.
the impact of the other interaction components’ usability. Furthermore, it should be pos-
sible to see how likely it is that interaction effects occur. An insight into the chance of an
interaction effect makes it possible to speculate on the severity of ignoring an interaction
effect in an experimental design. Beaudet and Williges (1988) showed that ignoring inter-
action effects can reduce the complexity of a study considerably and makes it possible to
analyse large number of factors that may affect the usability of a system using a relatively
small number of subjects.

The following section describes the prototypes that were used, the usability variations that
were created, and the hypotheses that were drawn from the five claims. The design of the
experiment and procedures are discussed in the subsequent sections.

64

4.2.1 Prototypes and operationalisation claims

A mobile telephone was chosen for the experiment because of its relatively complex user in-
terface architecture. Furthermore, some of the mobile telephones’ interaction components
are receptive to well-known and well-documented usability problems. Three interaction
components of a mobile telephone were manipulated (printed in bold type in Figure 4.1).
The three interaction components were responsible for the way subjects could input alpha-
betic characters (Keypad), activate functions in the telephone (Function Selector), and send
text messages (Send Text Message). For each of these three interaction components two
versions were designed. Combining these versions led to eight different mobile telephones
prototypes. The experimental environment was programmed in Delphi 5, and included PC
simulations of all mobile telephone prototypes and a recording mechanism to capture the
message exchange between the interaction components (Eijk, 2000).

Voice Send text Read text Read Edit Read Edit
Call Mail message message address list Address list Diary Diary Stand-by

v 9 5 v b 6 Y O Y o Y o v o

SN INENENE
1 1 1) 1 1]

Characters, Mode Flow redirection, Function request, Ok,
Cursor position, restriction function results Cancel, letter, number,
STM menu cursor move, backspace

direction key, function results

v

o

Telephone
Router

Function request,
0k, Cancel

Letter, A
number,
cursor move

A A

Function
selector

Letter

Mode A 4 Menu direction
Main Mode Menu
Screen Screen 0..9 keys, Backspace key Function keys, Screen
* key, # key, left key, right key,
Mode key menu key, ok
* ¢ key, cancel key

Mode
symbol

Menu
icons

Characters,
cursor, STM
menu icons

Screen Screen Keyboard Keyboard Keyboard Screen

Figure 4.1: Mobile telephone user interface structure. Bold interaction components were
manipulated in the experiment.

An interaction component, called Function Selector, dealt with subjects’ activation requests
of the high-level telephone functions, i.e. towards the interaction components: Call, Voice

65

Mail, Send Text Message, Read Text Messages, Read Address List, Edit Address List,
Read Diary, Edit Diary, and Stand-by. The Function Selector processed subjects’ input
and constructed the request. Afterwards, the activation request was sent to the Telephone
router, which passed the message on to the activated high-level interaction component. The
high-level interaction component decided whether or not the request should be accepted.
If so, this interaction component sent a message back to the Telephone router, asking it
to send an activation message to the requested high-level interaction component and to
direct future messages to this component. Another low-level interaction component, the
Keypad, transformed key-presses on the keyboard of the mobile telephone into letters,
numbers and cursor movements. Subsequently, the component sent the characters to the
Telephone router that passed them on to the activated high-level interaction component.
Finally, the three low-level interaction components labelled: Main Screen, Mode Screen
and Menu Screen, were responsible for presenting the telephone feedback on the different
parts of the telephone screen.

Function selection

To confirm the first claim, on the predictability of performance variation, two versions of
the Function Selector were developed. This lower-level interaction component selected the
functions of the mobile telephone, i. e. a menu. In one version of the Function Selector, the
menu was relatively broad but shallow, i.e. all eight options available within one stratum
(to prevent confusion the word stratum, instead of level, is used). In the other version,
the menu was relatively narrow but deep, i.e. a binary tree of three strata. Users tend to
be faster and make fewer errors in finding a target in broad menus than in deep menus
(Snowberry, Parkinson, & Sisson, 1983). In terms of CCT, the deep menu structure requires
subjects to learn more rules to make the correct choices when going through the deep menu
structure.

Stratum 1 |£| |I|

Stratum 2 = C N ji“s
+
Stratum 3 B¢ [B2+ ERe [
Text Voice Call Send text View View Edit Edit
messages mail messages diary address diary address
received list list

Figure 4.2: Menu icons of deep and narrow menu hierarchy.

Only the third stratum of Figure 4.2 was implemented in the broad/shallow menu structure.
This menu was made up of eight buttons on the mobile telephone (Figure 4.3). Each
button had an icon, which represented the function it activated. The narrow/deep menu

66

o PN Y
:E J. B L E*ﬁ fql

Figure 4.3: Implementation broad/shallow menu.

structure had a 23 structure, featuring all the strata of Figure 4.2. Figure 4.4 shows how
the narrow/deep menu was implemented. This menu was activated after pressing the menu
button. Subjects could browse through the menu with a Left, Right and Cancel button.
The Left and Right buttons selected an option and took them one stratum deeper, whereas
the Cancel button took subjects one stratum back, or deactivated the menu on the highest
stratum. The lowest stratum presented the same icons as used on the buttons of the
broad/shallow version (Figure 4.3). The choices on the higher strata were also presented
with icons, however, they were designed to be vague (Figure 4.2, strata 1 and 2), having
little association with the lowest-stratum options. Snowberry et al. (1983) suggested that
this could increase the number of wrong choices on higher strata.

menu key left key right key right key OK key

Figure 4.4: Menu options displayed on screen in the cases of the deep/narrow menu hier-
archy. From left to right, sequence to activate the Send Text Message function.

In this experiment, images of the low-stratum icons or the (same) icons on the buttons
were given in the subject’s task description and on an instruction card. This eliminated
a possible advantage of the broad menu structure. Otherwise, subjects could compare all
options at once and pick the most suitable one in the broad menu structure, whereas in
the deep and narrow menu structure, subjects would be faced with two choices at the

67

ST™M
Main
ST™M pu
tesseee function Number
request,
redirect flow t"l‘eSSaiﬁ
message, el.number,

‘ tel.number Cancel ‘

message, cursor number, cursor move,

move, character, tel.number, cancel,

backspace key, backspace key,
cancel, ok function request, ok

C
message, tel.number,
cancel cancel

ST™M
router

mode mode
restriction restriction,
STM menu
direction

cursor move, mode restriction,
tel.number, cancel, function request:
backspace key, read address list
function request, ok,
character

Figure 4.5: Internal structure of the Send Text Message interaction component.

lowest stratum. This would result in more unintended messages to be sent upwards in
the deep/narrow version to higher-level interaction components, and therefore create an
ineffectiveness problem. Another possible disadvantage of the deep menu structure was
that subjects could mistake a low-stratum option that was not the target option for an
option that led to another stratum in the menu and unintentionally send a message to
a higher-level interaction component. To avoid this situation, subjects had to press an
‘OK’ button after selection of the low-stratum option to activate a higher-level function
in the telephone. To conclude the section about the Function Selector, the hypothesis
derived from the first claim, which focuses on the performance of a lower-level interaction
component, is given below.

Hypothesis 1 The number of messages received by the Function Selector is an equal or
better predictor of the performance variation between narrow/deep and broad/shallow ver-
sitons than the number of keystrokes.

Send Text Message Function

Confirmation of the first claim, but this time applied to higher-level layers, was pursued
by manipulating a high-level interaction component in the mobile telephone. Two versions
of a sub-interaction component, called the Send Text Message (STM) Main, established a
usability variation in a high-level interaction component. The sub-interaction component
was imbedded in the STM component —a compound component responsible for sending

68

text messages. Figure 4.5 shows the organisation of the STM interaction component. Be-
sides the STM Main interaction component, the following interaction components were
also imbedded: STM Message, STM router, and STM Number. The STM Message in-
teraction component was a so-called String component, responsible for the message. The
STM Number component was responsible for establishing a telephone number. This could
be done in two ways. First, subjects could directly enter a telephone number. Second,
subjects could activate an address list and choose a person. The STM router took care
of incoming messages and distributed them to the other sub-components. The STM Main
interaction component was responsible for the sequence in which subjects could enter a
message and a telephone number. It combined these pieces of information and established
a higher-level message to send an entered text message to a particular telephone number.

Figure 4.6: Sequence of telephone’s screens when sending a text message with the simple,
more usable, version.

In the more usable version, the so-called simple version of the STM Main, the system
guided subjects through the required steps (Figure 4.6), whereas the less usable version,
the so-called complex version, left the sequence of steps up to the subjects (Figure 4.7).
This was meant to make subjects take more steps than minimally required as they searched
for the right sequence. The simple version allowed subjects to directly enter a text message
and the mobile telephone automatically requested the telephone number afterwards. In
the complex version, subjects were first confronted with two options: to send the message
or to edit it. The second option would lead subjects to two new options: edit the text
message or the telephone number. For instance, when subjects chose to edit the text
message, they could enter a new text or edit an unsent one. Afterwards, the subjects were
brought back to the first two options, again requiring them to choose for the edit options
and consequently in this case for the telephone number option. Only when both the text
message and the telephone number were given, could subjects send the message with the
send option. All these options were presented as icons that forced subjects to learn the
icon-option mapping rules. Furthermore, they also had to learn in which order to choose
the options.

The expectation was that subjects would not always write a text message or a telephone
number without errors. This should create variance in the number of low-level messages.
Consequently, the standard error might be greater than the difference in extra low-level
messages that subjects sent to explore the options of the complex STM Main version.
Analysis of the high-level messages should bypass the variance in the number of low-level

69

FABC 123 &

option 2 option 2 option 1

Figure 4.7: Sequence of telephone’s screens when sending a text message with the complex,
less usable, version.

messages needed to enter a text message or a telephone number, because the whole text
message and telephone number was regarded as one high-level message for the STM Main
interaction component. Furthermore, each message to choose an option was regarded as
an individual high-level message to the STM Main interaction component. This leads to
the following hypothesis.

Hypothesis 2 The number of messages received by the STM Main interaction component
s an equal or better predictor of the performance variation between the simple and complex
versions than the number of keystrokes.

Keypad

The fourth claim is about ineffectiveness and its impact on a higher-level interaction com-
ponent. An interaction component, called Letter, was manipulated in the experiment to
study this claim. Figure 4.8 shows that this interaction component was embedded in
the Keypad interaction component, together with the following other components: Mode,
Keypad router, Cursor Movement, Number, and Keypad Off. The Letter interaction com-
ponent transformed its input into letters. It received messages from the Keypad router

70

Cursor
move

t t ot

Cursor Keypad
Letter Movement Number Off

o o 5)

*
Letter i 0..9 keys, * key, # key

Letter Number

T\

0..9 keys, * key,
key, mode key

Keypad
Router

Mode
Restriction

? Mode

%‘ Mode

Mode
Mode key

0..9 keys,
* key, # key

Figure 4.8: Internal structure of the Keypad interaction component.

and sent it to the Telephone router. The Keypad router determined which interaction
component would receive the keyboard’s input. Based on the input mode, the router de-
cided whether the input would be interpreted as numbers, letters, cursor movements or to
ignore the keyboard’s input. The Mode interaction component handled the input mode.
It received a ‘mode change’ request when subjects pressed the ‘mode’ button. High-level
interaction components also sent it messages, instructing it which modes were allowed at
that moment. For instance, when the telephone was expecting numbers for a telephone
number, it was not allowed to switch to the letter mode.

The way subjects could enter letters combined with the likelihood of creating unwanted
letters was used to create an effectiveness variation. The interaction component Letter had
two versions. To enter letters, one version applied the Repeat-Key method, and the other
version a Modified-Modal-Position method (Detweiler, Schumacher, & Gattuso, 1990).
The Repeat-Key method involved having subjects press the key, containing the letter, the
number of times corresponding to its ordinal position on the key (e.g., one time a ‘4’ for
‘G’, Figure 4.9). The Modified-Modal-Position method involved having subjects first press
either the “*” or ‘#’ key, depending on whether the letter was in the left or right position
on the button label and nothing when the letter was in the middle. This was followed by
a press on the key containing the letter (e.g. “*’ followed by ‘4’ for ‘G’). The Repeat-Key
method is the easiest to instruct and to learn because users do not consider it intuitive
to press a key associated with the position before they pressed the key with the letter
(Detweiler et al., 1990). Furthermore, the Modified-Modal-Position method is more error

71

Figure 4.9: The mobile telephone’s keypad.

prone than the Repeat-Key method, i.e. more unwanted letters are created. Detweiler
et al. argue that with the Repeat-Key method, there was only a simple rule to learn. This
latter argument is in line with CCT.

The placement of the letters ‘Z’ and ‘Q’ on the keypad introduced an extra rule for
the Modified-Modal-Position method. Originally, these letters were omitted in the North
American Telephone keypad (Brodsky, 1991). If these letters are placed on the keypad,
people prefer them on the 7 and 9 key (alphabetic order) instead of on the 1 key (Blan-
chard, Lewis, Ross, & Cataldo, 1993). In the experiment, they were positioned on the 1
key. This created ambiguity for the Modified-Modal-Position method, i. e. what key should
precede a 1 key press? Subjects entering a ‘Q’ or 'Z’ with the Modified-Modal-Position
method, had to learn the additional rules that ‘Q’ should be considered as having the
middle position and therefore did not require a press on a position key. The ‘Z’ required
the subjects to press the ‘#’ because it was linked with the right position. Furthermore,
the number of unintended letters with the Repeat-Key method was expected to reduce by
giving subjects feedback on the letter currently selected as they pressed the key. Finally,
a cursor automatically proceeded when the system received a letter. This was expected to
help reduce some time-related ambiguity of the Repeat-Key method —whether the system
relates a key-press to the succeeding key-presses or to a new letter.

The telephone’s String interaction components (e. g. STM Message interaction component)
created a relation between the Letter component and the backspace key, causing possible
ineffectiveness problems to spread. Messages from the Letter interaction component were
received by these String interaction components. These interaction components were sub-
interaction components of the following high-level interaction components: Send Text Mes-
sage, Edit Address List, and Edit Diary. They were responsible for string manipulation,
i.e. entering a new or editing an existing text message, name, or diary topic. Unintended
letters, received by String interaction components, were expected to evoke new messages to
counteract them. The backspace message was a typical message to undo previous created
letters. When subjects pressed the backspace button a backspace message was directly
sent to the Telephone router to be passed on to the currently active high-level interaction

72

component. In turn this high-level interaction component had to decide whether a String
interaction component eventually handled the received backspace messages. Consequently,
the number of backspace messages was related to the number of unwanted letters, which
was related to the ineffectiveness problem of the Letter interaction component in this case.
To study the effect of an ineffectiveness problem on a higher-level interaction component,
a reference point is needed to see whether this effect is greater on the higher-level inter-
action component than on any other interaction component in the system. The Function
Selector interaction component was taken as a reference point, since it was not a higher-
level component of the Letter interaction component. Therefore, a third hypothesis was
formulated:

Hypothesis 3 The number of Backspace messages received by the String interaction com-
ponents is an equal or better predictor of the effectiveness variations between the Repeat-
Key and the Modified-Modal-Position versions of the Letter interaction component than
the number of messages received by the Function Selector interaction component.

Remaining claims

The eight mobile telephones also made it possible to formulate hypotheses for the other
claims made in the testing framework.

Subjective component-specific measures The second claim was studied by compar-
ing subjective overall measures with the subjective component-specific usability measure.
Along with the questionnaire, a picture of the keyboard and the Function Selector imple-
mentation was given to help identify and remember the interaction components. In the
questionnaire the following names were used to refer to the interaction components. The
Function Selector interaction component was called the menu of the mobile phone. The
Keypad interaction component was called the keyboard of the mobile phone. And the
STM interaction component was called the text message function of the mobile phone.
The hypothesis, to examine the second claim in the experiment, was formulated as follows.

Hypothesis 4 The subjective component-specific usability measures applied to Function
Selector, Keypad and STM Main interaction components are equal or better predictors of
the usability variations between the versions of these interaction components than subjective
overall usability measures applied to the mobile telephone.

Objective component-specific performance measure in the single version testing
paradigm The third claim about the ability to evaluate the usability of interaction
component, when only one user interface is considered, can be examined with an analysis
of the extra effort value of the Function Selector and the STM Main interaction components;
both, as required, do not have ineffective lower-level interaction components. The following
hypothesis could be formulated.

73

Hypothesis 5 The extra effort value of the Function Selector and STM Main interaction
components is positively correlated with the number of keystrokes and time; and negatively
correlated with the perceived ease-of-use and the satisfaction.

Ineffectiveness indicator The last claim about SRC holds a logical implication. It
implies that if an interaction component has an SRC value greater than 1, some of its
messages are unintentionally sent upwards by the user, or in other words, the interaction
component operates ineffectively. The Modified-Model-Position version of the Letter in-
teraction component was specifically designed with an ineffectiveness problem, the other
version and other interaction components were not expected to be ineffective. Therefore,
the following hypothesis was formulated to test whether SRC could detect this.

Hypothesis 6 The Modified-Model-Position version of the Letter interaction component
has an SRC value higher than 1; the Repeat-Key version of the Letter interaction component
and the versions of the other interaction component have an SRC value not higher than 1.

4.2.2 Design

All eighty participating subjects were students of Eindhoven University of Technology.
An additional constraint was that the subjects did not use a mobile telephone on a daily
or weekly basis, which was mentioned in the invitation, and confirmation was asked at
the start of the experiment. Subjects were randomly assigned to eight groups that each
operated on a different mobile telephone prototype. The subjects were told that only one
prototype was tested, as would be the case in the single version testing paradigm. The kinds
of tasks subjects had to perform with the mobile telephone were the making of a call to
someone’s voice-mail system; adding a person’s name and number to the phone’s address
list; and sending a text message. The experiment consisted of three sessions, so that,
learning effects could also be studied. In each session, subjects performed the three tasks.
However, in each session they had to call someone else, add another name and number, and
send a different text message; the computer randomly assigned the precise task instructions
to the three sessions. All three text messages had the letter ‘Z’ and the number ‘1’ in it.
The three names, subjects had to add, held the letter ‘Q’. No two consecutive letters in
a text message or a name belong to the same key to avoid the timing-related ambiguity
that might turn up with the Repeat-Key Method (Kramer, 1970). The call task was added
to give subjects the impression that the whole mobile telephone was evaluated and not
only some particular part of the mobile telephone. Task order effects were controlled by
randomly assigning six group members to one of the six possible permutations of task types
in a session. The remaining four members were again randomly assigned to one of the six
permutations with the restriction that none of these subjects were assigned to the same
permutation. The task order remained the same in the three sessions.

74

4.2.3 Procedure

At the beginning of the experiment, subjects were brought into a test room of a usability
laboratory. They were told that the experiment was set up to evaluate the usability of a
mobile telephone. To help them, they were given an instruction card that they could keep
with them during the whole experiment. The instruction card explained the symbols on the
telephone buttons and the icons of the menu’s lowest stratum. Next, the subjects sat down
behind the computer and the simulation application was started. The experimenter left
the test room and went to the observation room. The application automatically assigned
the subjects to a prototype and a task order. Furthermore, the application also assigned
the task instructions to the sessions. In the next step of the experiment, subjects entered
a training phase. They had to perform three training tasks with an alarm clock. In these
tasks, subjects learned how to act in the experiment, i.e. to successfully fulfil the task
as quickly as possible, which could require them to explore the user interface. They also
practised that they had to click with the mouse on the buttons to interact with a prototype
in this environment. Furthermore, the training showed the test procedure, such as reading
an instruction on the screen, pressing a Start button to begin a task, and pressing a
Ready button after completing the task. After the training phase with the alarm clock,
the subjects performed the tasks with the mobile telephone in three sessions. Between
the sessions, the subjects were asked to perform a filler task of solving simple equations
for three minutes to study their ability to remember previous learning. At the end of the
experiment, subjects were asked to evaluate the mobile telephone with the questionnaire on
the computer. The computer gave the questions in a random order. After the experiment,
the subjects received NLG 22.50 (€ 10.21) for their participation.

To prevent subjects from endlessly trying to solve a task, threshold times were set based
on nine other subjects’ performance in a pilot study. These times were calculated as the
average (sub) task time plus three times the standard deviation.

4.3 Results

This section presents the results obtained from the experiment. The section is divided
into the two testing paradigms. The multiple versions testing paradigm starts with the
reliability of the questionnaire. This is followed by analyses performed on the performance
measures of the three interaction components. Next, the perceived ease-of-use and satis-
faction measures are analysed for an effect of the versions of the interaction components,
followed by an overview of the robustness of the measures. Analyses for the learning effect
conclude the analyses within this paradigm. In the single version testing paradigm, the
SRC-values are first analysed and then the extra user effort values. But before results
within these two paradigms are presented, a short explanation is given of what part of the
data was analysed.

75

Table 4.2: Average subjects’ characteristics and raw overall performance data.

Version interaction components Age Male Female Help® Time® Keys
Simple
Repeat-Key
Broad/shallow 209 9 1 0 13:23 408
Narrow/deep 221 7 3 0 20:43 609
Modified-Model-Position
Broad/shallow 21.5 6 4 1 18:11 509
Narrow /deep 203 7 3 2 27:30 847
Complex
Repeat-Key
Broad/shallow 2178 2 2 19:15 525
Narrow /deep 219 8 2 2 23:51 697
Modified-Model-Position
Broad/shallow 223 7 3 0 18:15 506
Narrow /deep 207 6 4 0 26:43 771

@The number of subjects that received help. ®Minutes : seconds.

4.3.1 Data preparation

The number of subjects that received help was relatively small and revealed no significant
effect for the prototypes (Kruskal-Wallis test x? = 8.50, df = 7; p. = 0.290). However,
the problems encountered, gave direction to how the data had to be analysed. Though the
subjects were explicitly instructed to carry out the task on their own, six subjects asked
for help because they got stuck, and one subject got help because the threshold time, after
which intervention took place, was exceeded (Help column Table 4.2). One subject, out of
the seven subjects that received help, was told to copy the name of the person precisely
as stated in the instruction including one separating space. The subject put more spaces
between the first and last name, to stop the name from being broken up over two lines.
The subject explained that it would not look nice. This behaviour, of inserting additional
spaces, was also observed among nine other subjects when they entered a text message.
Furthermore, eight subjects inserted additional characters (e.g. a period) or words (e.g.
an article or preposition). Therefore, the data analyses ignored possible extra spaces and
characters, and only took the data until the subjects fulfilled the task for the first time;
fulfilment meant: when the text messages was sent, when the call was made, or when the
person was added to the address list. Fulfilling the task did not mean when the Ready
button was pressed.

76

Table 4.3: Cronbach alpha derived from reliability analyses preformed on the answers of
the questionnaire.

Coefficient Alpha

Measure Ease of use Satisfaction
Overall mobile phone 0.85 0.90
Menu 0.87 0.75
Keyboard 0.85 0.86
Send text message function 0.89 0.81

4.3.2 Multiple versions testing paradigm

If a group of questions, such as the six ease-of-use questions or two satisfaction questions,
measure the same underlying factor, it is easier to work with the average of the answers
than with the individual answers. Therefore, before the data of the questionnaire were
analysed for possible effects for the different versions of the interaction components, reli-
ability analyses were performed first. The ease-of-use and the satisfaction questions had
an acceptable reliability (Table 4.3) of more than the 0.7 — 0.8 minimal level often rec-
ommended (Landauer, 1997). The averages of the six ease-of-use questions and the two
satisfaction questions were calculated for each interaction component and for the over-
all mobile telephone questions. From here on, these averages are taken as a perceived
ease-of-use measure and as a satisfaction measure.

Function Selector

Before the power of the different measures can be compared, an effect for the version of the
Function Selector interaction component on the measures has to be found. A MANOVA
was performed on the seven dependent measures that are shown in Table 4.4. The anal-
ysis took the version of the Function Selector, the Letter and the STM Main interaction
components as three between-subjects variables (two levels). In all measures, a significant
effect was found for the version of the Function Selector interaction component. However,
to perform all tasks optimally, 60 more keystrokes had to be made and 60 more messages
had to be received with the narrow/deep version than with the broad/shallow version. To
compensate for all a priori differences, another MANOVA was performed on two corrected
measures —the number of keystrokes and messages received were compensated for the
optimal performance difference in the various prototypes. Once more, the analysis found
an effect for the version of the Function Selector interaction component in both measures
(Table 4.5).

The first hypothesis is not about whether a difference between the two versions can be de-

77

Table 4.4: Results of multivariate and univariate analyses of variance with the version of
the Function Selector as independent between-subjects variable.

Mean Hyp. Error

Measure Broad Deep df df F p n?

Joint measure - 7 66 37.47 <0.001 0.80
Time in seconds 947 1349 1 72 29.56 <0.001 0.29
Number of keystrokes 461 686 1 72 37.72 <0.001 0.34
Number of messages received 67 265 1 72 15534 <0.001 0.68
Ease of use mobile phone 5.9 4.8 1 72 11.86 0.001 0.14
Ease of use menu 5.6 4.5 1 72 22.33 <0.001 0.24
Satisfaction of mobile phone 4.4 3.8 1 72 4.25 0.043 0.06
Satisfaction of menu 4.6 3.5 1 72 15.96 <0.001 0.18

Table 4.5: Results of multivariate and univariate analyses of variance with the version of
the Function Selector as independent between-subjects variable on measures corrected for
the difference in optimal performance.

Mean Hyp. Error
Measure Broad Deep df df F D n?
Joint measure - - 2 71 60.96 <0.001 0.63
Number of keystrokes 437 602 1 72 20.27 <0.001 0.22

Number of messages received 52 190 1 72 7536 <0.001 0.51

Note. In case of optional task execution, there existed a difference of 60 keystrokes and 60 messages

received between the versions.

Table 4.6: Results of discriminant analyses with version of Function Selector interaction
component as a dependent variable.

Independent variable Correctly classified
Number of keystrokes 77.5 %
Number of messages received 96.3 %
Corrected number of keystrokes 68.8 %
Corrected number of messages received 88.8 %

78

1F 1 Number of messages received -

1 2 Corrected number of messages received
3 Number of keystrokes
4 Time in seconds
0.8 5 Ease of use menu B
6 Corrected number of keystrokes
2 7 Satisfaction of menu
8 Ease of use mobile phone
0.6 9 Satisfaction of mobile phone -
041 3 B
4
56
0.2 7

0 ! ! !
0 20 40 60 80 100 120 140

Number of subjects

Power

Figure 4.10: Probability that a measure finds a significant (o = 0.05) effect for usability
difference between the two version of the Function Selector interaction component.

tected, but how well this difference can be detected. Therefore, the power of the measures
was analysed by calculating the probability of finding the difference as a function of the
number of subjects. Figure 4.10 illustrates the chance of finding the difference between the
two versions with a particular measure if this experiment had been carried out with fewer
subjects. The figure shows the number of messages received as a more powerful measure
than the number of keystrokes. Discriminant analyses were performed to study a related
question —how well a measure could predict which version of the Function Selector inter-
action component a subject had interacted with. A discriminant analysis was conducted
with the version of the Function Selector interaction component as dependent variable and
the number of keystrokes, the version of the Letter interaction component and the version
of the STM Main interaction component as independent variables. The latter two indepen-
dent (control) variables were taken along to control for possible effects caused by variations
between the different versions of these two interaction components. Table 4.6 shows the
number of subjects that were correctly classified by the discriminant analyses. The dis-
criminant analysis of keystrokes revealed that 77.5% of the subjects could be correctly
classified. A significantly larger (Sign Test n = 15, X = 0, p. < 0.001) percentage of 96.3%
was found by a discriminant analysis with the same set-up, except that the number of mes-
sages received replaced the number of keystrokes. To put the percentage into perspective,
note that random allocation would classify 50% of the subjects correctly on average and a
significant improvement in this experiment starts from 57.5% (Sign Test n = 6, X = 0, p.
= (0.031). The discriminant analyses were repeated with the corrected measures. It showed
68.8% of the subjects could be correctly classified when based on the corrected number of

79

Table 4.7: Results of multivariate and univariate analyses of variance with the version of
STM Main as independent between-subjects variable, and with the performance measures
only related to the send text message tasks.

Mean Hyp. Error

Measure Simple Complex df df F P n>

Joint measure - - 7 66 18.16 <0.001 0.658
Time in seconds 523 672 1 72 8.15 0.006 0.102
Number of keystrokes 269 320 1 72 456 0.036 0.060
Number of messages received 12 49 1 72 7418 <0.001 0.507
Ease of use mobile phone 5.0 5.3 1 72 1.15 0.288 0.016
Ease of use STM function 5.1 4.9 1 72 0.35 0.555 0.005
Satisfaction of mobile phone 3.9 4.2 1 72 0.93 0.339 0.013
Satisfaction of STM function 3.9 3.8 1 72 0.26 0.614 0.004

keystrokes. Whereas 88.8% correct classifications were made when based on the corrected
number of messages received measure. A Sign Test found a significant difference (n = 16,
X =0, p. < 0.001) between these two percentages.

Send Text Message Function

In the previous section the claim was made that the complex version of the STM Main
interaction component is harder to control than the simple version. Finding an effect for the
version of the STM Main interaction component in the measures would validate this claim.
A MANOVA was performed with the same three between-subject variables as before, but
with the seven measures of Table 4.7 as dependent variables. Contrary to the previous
analysis, the performance measures were taken only from the tasks in which subjects had
to send a text message. In the other tasks, subjects did not have to control the STM
Main interaction component, which therefore could increase the error term of especially
the overall performance measures. Table 4.7 shows that the analysis found an effect for
the version of STM Main only in the time, the number of keystrokes and the number of
messages received. As before, a difference in the optimal task performance existed. At
least 15 more keystrokes had to be made and at least 15 more messages had to be received
in the case of the complex version (Figure 4.7). Table 4.8 shows the results of a MANOVA
on the corrected performance measures. An effect for the versions was only found in the
number of messages received.

The second hypothesis proposes a similar or lower power for the keystrokes than for the
number of messages received in finding an effect for the version of the STM Main interaction

80

Table 4.8: Results of multivariate and univariate analyses of variance with the version of
STM Main corrected for the difference in optimal performance as independent between-
subjects variable. The measures were only related to the send text message tasks.

Mean Hyp. Error
Measure Simple Complex df df F P n>
Joint measure - - 2 71 20.85 <0.001 0.370
Number of keystrokes 249 289 1 72 230 0.134 0.031
Number of messages received 12 34 1 72 26.23 <0.001 0.267

Note. In the case of optional task execution, there was a difference of 15 keystrokes and 15 messages

received between the versions.

1F 12 1 Number of messages received 1
2 Corrected number of messages received
3 Time in seconds

4 Number of keystrokes

0.8 3 5 Corrected number of keystrokes B
6 Ease of use mobile phone
7 Satisfaction of mobile phone
8 Ease of use STM function
0.6 9 Satisfaction of STM function -
4
0.4 -
5
0.2 |
/ 7 6

938

Power

0 20 40 60 80 100 120 140
Number of subjects

Figure 4.11: Probability that a measure finds a significant (o = 0.05) effect for usability
difference between the two version of the STM Main interaction component.

81

Table 4.9: Results of discriminant analyses with version of STM Main interaction compo-
nent as a dependent variable.

Independent variable Correctly classified
Number of keystrokes 56.3 %
Number of messages received 90.0 %
Corrected number of keystrokes 52.5 %
Corrected number of messages received 78.8 %

component. This was tested with power analyses that took the effect size of the measures
out of tables 4.7 and 4.8. The results, illustrated in Figure 4.11, show that the measure
number-of-messages-received was more powerful than the number of keystrokes, both as
normal and as corrected. In addition, discriminant analyses were done with the STM
Main interaction component as the dependent variable and with the versions of Function
Selector and Letter interaction component as control variables. Table 4.9 shows the results
of the discriminant analyses. One analysis showed a correct classification percentage of
90.0% when the number of messages received was used as independent variable. The other
analysis took keystrokes as the independent variable. The results showed a significantly
lower (Sign Test n = 27, X = 0, p. < 0.001) percentage of 56.3%. Once more, the two
discriminant analyses were repeated with the corrected measures as independent variable.
Correct classification based on the corrected number of received messages (78.8%) was
significantly larger (Sign Test n = 23, X = 1, p. < 0.001) than the number of correct
classification based on the number of keystrokes (52.5%).

Letter interaction component

The first analysis of the Letter interaction component looked for an effect of the versions in
the different measures as was claimed in the previous section. A MANOVA was performed
on the measures of Table 4.10 with the same three between-subject variables as before. The
performance measures (i.e. time, number of keystrokes, and number of messages received)
were only taken from the tasks in which subjects had to add a person to the address list
or had to send a text message. A significant effect was found for the Letter interaction
component versions in all measures, except in the ease-of-use and the satisfaction of the
mobile telephone measures. Again, an a priori difference between the two versions existed
when the tasks were performed optimally. To enter the text for a text message, the
Repeat-Key required 37 keystrokes, whereas Modified-Modal-Position 38. However, the
presentation of the analyses on corrected measures is neglected here because this difference
is relatively small and the results are practically the same.

Could the effect for the version of the Letter interaction component be found in the users’

82

Table 4.10: Results of multivariate and univariate analyses of variance with the version of
the Letter interaction component as independent between-subjects variable.

Mean Hyp. Error
Measure RK MMP df df F p n?

Joint measure - - 7 66 4.05 0.001 0.300
Time in seconds 872 1083 1 72 9.44 0.003 0.116
Number of keystrokes 438 537 1 72 1034 0.002 0.126
Number of messages received 233 271 1 72 13.92 <0.001 0.162
Ease of use mobile phone 5.3 5.0 1 72 1.07 0.305 0.015
Ease of use keyboard 5.6 4.9 1 72 11.13 0.001 0.134
Satisfaction of mobile phone 4.3 3.9 1 72 1.76 0.188 0.024
Satisfaction of keyboard 4.6 3.8 1 72 897 0.004 0.111

Note. RK: Repeat-Key, MMP: Modified-Modal-Position.

Table 4.11: Results of multivariate and univariate analyses of variance with the version of
the Letter interaction component as independent between-subjects variable

Mean Hyp. Error

Measure RK MMP df df F p n?
Number of Backspace messages 13 45 1 72 73.17 <0.001 0.504
Number messages received by 102 112 1 72 0.65 0.424 0.009
Function Selector

Note. RK: Repeat-Key, MMP: Modified-Modal-Position.

83

1 1 Number of Backspace messages -
2 Number of messages received

T
3 3 Ease of use keyboard
5 4 Number of keystrokes
0.8 5 Time in seconds B
6 Satisfaction of keyboard
7 Satisfaction of mobile phone
8 Ease of use mobile phone
0.6 9 Number messages received -
by Function Selector
041 B
7
il // 8 N

0 20 40 60 80 100 120 140
Number of subjects

[o) BN V]

Power

Figure 4.12: Probability that a measure finds a significant (o = 0.05) effect for usability
difference between the two version of the Letter interaction component.

control of other interaction components? This was the next question to be answered. An
additional MANOVA was conducted with the dependent variables the number of backspace
messages received by String interaction components (e. g. STM Message interaction compo-
nent), and the number of messages received by the Function Selector interaction component
as a reference point. Again, both measures were only taken from tasks in which subjects
had to add a person to the phone’s address list or had to send a text message. An effect
for the version of the Letter interaction component was only revealed in the number of
backspaces (Table 4.11).

The following analyses tested the third hypothesis. Figure 4.12 shows the results of power
analyses that used the effect sizes from of tables 4.10 and 4.11. The power of the num-
ber of backspace messages received by the String interaction components was higher than
the number of messages received by the Function Selector interaction component. Two
discriminant analyses were performed that had the version of the Letter interaction com-
ponent as the dependent variable. Both took the version of the Function Selector and
STM Main interaction components as control variables. One analysis showed that 81.3%
of the subjects could be correctly classified when the number of backspaces was taken as
the independent variable. The other analysis showed a significantly lower (Sign Test n =
32, X = 6, p. = 0.011) percentage of 56.3%, when the number of messages received by
Function Selector interaction component was used instead of the backspaces.

84

Perceived ease-of-use and satisfaction

The above already showed that perceived ease-of-use and satisfaction measures could find
an effect for the version of an interaction component in some cases. However, are sub-
jective component-specific component measures equally or more powerful than subjective
overall measures when it comes to finding these effects? The fourth hypothesis states this.
Figures 4.10, 4.11 and 4.12 present the power of the subjective overall and the subjective
component-specific questions, for both the ease-of-use and the satisfaction questions. It
does give an ambiguous answer. Therefore, the hypothesis was put to the test. First, 12
(3 for the interaction components x 2 for the measures’ scope x 2 for the usability dimen-
sions) discriminate analyses were performed with the subjective overall or the subjective
component-specific measures as an independent variable. All analyses took the versions of
the remaining two interaction components as control variables. Second, the sum of cor-
rect predictions made by the subjective overall and by the subjective component-specific
measures was calculated per subject resulting in a value between 0 and 3 (the number
of times the subject was linked with a correct version). Third, the numbers of correct
predictions made with the subjective overall and with the subjective component-specific
measures were compared. A Wilcoxon Matched-Pairs Signed-Ranks Test revealed neither
a significant difference in the case of ease-of-use questions (n = 62, T" = 30, p. = 0.907),
nor in the case of the satisfaction questions (n = 61, T' = 27, p. = 0.308).

Robustness of the measures

More important in the single version testing paradigm than in the multiple versions testing
paradigm is the robustness of a measure. The robustness of a measure is synonymous
with its insensitivity to usability effects of other interaction components. The sensitivity
can manifest itself in two ways. It can show up as an interaction effect or as a main
effect for the version of another interaction component in the case of a component-specific
measure. The MANOVA’s mentioned earlier did not find any significant interaction effect
in the performance measures. Nor did the analyses reveal a significant main effect for the
other versions of interaction component in the component-specific performance measure.
However, the MANOVA’s did find other main effects and interaction effects in the ease-of-
use and satisfaction questions. In the ease-of-use questions of the text message function, a
MANOVA revealed a main effect (F(1,72) = 4.14; p. = 0.046) for the version of the Letter
interaction component. In the ease-of-use questions of the keyboard, an analysis found
two two-way interaction effects: one (F'(1,72) = 8.86; p. = 0.004) between the version of
the Function Selector and the STM Main interaction component, another one (F(1,72)
= 6.44; p. = 0.013) between versions of the Function Selector and the Letter interaction
components.

The MANOVA'’s on the satisfaction questions also found a two-way interaction effect and
other main effects in the component-specific measures. As such, the analysis on the satis-
faction questions about the keyboard revealed a main effect (F(1,72) = 5.29; p. = 0.024)

85

for the version of the STM Main interaction component, whereas the analysis on the satis-
faction questions about the text message function revealed a main effect (F'(1,72) = 7.31;
p. = 0.009) for the version of the Letter interaction component. An analysis on the over-
all satisfaction of the mobile telephone found two interactions: one (F'(1,72) = 9.42; p.=
0.003) between the version of Function Selector and Letter interaction components, and
another one (F'(1,72) = 6.35; p. = 0.014) between the version of the Function Selector and
the STM Main interaction component. To conclude, an analysis on the satisfaction ques-
tions about the keyboard found a two-way interaction effect (F'(1,72) = 8.46; p. = 0.005)
between the version of the Function Selector and the STM Main interaction component.

Learning effects

Comparing the performance per sessions can show variations, which can be interpreted
as learning or recall effects. Therefore, a doubly MANOVA with repeated measures was
performed with the sessions as within-subject variable and the measures of Table 4.12 as
multiple dependent variables. The measures included all types of tasks. The versions of
the interaction components were taken as three between-subjects variables. Table 4.12
shows an effect for the sessions in all measures, both multivariate and univariate. Over the
sessions all values decreased. The multivariate analysis also revealed two-way interaction
effects between the sessions and the version of the Function Selector interaction components
(F'(10,63) = 15.70; p. < 0.001) and between the sessions and the version of Letter interac-
tion component (£(10,63) = 2.92; p. = 0.005). These interaction effects were again found
only in a univariate analyses of the overall measures and in the corresponding component-
specific measures. However, a two-way interaction between the sessions and the version
of the STM Main interaction effect (F(1,72) = 13.81; p. < 0.001) was only found in the
univariate analysis of the component-specific measure of STM Main interaction component
—the number of messages received by STM Main interaction component.

4.3.3 Single version testing paradigm
Ineffectiveness indicator

The SRC is suggested as an ineffectiveness indicator. A value above 1 should indicate
an ineffectiveness problem, which was hypothesised to be the case only for the Modified-
Model-Position version of the Letter interaction component. Table 4.13 shows the SRC
values for the various versions of the interaction components. In all four prototypes, the
SRC value of the Modified-Model-Position version was not below 1 and in three cases sig-
nificantly greater than 1. None of the other interaction components, with the exception of
the narrow/deep of the Function Selector, have a value above 1. The SRC of the Function
Selector interaction component did not meet with the expectations, and therefore the SRC
was analysed in more detail. Higher-level interaction components request disproportion-
ately more Ok and Cancel messages than the Function Request messages that needed more

86

Table 4.12: Results of multivariate and univariate analyses of variance with sessions as an
independent within-subjects variable.

Mean in session Hyp. Error

Measure 1 2 3 df df F p n>

Joint measure - - - 10 63 44.00 <0.001 0.875
Time in seconds® 729 229 190 1 72 255.05 <0.001 0.780
Number of keystrokes® 307 139 128 1 72 11421 <0.001 0.613
Messages Function Selector® 102 35 30 1 72 97.55 <0.001 0.575
Messages Letter® 110 73 70 1 72 55.81 <0.001 0.437
Messages STM Main 16 7 7 1 72 20.49 <0.001 0.222

?The lower-bound is taken in the univariate tests because none passed the sphericity assumption test.

than one lower-level message to be created. This means a violation of the assumption that
the optimal performance and the observed performance have similar ratios between the
messages type that are sent upwards. Therefore, the SRC value was also calculated for
Function Request messages. Consequently, none of these SRC values were above one. In
the case of narrow/deep version, they were all significantly below one.

The SRC for String interaction components was also calculated. The results show the
impact of ineffectiveness on a higher-level interaction component, for the String SRC was
significantly below one in the third prototype —implying reduced performance. However,
the third prototype violated the assumption that no directly lower-level interaction com-
ponent sends more messages up than required since the Letter SRC is significantly above
one. An ANOVA with the String’s SRC as dependent variable and with the version of the
Letter interaction component as independent variable did not reveal (F'(1,78) = 3.71; p. =
0.058) an effect for the version, and thus none for the ineffectiveness problem.

Extra user effort

The extra user effort was calculated for the same four interaction components per prototype
over all sessions and types of tasks (Table 4.14). The calculation of the extra user effort was
neglected when the SRC or the SRC of a directly lower-level interaction component was
above one. Consequently, the extra user effort of the STM Main interaction component
was also calculated for all prototypes. Although Letter interaction component was a lower-
level interaction component of STM Main, it was not a direct one. Furthermore, the
String interaction components did not seem to transport the ineffectiveness problem of the
Letter interaction component upwards, because none of the SRC of the String interaction
components was significantly above one.

After calculation, the extra user effort measure was validated by correlating it with other

87

Table 4.13: The interaction component’s SRC values for the different prototypes.

Function Selector

Version interaction components All Fun.req. Letter String STM Main
Simple
Repeat-Key
Broad/shallow 1 1 0.97* 0.87** 0.96*
Narrow/deep 1.34%% (.58%* 098 0.87 0.84**
Modified-Model-Position
Broad /shallow 1 1 1.06** 0.74** 0.84*
Narrow/deep 1.20%* 0.46** 1.03 0.80** 0.79**
Complex
Repeat-Key
Broad/shallow 1 1 0.97% 0.97 0.63**
Narrow/deep 1.37%% (.53** 0.97* 0.98 0.76*
Modified-Model-Position
Broad/shallow 1 1 1.03** 0.90 0.66**
Narrow/deep 1.34%% (0.49%* 1.03* 094 0.54**

Note. Hy: value = 1. Fun. req. : function request.

*p. <. 05. ¥*p. <. 01.

88

Table 4.14: The interaction component’s extra user effort in keystrokes for the different

prototypes.
Function STM Main
Version interaction components Selector Letter String Normal Conser.®
Simple
Repeat-Key
Broad/shallow 0 14.2%*% 20.3% 2.2 0.4%*
Narrow/deep 47.7F% 12.5 15.3 13.6* 2.5%
Modified-Model-Position
Broad/shallow 0 - - 22.8 0.7
Narrow/deep 76.3%* 46 162 22.1* 5.8
Complex
Repeat-Key
Broad/shallow 0 15.3 0.2 336 18.0*
Narrow/deep 61.6%* 14.9% 0.7 395 25.5
Modified-Model-Position
Broad/shallow 0 - - 34.1%% 141
Narrow/deep 69.47%* - - 73.3%% 44.1*

Note. Hy: value = 0.
@According to the more conservative approach.
*p. <. 05. *¥*p. <. 01.

89

measures. The fifth hypothesis states that the extra effort value of the Function Selector
and STM Main interaction components would positively correlate with the overall perfor-
mance and negatively with the perceived ease-of-use and the satisfaction. Table 4.15 shows
the partial correlations between measures for the Function Selector and for the STM Main
interaction components. All correlations were controlled for the versions of the other two
interaction components. The correlations with the extra user effort of the Letter inter-
action component were refrained from because three prototypes had a Letter SRC above
one. Only significant partial correlations, with the hypothesised direction, were found be-
tween the extra user effort of the Function Selector interaction component and the other
measures. Furthermore, all measures had a significantly partial correlation with the extra
user effort of the STM Main interaction and with hypothesised direction; except for the
correlations with the mobile telephone satisfaction, they did not reach a significant level.

The final analyses focused on the validity of applying the extra user effort to order inter-
action components within a prototype for their improvement potential. The validity was
checked by comparing the arrangement of the interaction components ordered by the extra
user effort values with that of the arrangement order by other usability measures that had
a common unit in which a measure was expressed. The comparison was done on the differ-
ence between the versions of the interaction component, because the overall measures did
not give the improvement potential of a particular version of an interaction component.
The arrangements that were compared were between the versions of the Function Selector
and the STM Main interaction component. The difference of the version of the Function
Selector was divided by the difference of the version of the STM Main interaction compo-
nents (Table 4.16). A result between -1 and 1 would indicate that a higher improvement
potential was gained between the version of STM Main interaction component. A result
less than -1 or greater than 1 meant a higher improvement potential was gained between
the version of the Function Selector interaction component. The latter situation was found
in the extra user effort measure as well as in all the other measures.

4.4 Discussion

The result of the experiment shows no indication of pre-selection in the subject’s ability
to operate the mobile telephone. All subjects in the experiment were able to complete the
tasks. The seven subjects that received help were not located in specific conditions. If this
were the case the experiment would suffer from pre-selection —only the best subjects would
be located or remain in one condition against all kinds of subjects in the other conditions.
In such a situation, it would be better to take the same number of best-performing subjects
in all other conditions to obtain a homogeneous sample. However, the drawback is that
this sample would only represent the best-performing people and ignore the rest of the
population.

90

Table 4.15: Partial correlation between extra user effort of particular interaction component
and other usability measures.

Function STM Main
Measure Selector Normal Conser.®
Keystrokes 0.72%* 0.45%% 0.46%*
Keystrokes corrected 0.64** 0.44** 0.44**
Time 0.63*%* 0.39** 0.45**
Overall ease-of-use -0.43** -0.26%* -0.28%*
Component-specific ease-of-use -0.55%* -0.34** -0.36**
Overall satisfaction -0.25% -0.22 -0.10

Component-specific satisfaction -0.41** -0.37** -0.30**

Note. All correlations were controlled for effects of the versions of the other

interaction components.
%According to the more conservative approach.
*p. <. 05. *¥*p. <. 01.

Table 4.16: The average difference between the versions of the interaction components and
the impact ratio between the different interaction components.

Measure Function Selector STM Main Priority ratio®
Extra effort conservative 64 23 2.8
Extra effort less conservative 64 30 2.1
Keystrokes 225 37 6.1
Keystrokes corrected 165 22 7.6
Time 402 135 3.0
Overall ease-of-use 0.8 -0.2 -3.2
Component-specific ease-of-use 1.1 0.2 7.2
Overall satisfaction 0.6 -0.3 -2.1
Component-specific satisfaction 1.1 0.2 7.3

?Priority ratio = Function Selector / STM Main.

91

4.4.1 The power of the objective component-specific performance
measure

The first claim about the power of the objective component-specific performance measure
over the objective overall performance measure such as keystrokes was confirmed, both for
lower and higher-level interaction components. The number of messages received in the
case of Function Selector and the STM Main interaction component was a more powerful
measure than the number of keystrokes. However, the broad/shallow version of Function
Selector interaction component was not an interaction component according to the defi-
nition. It had no state that subjects could change. Subjects were in fact changing the
state of the Telephone router —changing which telephone function would be activated and
would receive the future higher-level messages. Then again, the subjects had the same
objective when operating the narrow/deep version. Therefore, the analyses can also be
seen as analyses on the messages received by the combination of Function Selector and
Telephone router, which leads to the same conclusions. The results also show that the
number of messages received is not always a more powerful measure. In the case of the
Letter interaction component, its power was similar to the number of keystrokes. There-
fore, evaluators should use both measures in a multivariate analysis in future usability
tests.

4.4.2 The power of subjective component-specific usability mea-
sures

A component-specific questionnaire was not found to be more powerful than an overall
questionnaire. The component-specific and the overall questionnaire showed similar results
in finding a difference between the version of the interaction components. Therefore, in the
multiple versions testing paradigm an overall questionnaire would be more favourable, be-
cause in that case fewer questions are needed in a usability test. Nevertheless, the question
remains, whether an overall questionnaire works as well if subjects are not continuously
reminded of the different interaction components of the user interface, as was the case in
this experiment. The component-specific questionnaire might have performed better if the
description of an interaction component is more precisely and more strongly linked with
the recall of the control experience of the interaction component. In the single version
testing paradigm, an overall questionnaire is not very helpful in evaluating an interac-
tion component. In that case, a component-specific questionnaire is more suitable. The
component-specific questionnaire in this experiment showed to be both reliable and valid
but not robust in all cases. With the component-specific ease-of-use questionnaire, subjects
gave an answer that was influenced by the usability of the other interaction components. It
is debatable whether subjects did this because they thought that the usability of one inter-
action component was in their opinion affected by the other, or because the question also
reminded the subject of the control experience of the other interaction component. Since
subjects were not found to be influenced by the combination of two interaction components

92

when answering an overall ease-of-use questionnaire, but were found to be influenced in
the case of the component-specific questionnaire, the latter explanation is more plausible
for the ease-of-use questions. This can not be concluded for the satisfaction questions
because the combined implementation of the versions of the Function Selector and STM
Main interaction components was found to effect the satisfaction of both the keyboard and
the mobile telephone. Besides that, the experiment was designed to manipulate the ease-
of-use. No claims were made in advance about the satisfaction. Therefore, cautiousness
should be practised when making conclusions based on the component-specific satisfaction
and the overall satisfaction because the difference found may be an artefact instead of
having something to do with the subjects’ satisfaction.

4.4.3 Objective component-specific performance measure in the
single version testing paradigm

The results show a positive correlation between the extra user effort and the overall perfor-
mance, a negative correlation between the extra user effort and the perceived ease-of-use,
and a negative correlation between the extra user effort and the satisfaction —third claim.
This validates the extra user effort measure as a component-specific usability measure.
The ability to say something about the accuracy of the extra user effort assessment is
limited in this experiment. For the version difference of the STM Main interaction com-
ponent, the conservative method assessed an extra user effort of 23 keystrokes, whereas
the overall number of corrected keystrokes came up with 22. A large deviation was found
for the version difference of the Function Selector interaction component, 64 versus 165.
An explanation for the latter difference is the inefficiency of higher-level layers, which may
cause many more keystrokes on this low-level layer. The interaction components were also
compared for their improvement potential, which was possible since user’s effort for each
interaction component is expressed in a common unit. The order based on the extra user
effort was similar to the order based on the overall performance, the overall ease-of-use,
the overall satisfaction, the component-specific ease-of-use, or the component-specific sat-
isfaction. The distance between the ordering was in most cases greater than the extra user
effort assessed. Again, the inefficiency of higher-level layers may have caused this.

4.4.4 Ineffectiveness problems

The ineffectiveness of a lower-level interaction component can influence the user’s effort
to control higher-level layers —fourth claim. This is confirmed because the difference be-
tween the versions of the Letter interaction component was more noticeable in the number
of backspaces than in the number of messages received by the Function Selector. This find-
ing shows that receiving more messages on a higher-level layer may be caused by usability
problems of lower-level interaction components. Still, it does not justify the conclusion

93

that lower-level interaction components can influence the higher-level interaction compo-
nent usability. Ineffectiveness is particularly problematic when it comes to the analysis of
the extra user effort in the single version testing paradigm. The analysis can handle ineffi-
ciency; ineffectiveness remains a problem because of the assumption that messages are sent
up as a higher-level layer request. Solving ineffectiveness problems can effect the overall
performance in two ways. First, besides being not effective, the interaction component
can also be inefficient when it received more messages than required. Second, higher-level
interaction components may receive additional messages to counteract the unintended mes-
sages. If the ineffectiveness can not be taken away, designers should spend more energy in
the design of the interaction component that has to undo or correct the unintended effects.
Take for example the design of a usable correction function if it is impossible to improve
the speech recognition module of an application.

Ineffectiveness indicator

Support for the SRC as ineffectiveness indicator comes from the finding that only the
version Letter interaction component with the ineffectiveness problem had an SRC value
above one. The results also show the risk of interpreting the SRC value wrongly. The
SRC of the Function Selector’s total message flow was above one. This should not be
interpreted as ineffectiveness because one of the SRC assumptions was not met. Therefore,
future evaluators should convince themselves that these assumptions are not violated in
a usability test. They should be alerted to the following two situations: first, interaction
components that send up messages of multiple message types, and second, interaction
components that have ineffective lower-level interaction components. In the first situation
the chance of a violation can be reduced by limiting the SRC to messages sent upwards
of only one or a small group of message types. This is only possible, if on the reception
side, messages of one message type (or group of message types) are required to send up
only these messages, as was the case with the function request message type. In the second
situation, the violation can not be overcome, but only be determined by inspection of
lower-level layers SRCs. That lower-level layers can disrupt the SRC of higher-level layers
is not clearly shown by the results since no significant effect (p. = 0.058) was found for the
version of the Letter interaction component in the SRC of String interaction components.

4.4.5 General remarks

How likely is an alternative explanation that the variation in the number of messages re-
ceived is just an artefact caused by the difference in optimal task performance? As subjects
have to perform more actions, more actions can go wrong. The less usable versions of both
the Function Selector and the STM Main interaction components required fewer messages
than their more usable version when the task was optimally performed. The measure may
work for these usability problems, but can it also be applied when there is no difference in

94

optimal performance? The answer seems to be yes because the measure did find a differ-
ence, with the correct direction, between the versions of the Letter interaction component.
The versions required nearly the same number of messages when optimally performed.
Furthermore, the learning or recall effect found supports this answer. Assuming that over
time the subject became better at performing the task, the number of messages received
decreased accordingly. The finding that over time the performance of the less usable ver-
sions decreased more than the more usable versions, is again supportive of interpreting the
measure as a performance measure.

Another observation is the absence of interaction effects between the versions of the compo-
nents in the objective measures, for the overall and the component-specific measures. The
results of the experiment described in chapter 2 found no interaction effects between the
different components either. The replication of this finding, but now with a more realistic
user interface, makes the claim that components do not affect each other’s usability more
likely to be true. Still, there may be factors that are not considered in these experiments
that cause the opposite.

4.5 Conclusions

The claim that LPT can be utilised to test the usability of interaction components is jus-
tified. The study shows that an objective component-specific performance measure is as
effective or more effective in determining the interaction components’ performance than
overall measures in cases where components operate independently. Subjective component-
specific usability measures were, however, not more powerful than subjective overall mea-
sures. Their benefit, as well as the component-specific performance measure, is their ap-
plicability within a single version testing paradigm, where overall measures can not help to
locate usability problems in the user interface architecture. What still needs to be found
out, however, is how well these measures can be applied in a usability test of larger appli-
cations, such as a text editor with a large function arsenal? In the single version testing
paradigm, the drawback of component-specific performance measures is the recording of
the message exchange between all interaction components, starting from the lowest-level
layer, where effort values are later assigned to these elementary messages. In a multiple
versions testing paradigm, the additional effort to gain component-specific performance
measures is lower because the recording is limited to only the messages received by the in-
teraction components under investigation. Employing the component-specific performance
measures in real usability tests will provide more insight into how intrusive they are be-
cause special coding for logging is needed in the application. Future usability tests will
ultimately also show if evaluators accept component-specific measures as proposed here,
or reject them as too laborious and impractical.

This study shows that the ineffectiveness of lower-level interaction components can influ-
ence the user’s effort to control higher-level interaction components. However, the study
did not show that components affect each other’s usability. The following chapters look

95

for factors outside the user interface architecture. This will be done within the multiple
versions testing paradigm, since it allows for the study of interaction effect. However, the
findings are also applicable to the single version testing paradigm. The component-specific
testing framework opens the door to study these factors. Furthermore, it gives evaluators
the opportunity to pinpoint troubling interaction components in a user interface.

96

Chapter 5

Effects of consistency on the usability
of user interface components

5.1 Introduction

A rationale often used to predict the usability of a new user interface is the usability of the
individual components. Developers employ usable ready-made components in their aim to
create a usable system. However, when components are placed together, inconsistencies
between them may diminish the components’ usability. Components are developed to
operate independently of each other. However, factors such as inconsistency can cause the
components to lose their independence as the feedback of one component can affect the
users’ interpretation of the feedback from others.

Consistency has no meaning on its own; it is inherently a relational concept (Kellogg,
1989). Although users may establish the relation between the components, designers set
the stage for possible confusion since they design the feedback. If inconsistency diminishes
the component’s usability, designers should create components that are consistent with
one another. When deploying the components in new systems they should be attentive
to possible inconsistency problems. Furthermore, when interpreting component-specific
usability measures, testers should be aware that the cause of a decrease might be partially
attributed to other components. The Layered-Protocol Theory (LPT), which incorporates
components in its description of the user-system interaction, should also be studied in how
it explains consistency relations.

5.1.1 Consistency and LPT

Consistency can be described as doing similar things in similar ways with agreement be-
tween agents about which things are similar (Reisner, 1993). This means that a component
is regarded as consistent when both designers and users partition the interaction with the

97

component in the same way into sets of similar interactions. Furthermore, designers and
users have to apply the same criteria, or dimensions, to consider the interactions with com-
ponents to be similar. Likewise, inconsistency involves disagreement between designers and
users about which things are similar, since what designers may find consistent may not be
consistent for users at all (Grudin, 1989).

In terms of LPT, consistency is related to I- and especially to the E-feedback because
designers of a system guide users in their action selection with E-feedback. When the
E-feedback fits into the users’ mental model, users can derive the consequence of an action
from this mental model (Figure 5.1, the component-specific mental model). The E-feedback
is also responsible for the users’ activation of a mental model. However, if something else
besides the interaction component’s E-feedback were to determine what mental model users
apply, the usability of an interaction component would be partially outside the control of
its designer. Furthermore, a mental model might be applied to control other interaction
components than the one that sent the E-feedback. This would mean that users apply
a mental model to control a series of interaction components in a device (Figure 5.1, the
general mental model). This would favour the use of an integral metaphor instead of a
combination of multiple separate metaphors (composite metaphor) when applied in a user
interface (Smilowitz, 1995). The metaphor should also properly fit the application domain
since the application domain may also be partly responsible for the mental model that
users apply (Smilowitz, 1995).

ﬂ Control Interaction
process component

]]

Interaction
component

w
«

General Control

mental process
model

Component |,
specific
| mental model

: Control
process

. c
e E/I-feedback
;3 Action o

E/I-feedback

J

User System

Figure 5.1: Layered interaction structure between user and system. On the user side, the
relations between the control processes and the mental models are given. Numbers one to
three present the three consistency relations that were studied.

98

Several studies have shown that consistency can affect the overall usability of a device
(e.g. Payne & Green, 1989; Polson, 1988). However, little has been said about whether
consistency can cause interaction components to affect each other’s usability. This study
looks at three situations (Figure 5.1) where this may occur: (Figure 5.1, relation 1) between
interaction components in the same layer; (Figure 5.1, relation 2) between interaction com-
ponents in different layers; and (Figure 5.1, relation 3) between an interaction component
and an application domain. In all situations users misinterpret the E-feedback because of
the mental model they apply. Why users apply a particular mental model may depend on
factors outside the component, such as the feedback of other components or the application
domain.

Before going into the three experiments that studied these three situations, the general
experimental set-up of the experiments is presented. After the report of the experiments,
the findings are discussed in general. The conclusions and further research directions are
given in the final section.

5.2 General experimental set-up

All three experiments were conducted simultaneously under the control of one PC appli-
cation written in Delphi 5. Each subject participated in all three experiments. The 48
subjects (32 male and 18 female), between 18 and 27 years old, were all students at the
Eindhoven University of Technology and received NLG 15 (€ 6.81) for their participation.
The subjects went through the following four phases: welcome phase, training phase, exe-
cution phase and the debriefing phase. In the welcome phase, subjects were brought into
a test room of a usability laboratory. Here, they were told that the aim of the experiment
was to test the usability of a number of consumer devices. Next, the subjects sat down
in front of the PC and the application was started. The experimenter left the test room
and went to the observation room. The application automatically assigned the subjects
to three prototypes and a task order. In the training phase, subjects had to perform two
tasks with a simulation of a clinical thermometer —switching it on, so it was ready to take
someone’s temperature, and displaying the last temperature measured. In these tasks, sub-
jects familiarised themselves with the experimental procedure, i.e. to successfully fulfil the
task as fast as possible, which still could require some exploration of the device. They also
practised using the mouse to click on buttons in the picture (e.g. Figure 5.2) to interact
with a prototype in this simulated environment. Furthermore, the training showed the test
procedure, such as reading an instruction of the screen, pressing a Start button to begin
the task, and pressing a Ready button after completing the task.

In the execution phase, the subjects performed tasks with three different devices in three
sessions. In each session the subjects performed a task with each device. In between the
sessions, the subjects performed a filler task. They heard a fairy tale and were asked
to count the occurrences of two words in the tale. The order in which a subject had to
operate a device was the same in each session. To control possible task/device order or

99

sequencing effects, the six permutations of the task/device order were equally distributed
over the subjects. However, possible interaction effects between the task/device order
and the experimental conditions were assumed to be zero. The design was also counter-
balanced for possible two-way interaction effects between the conditions of the different
experiments (e.g. the confrontation with one inconsistent user interface could make sub-
jects more suspicious about inconsistency in another user interface). However, a possible
three-way interaction between the conditions of the three experiments was again assumed
to be zero.

Throughout the task performance, the message exchange between the interaction compo-
nents of the devices was recorded. This made it possible to apply objective component-
specific measures as described in chapter 3, i.e. the number of messages an interaction
component received. In the debriefing phase, the subjects were asked to fill out a ques-
tionnaire (Appendix B) about the ease-of-use and satisfaction of the devices in general
and some components in particular. As suggested in chapter 3, six ease-of-use questions
were taken from the Perceived Usefulness and Ease-of-Use questionnaire (Davis, 1989) for
each object and two satisfaction questions were taken from the Post-Study System Usabil-
ity questionnaire (Lewis, 1995): one about how pleasant subjects considered something,
and one about how much subjects liked something. This resulted in 64 questions that
were presented to each subject in a random order. While answering questions, the subjects
could see and operate the related prototype. Furthermore, a short description of the object
subjects had to evaluate was presented in Dutch.

5.3 Experiment 1 —consistency within the same layer

The experiment to study the effect of consistency between interaction components within
the same layer was conducted with four simulations of a room thermostat (Figure 5.2). The
room thermostat had two very similar interaction components —daytime and nighttime
temperature— which users presumably expected to be more or less similar things and
therefore could be operated in a similar way.

5.3.1 Method

Figure 5.3 shows a part of the compositional structure of the room thermostat. To control
one of the two temperature interaction components, subjects first pressed the Day or Night
button (to the right of each display). This message was sent to the Router interaction
component and resulted in the selection of one of the temperature interaction components,
which was made visible by turning on a light. After this, the subjects could press the
Left or Right button, which again sent a message to the Router interaction component.
The Router interaction component passed this message on to the selected temperature
interaction component, which adjusted its state accordingly.

100

Figure 5.2: An inconsistent room thermostat. The daytime temperature control is im-
plemented with a moving pointer and fixed scale, and the nighttime temperature control
with a fixed marker and a moving scale. The daytime temperature is selected, which is
indicated by the illumination.

Nighttime
temperature

Daytime
temperature

{Left, Right,
On, Off}

Router

{Day, Night}T T {Left, Right}

Figure 5.3: Part of the compositional structure of the room thermostat.

101

Two versions of both the Daytime and Nighttime Temperature interaction components
were designed, which resulted in four prototypes. In one version of temperature interaction
components, the temperature had a display with a moving pointer and a fixed scale (the
upper temperature control in Figure 5.2), in the other version the display had a fixed
marker and a moving scale (the lower temperature control in Figure 5.2). The Left and
Right buttons had an opposite effect in the two versions. Where a click on the Right button
in the version with a moving pointer would increase the temperature, the same actions in
the version with a fixed indicator and moving scale would decrease the temperature.

The hypothesis was that the performance, the perceived ease-of-use and the satisfaction
is higher when the subjects set the daytime and nighttime temperature with a proto-
type where both temperature interaction component are equipped with the same version,
compared to different versions. The reason given for this effect is that when setting the
temperatures, the subjects would apply the mental model constructed for the first inter-
action component to the other. When dealing with two different versions this approach
would lead to mode errors (Norman, 1981), which the subjects subsequently had to recover
from.

5.3.2 Results

Performance

A MANOVA was conducted on the performance measures: the keystrokes, the task time,
the number of messages received by the Daytime Temperature interaction component, and
the number of messages received by the Nighttime Temperature interaction component.
The analysis took the version of the Daytime Temperature interaction component (2) and
the version of the Nighttime Temperature interaction component (2) as between-subjects
variables. The result of the analysis is presented in Table 5.1.

The multivariate analysis, presented here as the joint measure, found significant main
effects for both the Daytime and the Nighttime versions. No significant two-way effect
was found, although the p. value of 0.052 came close to the 0.05 a-level. To understand
the direction of the effects and the effects on the particular parts of the user interface,
the individual measures were also subjected to univariate analyses with the same between-
subjects variables. The results of these analyses are also presented in Table 5.1.

The analysis of the overall measure task time only revealed a significant main effect for
the Daytime version. Inspection of the mean showed that on average, subjects spent 76
seconds completing the three tasks when the Daytime Temperature interaction component
was implemented with the moving pointer version, and 83 seconds with the moving scale
version. The analysis of the other overall performance measure, the number of keystrokes,
revealed no significant effects.

The analysis of the number of messages received by the Daytime interaction component
revealed a significant main effect for the Daytime version. More messages were received

102

Table 5.1: Results of multivariate and univariate analyses of variance on the performance
measures of the room thermostat for the independent variables Daytime version and Night-

time version.

Daytime version

Nighttime version

Daytime version X
Nighttime version

Measure df’'s F P df’'s F P df’'s F P
Joint measure 4,41 4.69 0.003 4,41 3.97 0.008 4,41 2.57 0.052
Task time 1,44 4.10 0.049 1,44 0.53 0.472 1,44 0.61 0.438
Keystrokes 1,44 143 0.238 1,44 241 0.128 1,44 1.09 0.302
Messages Daytime 1,44 9.58 0.003 1,44 0.05 0.833 1,44 0.65 0.425
Messages Nighttime 1,44 2.60 0.114 1,44 9.22 0.004 1,44 7.06 0.011
24
g .
g moving scale _-__—___—.
g 2i{@==="""7 ="
€
0
) [—
-%\ 18 —a
8 moving pointer
g
§ 15
3
=
12] .
moving pointer moving scale

Nighttime version

Figure 5.4: Number of messages received by the two versions of the Daytime Temperature
interaction component. At least 3 x (3 Left/Right messages + 1 On message + possible
1 Off message) were required to perform all tasks.

103

24
g
=
o
o)
Q 21)
g moving scale
= [)
() Sso -
= s
-~
E 18 Sso -
zZ =
-~
[%2])
0 —
g 15
[2) B
o
s moving pointer
12] .
moving pointer moving scale

Daytime version

Figure 5.5: Number of messages received by the two versions of the Nighttime Temperature
interaction component. At least 3 x (3 Left/Right messages + 1 On message + possible
1 Off message) were required to perform all tasks.

when the Daytime Temperature interaction component was implemented with a moving
scale than with a moving pointer control (Figure 5.4).

The analysis of the number of messages received by the Nighttime interaction component
revealed a significant main effect for the Nighttime version. More messages were also re-
ceived when the Nighttime Temperature interaction component was implemented with the
moving scale than with the moving pointer control (Figure 5.5). In addition, the analysis
found a significant two-way interaction effect between the Daytime and Nighttime versions.
The explanation for this effect is that more messages were received in the prototype which
had the moving pointer version for the Daytime Temperature and the moving scale for the
Nighttime Temperature than in the other three prototypes (Figure 5.5).

Event pairs were studied to see whether the subjects set the nighttime temperature after
they set the daytime temperature, or the other way around. Subjects had to switch from
interacting with one interaction component to the other at least three times. On average,
the subjects switched 3.0 times from sending messages to the Daytime to sending messages
to the Nighttime interaction component. This was significantly (¢(47) = 55.44; p. < 0.001)
more than the other way around because on average, the subjects switched 0.2 times
from sending messages to the Nighttime to sending messages to the Daytime interaction
component.

104

Table 5.2: Cronbach alpha of the questionnaire items related to the room thermostat.

Coefficient Alpha

Measure Description in questions Ease of use Satisfaction

Overall Room thermostat 0.82 0.91

Daytime Control of the day temperature 0.92 0.91

Nighttime Control of the night temperature 0.92 0.94
Questionnaire

Questionnaire answers were analysed to see whether the versions of the temperature inter-
action components affected the subjects’ perceived ease-of-use and their satisfaction. Table
5.2 shows the results of reliability tests performed on the answers of the ease-of-use and
the satisfaction questions related to the room thermostat. All measures had an acceptable
reliability above the 0.7 — 0.8 minimal level often recommended (Landauer, 1997). For ease
of analysis, the averages of the six ease-of-use and the two satisfaction questions for the
three objects (room thermostat and the Daytime and Nighttime Temperature interaction
components) were taken as perceived ease-of-use and satisfaction measures. This reduced
the 24 questionnaire answers for this experiment into 6 subjective measures.

Ease of use A MANOVA was conducted on the ease-of-use measure of the room thermo-
stat, the Daytime Temperature and Nighttime Temperature interaction components. The
analysis again took the Daytime (2) and Nighttime (2) versions as the between-subjects
variables. The results are presented in Table 5.3.

The multivariate analysis (joint measure) found significant main effects for the Daytime
version and the Nighttime version. The analysis also found a significant two-way interaction
effect between the Daytime and Nighttime versions. Again, the individual measures were
separately analysed (Table 5.3). The analysis did not find significant effects in the ease-
of-use questions about the room thermostat.

Analysis of the ease-of-use answers about the control of the day temperature revealed a
significant main effect for Daytime version. On a scale from 1 (low) to 7 (high), the subjects
rated the ease-of-use of the daytime control higher if the component was implemented with
the moving pointer version, instead of the moving scale version (Figure 5.6). The analysis
also revealed a two-way interaction between the Daytime and Nighttime versions. Figure
5.6 shows that the combination of the Daytime Temperature implemented with the moving
scale version and the Nighttime Temperature implemented with the moving pointer version
led to a lower ease-of-use rating of the Daytime Temperature interaction component than
for the other combinations. This explains the significant two-way interaction effect found.

105

Table 5.3: Results of multivariate and univariate analyses of variance on the ease-of-use
measures of the room thermostat for the independent variables Daytime version and Night-

time version.

Daytime version X

Daytime version Nighttime version Nighttime version
Measure df’s F P df’s F P df’'s F P
Joint measure 3,42 743 <0.001 3,42 9.81 <0.001 3,42 3.49 0.024
Room thermostat 1,44 2.30 0.136 1, 44 177 0.190 1,44 290 0.096
Daytime 1,44 11.52 0.001 1, 44 1.02 0.317 1,44 4.18 0.047
Nighttime 1,44 2.78 0.102 1,44 20.24 <0.001 1,44 773 0.008
7.0
g —
2 6,04 Moving pointer .
g . _—‘_‘_——_.
€ -——-—-——
g s50|e=
g moving scale
S 40
©
a
8 30
IS
% 20
hi
10 |]
moving pointer moving scale

Nighttime version

Figure 5.6: Ease-of-use rating of the two versions of the Control of the day temperature.

106

7.0
R—

601 Mmoving pointer

g
=]
©
S
o)
Q.
S
& 5.0 -
. -
o ="
= . |
£ moving scale
£ 40 g
2
2
¢ 30
]
©
o 20
[}
©
w
1.0 w L]
moving pointer moving scale

Daytime version

Figure 5.7: Ease-of-use rating of the two version of the Control of the night temperature.

The univariate analysis of the ease-of-use rating of the control of the night temperature
revealed a significant main effect for the Nighttime version. For the case of the Nighttime
Temperature, the subjects again rated the moving pointer version higher than the moving
scale (Figure 5.7). The analysis found a two-way interaction between the two versions.
The reason for the effect was that the subjects rated the control of the night temperature
the lowest when the Nighttime Temperature was implemented with the moving scale and
the Daytime Temperature was implemented with the moving pointer version.

Satisfaction A MANOVA was conducted on the satisfaction with the room thermostat,
the Daytime Temperature and Nighttime Temperature interaction components. The anal-
ysis took the same between-subjects variables as in the previous analyses. The results are
presented in Table 5.4.

The multivariate analysis (joint measure) revealed significant main effects for both the
Daytime version and the Nighttime version. The analysis did not find a significant two-way
interaction effect for the versions. Univariate analyses on the individual measures were also
conducted (Table 5.4). The analysis of the satisfaction with the room thermostat revealed
no significant effects.

The analysis on the rating of the satisfaction with the control of the day temperature found
a significant main effect for the Daytime version. On a scale from 1 (low) to 7 (high),
the subjects rated the satisfaction of the Daytime control higher if this component was
implemented with the moving pointer, instead of the moving scale version (Figure 5.8).

The analysis on the rating of the satisfaction with the control of the night temperature found
a main effect for the Nighttime version. The satisfaction with the night temperature was

107

Table 5.4: Results of multivariate and univariate analyses of variance on the satisfac-
tion measures of the room thermostat for the independent variables Daytime version and

Nighttime version.

Daytime version

Nighttime version

Daytime version X
Nighttime version

Measure df’s F P df’s F P df’'s F P
Joint measure 3,42 1231 <0.001 3,42 11.52 <0.001 3,42 1.70 0.181
Room thermostat 1, 44 1.53 0.223 1, 44 1.30 0.260 1,44 294 0.094
Daytime 1,44 1542 <0.001 1,44 1.49 0.229 1,44 3.43 0.071
Nighttime 1,44 2.63 0.112 1,44 18.12 <0.001 1,44 4.12 0.049
7.0

g .nlvingpointer

3 6.0 —

<3

E 5.0 PR

Q —""

IS ‘———

S 4.0 L=

© -

a moving scale

é 3.0

8

-% 2.0

»

1.0

moving pointer

Nighttime version

moving scale

Figure 5.8: Satisfaction rating of the two versions of the Control of the day temperature.

108

7.0
o . int
5 moving pointer
® 6.0 .
b .
£

L

2 50 PP
[} -
€ -
= "——
_*g) 4.0 - -
= moving scale
c
g 30
©
]
®
2 2.0
n

1.0 w L]

moving pointer moving scale

Daytime version

Figure 5.9: Satisfaction rating of the two versions of the Control of the night temperature.

rated higher when it was implemented as a moving pointer instead of a moving scale (Figure
5.9). Furthermore, the analysis found a significant two-way interaction effect between the
Daytime and Nighttime versions. The low rating of the moving scale implementation of the
night temperature, when the Day Temperature was implemented with the moving pointer
version caused this interaction effect (Figure 5.9).

5.3.3 Discussion

The interaction effects found in the number of messages received by the Nighttime Tem-
perature interaction component, in the ease-of-use and in the satisfaction rating of the
night temperature control support the initially stated hypothesis. As hypothesised, the
performance, the perceived ease-of-use and the satisfaction were higher when the subjects
set the daytime and nighttime temperature with a prototype where both temperature in-
teraction components were equipped with the same version than with different versions.
This is again in line with the more general idea that inconsistency within one layer can
reduce the usability of the interaction components.

The explanation for the significant interaction effects found may be that the mental model
the subjects create when setting the daytime temperature was applied to understand the
E-feedback of the Nighttime Temperature interaction component. This led to the per-
formance of the wrong actions for the control of the Nighttime Temperature interaction
component.

The significant interaction effects were always found in the component-specific measures of
the Nighttime Temperature interaction component and only once in a component-specific
measure (ease-of-use) of the Daytime Temperature. A preference in the task execution

109

seems to be the reason why interaction effects were primarily found in the component-
specific measure of the Nighttime Temperature interaction component. The analysis of the
event pairs showed that the daytime temperature was generally set before the nighttime
temperature instead of afterwards. This preference in sequence stopped the mental model
of the nighttime temperature from being activated when the subjects operated the daytime
temperature. The reason why the subjects started with the daytime temperature might
be the upper location of the daytime temperature display or because the instruction text
first mentioned the daytime temperature, followed by the nighttime temperature.

Another observation was that the decrease in usability only occurred when the Daytime
Temperature interaction component was implemented with the moving pointer version and
the Nighttime Temperature interaction component with the moving scale version and not
the other way around. One explanation for this is that the moving pointer version activated
a more powerful (often or recently applied) mental model than that of the moving scale
version, which consequently increased the likelihood that the E-feedback of the Nighttime
Temperature interaction component was interpreted in the light of this mental model.
The findings that the moving pointer version was more usable support the idea of a more
powerful mental model.

An observation, not directly related to this experiment, but more to chapter 3, is the fact
that the analyses of the overall measures only revealed a significant effect once, a main
effect for Daytime version in the task time. This confirms the main hypothesis of chapter
3 that component-specific measures can be more powerful than overall measures.

5.4 Experiment 2 —consistency between lower-level
and higher-level layers

The experiment to study the effect of consistency between interaction components in differ-
ent layers was conducted with four simulations of a web-enabled TV set. A mistake that
novice Lynx users probably easily make, served as a model for a possible inconsistency
problem between two layers. Lynx is a text-based web browser that allows users to access
the web in non-graphical environments without the use of a mouse. Users can select the
links with the Up and Down arrow buttons on the keyboard. To activate the selected link,
users have to press the Right arrow. With the Left arrow, users can return to the previous
page. The possibility of an error may increase when links in the web page are placed on the
same line. The supposed error occurs because of the activation of an inappropriate mental
model —horizontal positioning with the Left and Right arrows. This example suggests
that even although the Internet architecture is developed to make web pages independent
from the browsers, users might run into trouble when on a higher-level layer the web-page
server activate an inappropriate mental model for the interpretation of lower-level browser

E-feedback.

110

Web pages

{go to home page, activate link [x], go to {show web page}
previous page}

Television Browser
{tv on, tv off, up, down, left, right, mlddl {web on, web off, home, scroll up, scroll
volume up, volume down, channel up, down, back, up, down, left, right, middle}

channel down}

Router

{web tv, home, scroll up, scroll down, back,
up, down, left, right, middle, volume up,
volume down, channel up, channel down}

Figure 5.10: Part of the compositional structure of the web-enabled TV set.

5.4.1 Method

The tasks the subjects had to perform, using a web-enabled TV set, was to find the web
page that gave the departure times of a bus based on the bus stop, the bus number, the
city and the province, which were all given in the instruction. The home page of the web-
enabled TV set simulation was a fictitious Dutch bus travel information site (Figure 5.11
& 5.12). From the home page, the subjects could navigate through the Bus site, which
consisted of 157,637 web pages.

Figure 5.10 shows a part of the compositional structure of the web-enabled TV set. All
button clicks were received by the Router, which passed it on to the Television or the
Browser interaction component, depending on which one was selected at that moment.
The function of the Browser was to display a web page and make it possible to select a link
in the web page. When the subjects activated a link, or requested the home or previous
page, the Browser sent this request to the Web Pages interaction component. The Web
Pages interaction component retrieved the required web page and passed it back to be
displayed.

The experiment had a 2 (web pages) x 2 (browser) design. Variation in the web page’s

111

Busdiensten Nederland
Selecteer Provincie

Orenthe Flevoland Friesland Gelderland Groningen

Limburg Noord-Brabant Noord-Holland Oerijssel Utrecht
Teeland Luid-Holland

Busdiensten Nederland

Selecteer Provincie
Drenthe

Flevnland
Frishnd
Gelderland
Groningen
Limburg
Noord-Brabant
Noord-Halland
Orarijseal
Utracht
Tualand
Tuid-Holland

Figure 5.12: List page layout with links only one below the other.

112

layout led to two versions of the Web Pages interaction component. One layout, the
matriz layout, placed the web links in a web page both on the same line and one below
the other (Figure 5.11). The other layout, the list layout, placed all links one below the
other (Figure 5.12). On the PC screen, the image of the remote control was displayed
in an upright position to the right of the image of the TV set. Variations in the remote
control led to two versions of the Browser interaction component. For one remote control,
the linear-oriented version (Figure 5.13 right), the Up and Down buttons were interpreted
as, select the previous link or select the next link in succession. The sequence went from
left to right and continued on the left of the next line. The Left and Right buttons were
interpreted as jumping to the previous web page and activate the selected link. For the other
remote control, the plane-oriented version (Figure 5.13 left), the Up and Down buttons
were interpreted as select the link above and select the link below the current link selected.
Consequently, the Left and Right buttons were interpreted as select the link left or right
from the current link selected. The subjects could jump to the previous web page with the
Back button and activate the selected link with the Middle button.

— POWER —
wEB TV

— POWER —
wea 1y

Web TV on/off — FE TV on/off Web TV on/off — pueliguy — TV on/off

HOME SCROLL HOME ~ SCAOLL

Go to home page Scroll up Go to home page &8 Scroll up
Go to previous page Scroll down ‘ ‘ Scroll down
Select link above Select previous link — BESSS
Select link left Activate link Go to previous page i e Activate link

Select link right

Select link below Select next link

Volume up Next channel

Volume up Next channel

Volume down Previous channel

Volume down Previous channel

Plane-oriented Linear-oriented

Figure 5.13: The remote controls and their functions, which subjects could use in the
experiment. Left, the plane-oriented remote control with the Left and Right arrows to
select the left and right links. Right, the linear-oriented remote control with the Left arrow
button to jump to previous web page and the Right arrow button to activate selected link.

Combining the different versions led to four prototypes. Of the four prototypes, the pro-
totype combining the matrix page layout and the linear-oriented browser was expected to
result in the lowest performance, ease-of-use and satisfaction of the Browser interaction
component. This low usability would not be explainable by the main effects of Browser

113

Table 5.5: Results of multivariate and univariate analyses of variance on the performance
measures of the web-enabled TV set for the independent variables Browser version and
Web Pages version.

Browser version X

Browser version Web Pages version Web Pages version
Measure df’s F D df’s F D df’s F P
Joint measure 3,42 11.38 <0.001 3,42 9.21 <0.001 3,42 10.13 <0.001
Keystrokes 1,44 15.21 <0.001 1,44 3.31 0.076 1,44 7.89 0.007

Messages Browser 1,44 13.78 0.001 1,44 3.32 0.075 1,44 6.79 0.012
Messages Web Pages 1,44 24.22 <0.001 1,44 15.62 <0.001 1,44 16.82 <0.001

and the Web Pages versions separately, but was expected as a result of an interaction effect
between the versions of the two interaction components.

5.4.2 Results

Performance

The minimal number of keystrokes and messages received by the Browser required to
perform the tasks were different in the four prototypes. Therefore, instead of analysing
these absolute numbers, the number of keystrokes and messages received by the Browser
that were needed in addition to the minimal numbers were analysed by subtracting the
minimal numbers from the observed ones. Because the task time could not be corrected
in this way, analyses of the task time were were not carried out.

A MANOVA was conducted on the keystrokes, the number of messages received by the
Browser and the number of messages received by the Web Pages interaction component.
The analysis took the versions of the Browser (linear- or plane-oriented) and the Web
Pages (matrix or list layout) as between-subjects variables. The result of the analysis is
presented in Table 5.5.

The multivariate analysis (joint measure) found significant main effects for the Browser ver-
sion and the Web Pages version. Furthermore, the analyses also found a significant two-way
interaction effect between the Browser version and the Web Pages version. The individual
measures were subjected to individual univariate analyses with the same between-subjects
variables as in the multivariate analysis. The results are also presented in Table 5.5.

The analysis of the number of keystrokes found a significant main effect for the Browser
version. The subjects made more keystrokes when operating the linear-oriented than the

114

40
linear-oriented
30
[}
Q
X
o
7 20
>
©)
X
10
0-----______-_ plane-oriented
-_— - - - e - -y .
0

list matrix

Web Pages version

Figure 5.14: Number of keystrokes (needed in addition to minimal number) the subjects
made when operating the web-enabled TV set with the two different browser versions.

plane-oriented browser (Figure 5.14). The analysis also found a significant two-way inter-
action effect between the Browser version and the Web Pages version. The explanation for
this effect is that more keystrokes were made in the prototype that combined the linear-
oriented browser and the matrix Web Pages than in the other prototypes (Figure 5.14).

The analysis of the number of messages received by the Browser interaction component
revealed practically the same result as the analysis on the keystrokes. The analysis also
found a significant main effect for the Browser versions. More messages were received when
prototypes were equipped with the linear-oriented browser than with the plane-oriented
version (Figure 5.15). The analysis also found a significant two-way interaction effect
between the Browser version and the Web Pages version. The explanation for this effect
is that more messages were received in the prototype that combined the linear-oriented
Browser and matrix Web Pages versions than in the other three prototypes (Figure 5.15).

The analysis conducted on the number of messages received by the Web Pages interac-
tion component revealed significant main effects for the Browser version and Web Pages
versions. The Web Pages interaction component received more messages when a proto-
type was equipped with the linear-oriented instead of the plane-oriented version of the
Browser, and when a prototype was equipped with the matrix instead of the list version of
the Web Pages interaction component (Figure 5.16). The analysis also found a significant
interaction effect between the Browser version and the Web Pages version. As before,
the explanation was that more messages were received in the prototype that combined
the linear-oriented Browser version and the matrix Web Pages version than in the other
prototypes (Figure 5.16).

The standardised reception coefficient (SRC) of the browser was calculated to see whether

115

Messages Browser

Figure 5.15: Number of messages received (needed in addition to minimal number) by the

40

30

20

10

.'-—---———__
----——__.

linear-oriented

plane-oriented

list

matrix

Web Pages version

two Browser interaction component versions.

Messages Web Pages

Figure 5.16: Number of messages received by the two Web Pages interaction component

30

matrix

27 S

24

21
list
C—=—

18

linear-oriented

plane-oriented

Browser version

versions. At least 18 messages were needed to perform all tasks.

116

Table 5.6: Mean standardised reception coefficient values of the Browser interaction com-
ponent.

Web Pages
Browser List Matrix
Linear-oriented 0.95%* 1.18**
Plane-oriented 0.94** (0.94*

Note. Hy: value = 1.
*p. <. 05. ¥*p. <. 01.

Table 5.7: Cronbach alpha of the questionnaire items related to the web-enabled TV set.

Coefficient Alpha

Measure Description in questions Ease of use Satisfaction

Overall The bus Internet site when 0.91 0.92
accessed through the webtv

Browser Webtv browser 0.90 0.90

Web Pages Bus Internet site 0.89 0.86

the users sent unintentionally more messages to the Web Pages interaction component than
required. The SRC is a ratio between the number of messages actually received and the
number of messages the interaction component would receive if it operated efficiently while
satisfying its higher-level demand (Equation 3.1).

The results (Table 5.6) show that the Browser’s SRC value was only higher than 1 (optimal
performance) when the prototype was equipped with the linear-oriented Browser version
and matrix Web Pages version. In the three other prototypes, the browser’s SRC value
was below 1.

Questionnaire

Table 5.7 shows the results of the reliability analyses performed on the answers of the ease-
of-use and satisfaction questions related to the web television experiment. All measures
have an acceptable reliability level of more than 0.8. Again, for the ease of analysis, the
averages of the answers on the ease-of-use and satisfaction questions were calculated for
the analyses of variance. This reduced the 24 questionnaire answers for this experiment to
6 subjective measures.

117

Table 5.8: Results of multivariate and univariate analyses of variance on the ease-of-use
measures of the web-enabled TV set for the independent variables Browser version and
Web Pages version.

Browser version x

Browser version Web Pages version Web Pages version
Measure df’s F D df's F P df's F P
Joint measure 3, 42 3.58 0.022 3,42 1.68 0.187 3,42 1.96 0.135
Overall 1,44 10.07 0.003 1,44 3.38 0.073 1,44 5.88 0.019

Webtv browser 1,44 6.42 0.015 1,44 4.13 0.048 1,44 5.87 0.020
Bus Internet site 1,44 7.24 0.010 1,44 5.05 0.030 1,44 5.63 0.022

Ease of use A MANOVA was conducted on the ease-of-use measure of the overall set-
up (the bus Internet site when accessed through the webtv), the Browser and the bus
Internet site. The analysis took the Browser version (2) and the Web Pages version (2) as
between-subjects variables. The results are presented in Table 5.8.

The multivariate analysis (joint measure) only revealed a significant main effect for the
Browser versions. The results of the univariate analyses of the individual ease-of-use mea-
sures are presented in Table 5.8 as well. The analysis of the overall ease-of-use measure (Bus
site accessed through the webtv browser) found a significant main effect for the Browser
version. The ease-of-use of the bus site when accessed through the webtv browser was
rated higher when the prototype was equipped with the plane-oriented browser version
than with the linear-oriented version (Figure 5.17). The analysis of the overall measure
also found a significant two-way interaction effect between the Browser version and the
Web Pages version. The explanation for this effect is the lower rating for a prototype that
combined the linear-oriented Browser version and the matrix Web Pages version than for
the other prototypes (Figure 5.17).

The analysis of the ease-of-use rating of the browser revealed significant main effects for
the Browser version and the Web Pages version. The ease-of-use of the browser was rated
lower when a prototype was equipped with the linear-oriented instead of the plane-oriented
browser version, or with the matrix instead of the list version of the Web Pages interaction
component (Figure 5.18). Furthermore, the analyses revealed a two-way interaction effect
between the Browser version and the Web Pages version, which can be explained by the
lower browser rating in the prototype equipped with the linear-oriented Browser version
and the matrix Web Pages version than in the other prototypes (Figure 5.18).

The univariate analysis of the ease-of-use rating of the bus Internet site revealed main effects
for the Browser version and for the Web Pages version. The ease-of-use of the bus Internet
site is rated lower when the prototype was equipped with the linear-oriented instead of the

118

plane-oriented

linear-oriented

2.09

Ease of use Bus site visited with WebTV

1.0

list matrix

Web Pages version

Figure 5.17: Ease-of-use ratings of the bus Internet site when accessed through the webtv
for the two browser versions.

7.0

plane-oriented

6.0

5.0

linear-oriented

4.0

3.0

Ease of use Browser

2.0

1.0

list matrix

Web Pages version

Figure 5.18: Ease-of-use ratings of the webtv browser for the two browser versions.

119

7.0
Q = _—’ﬁ'-_.
2 6.01 list "
@ —‘—_“
c [4
o 5.0 matrix
g
£
3
m 4.0
)
]
]
s 30
)
3
w20
1.0 w w
linear-oriented plane-oriented

Browser version

Figure 5.19: Ease-of-use ratings of the bus Internet site for the two Web Pages versions.

plane-oriented browser, or when the pages were presented in a matrix layout instead of the
list layout (Figure 5.19). The analysis also found a significant two-way interaction effect
between the Browser version and Web Pages version. Again, the explanation is the lower
rating of the bus Internet site for the prototype that combined the linear-oriented browser
and the matrix Web Pages version compared to the other prototypes.

Satisfaction A MANOVA was conducted on the satisfaction rating of the bus Internet
site when accessed through the webtv, the Browser, and the Bus Internet site. The between-
subjects variables were the same as in the previous analyses. Table 5.9 shows the results
of both the multivariate and univariate analyses on the individual satisfaction measures.

The multivariate analysis (joint measure) revealed a significant main effect for the Browser
version. Furthermore, the analysis found a significant two-way interaction effect between
the Browser version and the Web Pages version. Again, the univariate analyses gave insight
into the direction of the effects. The analysis of the overall satisfaction measure for the
Bus Internet site when accessed through the webtv browser found a significant main effect
for the Browser version. The overall satisfaction was rated lower for a prototype equipped
with linear-oriented version than with a plane-oriented version (Figure 5.20). The analysis
also revealed a two-way interaction effect between the Browser version and the Web Pages
version. The reason for this effect can be seen in Figure 5.20. The subjects rated the
prototype combining the linear-oriented Browser version and matrix version of Web Pages
lower than all the other prototypes.

The analysis of the satisfaction of the webtv browser revealed significant main effects for
the Browser version and the Web Pages version. Figure 5.21 shows that the subjects rated
the satisfaction higher for prototypes equipped with the plane-oriented, instead of the

120

Table 5.9: Results of multivariate and univariate analyses of variance on the satisfaction
measures of the web-enabled TV set for the independent variables Browser version and

Web Pages version.

Browser version

Web Pages version

Browser version X
Web Pages version

F

Measure df’s P df’s F P df’s F P

Joint measure 3,42 4.85 0.005 3,42 2.68 0.059 3,42 492 0.005
Overall 1,44 11.87 0.001 1,44 3.30 0.076 1,44 12.75 0.001
Webtv browser 1,44 15.21 <0.001 1,44 5.71 0.021 1,44 1521 <0.001
Bus internet site 1,44 8.58 0.005 1,44 7.82 0.008 1,44 10.21 0.003

7.0

Satisfaction Bus site visited with WebTV

1.0

6.01

5.01

4.04

3.01

2.09

plane-oriented

linear-oriented

list

Web Pages version

matrix

Figure 5.20: Satisfaction ratings of the bus Internet site when accessed through the webtv

for the two browser versions.

121

7.0
—-———-—--—————f——.
> << plane-oriented
@
2
2 50
o
m
S 40
g linear-oriented
2 30
©
n
2.0
10/ -
list matrix

Web Pages version

Figure 5.21: Satisfaction ratings of the webtv browser for the two browser versions.

linear-oriented browser version, and with the list instead of the matrix page layout. The
analysis also found a significant two-way interaction effect between the Browser version
and the Web Pages versions. The explanation is the lower browser rating subjects gave to
the prototype combining the linear-oriented browser and matrix page layout compared to
the other prototypes (Figure 5.21).

The analysis of the satisfaction rating of the bus Internet site revealed significant main
effects for the Browser version and the Web Pages version. Figure 5.22 shows that subjects
rated satisfaction of the web site higher when a prototype was equipped with the plane-
oriented instead of the linear Browser version, and with the list instead of the matrix
page layout. In addition, the analysis found a significant two-way interaction effect. An
explanation for this interaction effect can be found in Figure 5.22. The subjects rated the
bus Internet site lower for the prototype combining the linear-oriented browser version and
the matrix page layout compared to the other prototypes.

5.4.3 Discussion

The interaction effects found between the Browser version and the Web Pages version in
the number of keystrokes, in the number of messages received by the Browser and Web
Pages, in the ease-of-use and in the satisfaction rating of the Bus site accessed through
the webtv browser, the browser and the bus Internet site, all support the initially stated
hypothesis. The prototype combining the linear-oriented browser and matrix web pages
layout was correctly hypothesised to have a lower usability than the other prototypes.
The experiment shows that inconsistency between interaction components that operate
on different layers can affect the usability of the individual interaction components. The

122

7.0
6.0{ == _a'—‘
list -
8 -
» 50 ="
>
m Y
S 40 .
b5 matrix
8
(2]
= 3.0
n
2.0
1.0 w w
linear-oriented plane-oriented

Browser version

Figure 5.22: Satisfaction ratings of the bus Internet site for the two Web Pages versions.

usability reduction of the lower-level interaction component can be explained by the ap-
plication of an inappropriate mental model. However, the explanation for the usability
reduction of the higher-level interaction component is not clear yet. One explanation is
that this was caused by an effectiveness reduction of the lower-level interaction component.
When operating the prototype, in which the matrix and the linear-oriented browser ver-
sions were implemented, the subjects more often requested the retrieval of web pages than
in other prototypes. Presumably, the subjects unintentionally activated links because they
mistook the Right button for selecting the right link, instead of activating the current link.
This means that the subjects sent more messages to the higher-level interaction component
than they wanted, which is defined as an effectiveness problem of the lower-level interaction
component (chapter 3). The results of the browsers’” SRC —an ineffectiveness indicator—
confirmed this idea. The SRC value was significantly higher than one, indicating ineffec-
tiveness, for the prototype with the linear-oriented Browser version and matrix Web Pages
version. This means that although the higher-level interaction component partly caused
the activation of an inappropriate mental model to be applied to the lower-level interac-
tion component, the higher-level performance reduction can not solely be attributed to the
usability of the higher-level interaction component. However, this does not explain why
the subjects rated the ease-of-use of the Web Pages, i.e. the bus Internet site, lower and
were less satisfied with it when they had operated this prototype instead of the other three
prototypes.

Three explanations can be offered for the interaction effect in the perceived ease-of-use
and satisfaction of the Web Pages: (1) the subjects made no distinction between the two
interaction components; (2) the subjects rated the Web Pages interaction component for
suitability in the context of the Browser; (3) or the subjects made no distinction in their

123

control experience of the two interaction components. The first explanation suggests that
the subjects could not separate the browser from the bus site. However, this is unlikely.
The subjects were reasonably experienced Internet users, especially as most of them have a
laptop with an Internet connection as part of a university program. The second explanation
suggests that the subjects ignored the object of evaluation and answered the questions as
they were supposed to answer the overall questions, which referred to the bus Internet site
when accessed through the webtv. This is not in line with the previous study described in
chapter 4, where the subjects were able to evaluate interaction components. However, the
previous study also suggested that the subjects took into account their control experience
of other interaction components when rating an interaction component’s ease-of-use. This
fits well with the third explanation. The subjects did not separate their control experience.
The control experience of the browser could have affected the subjects’ emotional state.
Their emotional state in turn could have affected their control experience of the bus site
and consequently their bus site evaluation. Which is not unlikely since the emotional state,
e.g. mood, has proven to affect people when they evaluate products (Curren & Harich,
1994).

5.5 Experiment 3 —consistency between the compo-
nent and the application domain

Does the usability of a data browser change when it is deployed in a mobile telephone
to navigate through text messages or in a digital camera to navigate through pictures?
The last experiment studied the effect the application domain has on the usability of
an interaction component. The application domain may activate a general mental model,
which in turn may activate a component-specific mental model, which users apply to control
an interaction component (Figure 5.1). The difference with the previous experiments is that
it is not the E-feedback of other components, but the users’ idea of operating a particular
device that determines what component-specific mental model they apply. When a general
mental model affects the usability of an interaction component, user interface designers
should apply an integral metaphor that suits the application domain, instead of individual
metaphors for each component, or metaphors that do not fit with the application domain.

The experiment took a radio alarm clock and a microwave as applications in which two
versions of a clock were implemented. In the radio alarm clock (Figure 5.23), the clock
determined when the radio should be switched on, and in the microwave (Figure 5.24), the
clock determined when the cooking should start.

5.5.1 Method

The task the subjects had to perform with the microwave was to set a timer, the cooking
time and the power. For the radio alarm clock, the subjects had to set the alarm time, the

124

mode g + left right

™ + start/stop

Figure 5.23: User interface of the radio alarm clock with a hot dish presented next to the

timer time.

Figure 5.24: User interface of the microwave with a ringing mechanical alarm clock pre-
sented next to the timer time.

125

Radio
receiver

{tiW\ {volume level}
{radio frequenc

y}T

Clock Channel Volume

v 5 v 5 v
|

{mode, +, -, left, {+ {start/stop} {7}
right, on/off}

Figure 5.25: Part of the compositional structure of the radio alarm clock.

radio channel and the volume. Both the compositional structures of the radio alarm clock
(Figure 5.25) and the microwave (Figure 5.26) included the interaction component Clock.
This interaction component was responsible for the current time and the timer time. To
see and to set these times, the subjects had to press the Mode button to put the clock
in the required mode. After this, the subjects could press the + and - button to increase
or decrease a digit and the Left and Right button to select another digit. The subjects
activated the timer with the On/Off button. When the timer went off, the message time
went off was sent to the Period interaction component in the case of the microwave or to
the Radio Receiver interaction component in the case of the radio alarm clock.

The fit or misfit between the application domain and the clock was in the clock’s E-feedback
that was presented along with the timer time. In one version, the mechanical alarm version,
the symbol of a ringing mechanical alarm clock was shown, in the other version, the hot
dish version, a symbol of a hot dish (Figure 5.27). The clock had four different modes:
displaying the current time, displaying the timer time, setting the current time, and setting
the timer time. The current time was presented along with a symbol of a clock (Figure
5.27). The timer time was presented along with the ringing mechanical alarm clock or the
hot dish.

When the subjects performed a task with the radio alarm clock, the expectation was that
the task of setting the alarm of an alarm clock would activate a general model on alarm
clocks, which subsequently activates a component-specific mental model on setting the
alarm of alarm clocks. In light of this activated component-specific mental model, subjects
could more easily understand the E-feedback the time the timer will go off or in this
domain the time that the alarm will go off by being presented with the ringing mechanical

126

High
voltage
system

{Oy Wervaluﬂ

Period % Power

5 v
{timer weny A A

Clock

!

{mode, +, -, left, {start/stop, +, -} {+}
right, on/off}

Figure 5.26: Part of the compositional structure of the microwave.

haml A
e — o

Ringing mechanical Hot dish Clock
alarm clock

Figure 5.27: Symbols presented along with the current time and the timer time. On the
left and in the middle, symbols that were presented with the timer time, (left) a ringing
mechanical alarm clock, and (middle) a hot dish. On the right, the clock symbol that was
presented along with the current time.

127

Table 5.10: Results of multivariate and univariate analyses of variance on the performance
measures of the radio alarm or the microwave for the independent variables Clock version
and Application domain.

Clock version x

Clock version Application domain Application domain
Measure df's F D df's F P df's F P
Joint measure 2,43 0.59 0.560 2,43 3.73 0.032 2,43 0.01 0.988
Keystrokes 1,44 0.87 0.356 1,44 4.05 0.050 1,44 0.02 0.885

Mode messages 1,44 1.19 0.282 1,44 7.57 0.009 1,44 0.02 0.877

alarm clock symbol than being presented with a hot dish symbol. In terms of semiotics,
the subjects could more easily associate the signifier with the signified (Chandler, 2002).

The opposite was expected for subjects that perform a task with the microwave. Setting the
microwave was expected to activate a general model on cooking devices, which subsequently
activated a component-specific mental model on controlling cooking processes. In this
domain, the same E-feedback of the clock would now signify the time the cooking begins.
With the component-specific mental model activated, the hot dish symbol was expected to
present this better than the ringing mechanical alarm clock symbol. The hypothesis was
that the performance, perceived ease-of-use and satisfaction would be higher for prototypes
where the symbol presented next to the timer time suited the application domain than for
prototypes where this did not fit.

5.5.2 Results
Performance

As in the previous experiment, the minimal number of keystrokes required to perform
the tasks were different in the prototypes. Therefore, instead of the absolute number, the
number of keystrokes made in addition to the minimal number was analysed by subtracting
the minimal number from the observed one.

A MANOVA was conducted on the keystrokes, and the number of Mode messages received
by the Clock interaction component. The analysis took the Clock version (2) and Appli-
cation domain (2) as between-subjects variables. Table 5.10 presents the results of both
the multivariate and univariate analysis on these two measures. The multivariate analysis
found a significant main effect for the Application domain. A significant main effect for
the Application domain was also found in the univariate analysis of the keystrokes. The
subjects needed more keystrokes for the microwave prototype than for the radio alarm
clock (Figure 5.28).

128

70

microwave
60 ®~mao
- -y -~y - -
5
§ 401 @
®
o 304 alarm radio ==
X
20
10
0
hot dish mechanical alarm

Clock version

Figure 5.28: Number of keystrokes subjects made (in addition to the minimal number
required) when operating the radio alarm clock or the microwave.

27

hot dish

24

21

18

Number of Mode messages received

15
mechanical alarm
12
g L] L]
Alarm radio Microwave

Application domain

Figure 5.29: Number of Mode messages the two versions of the Clock interaction component
received. At least 9 were required to perform all tasks.

129

Table 5.11: Cronbach alpha of the questionnaire items related to the radio alarm clock or
the microwave.

Coefficient Alpha

Measure Description in questions Ease of use Satisfaction
Application radio alarm or microwave 0.94 0.84
Clock clock/alarm or clock/timer 0.92 0.92

The univariate analysis of the number of Mode messages received by the Clock interaction
component also found a significant main effect for the application domain. The subjects
more often changed the clock mode when they operated the microwave than when they
operated the radio alarm clock (Figure 5.29). Both the multivariate and univariate anal-
yses did not find a significant main effect for the Clock version, or a significant two-way
interaction effect between Clock version and the Application domain.

Questionnaire

The results of reliability analyses conducted on the answers of the ease-of-use and the
satisfaction questions are given in Table 5.11. All measures have an acceptable reliability
level of more than 0.8. As before, the averages of the 16 answers on the ease-of-use and
satisfaction of the application and the Clock interaction component was calculated to create
4 subjective measures.

Ease of use A MANOVA on the ease-of-use measures of the applications and the clock
with Clock version (2) and Application domain as between-subjects variables produced
no significant effects (Table 5.12). However, the univariate analyses on the ease-of-use of
the application and on the clock, revealed a significant effect for the Clock versions. The
subjects felt the application as well as the clock was harder to use when the clock was
implemented with the hot dish than with the ringing mechanical alarm symbol (Figure
5.30 and 5.31).

Satisfaction A MANOVA on the satisfaction measure of the application and the clock,
with the same between-subjects variables, produced a significant effect for the Application
domain (Table 5.13). This effect was also found in the satisfaction rating of the clock. Fig-
ure 5.33 shows that the subjects were more satisfied with the clock in the radio alarm than
in the microwave. The univariate analysis of the satisfaction of the application revealed a
significant main effect for the Clock version. The satisfaction of the application was higher

130

Table 5.12: Results of multivariate and univariate analyses of variance on the ease-of-use
measures of the radio alarm or the microwave for the independent variables Clock version

and Application domain.

Clock version

Application domain

Clock version x
Application domain

Measure df’'s F P df’'s F P df’'s F P

Joint measure 2,43 3.10 0.056 2,43 228 0.114 2,43 0.78 0.465

Application 1,44 6.01 0.018 1,44 0.64 0.427 1,44 1.19 0.281

Clock 1,44 6.25 0.016 1,44 2.02 0.162 1,44 0.67 0.417
7.0

6.04 radio alarm

S —
8 sole®
[} microwave
o
<
o 4.0
1]
=}
©
o 3.0
[}
<
L
2.0
1.0]
hot dish

Clock version

mechanical alarm

Figure 5.30: Ease-of-use rating of the radio alarm clock and the microwave.

131

7.0
mechanical alarm

S
O 5.01 hotdish
O —
[0}
(2]
5 40
©
by
c 3.0
]

2.0

1.0] .

radio alarm clock microwave

Application domain

Figure 5.31: Ease-of-use rating of the two Clock versions.

when the application was equipped with the ringing mechanical alarm Clock version than
with the hot dish version (Figure 5.32).

5.5.3 Discussion

The lack of significant interaction effects between the Clock version and the Application
domain in the analysis of the performance, the perceived ease-of-use and the satisfaction
measures does not offer support for the hypothesis that inconsistency between the appli-
cation domain and the clock reduces the clock’s usability. Besides the straightforward
interpretation that there is no general mental model that indirectly influences the control

Table 5.13: Results of multivariate and univariate analyses of variance on the satisfaction
measures of the radio alarm or the microwave for the independent variables Clock version
and Application domain.

Clock version x
Clock version Application domain Application domain

Measure df's F D df's F P df's F P
Joint measure 2,43 2.02 0.146 2,43 7.92 0.001 2,43 0.54 0.589

Application 1,44 4.13 0.048 1,44 2.02 0.162 1,44 0.01 0.920
Clock 1,44 3.34 0.075 1,44 8.48 0.006 1,44 0.30 0.590

132

7.0

6.0

c
2 dio al
b= radio alarm
Lo 50 ——— L
f=3 —mm=—"
< e-=-"""
c 4.0 .
o microwave
©
IS
»w 3.0
L
n
2.0
1.0 w w
hot dish mechanical alarm

Clock version

Figure 5.32: Satisfaction rating of the radio alarm clock and the microwave.

7.0

6.01 mechanical alarm

[_J

o -~_-_-~
[&] _~--
S 50 e
@) =
< hot dish
2 40
Q
e
R
< 3.0
n

2.0

1.0] _ .
radio alarm clock microwave

Application domain

Figure 5.33: Satisfaction rating of the two Clock versions.

133

of a specific interaction component, another interpretation is an unanticipated effect of
the experimental set-up. Although the subjects may not have understood the inconsistent
symbols presented along with the timer time, the other E-feedback of the application did
not suggest looking elsewhere. Consequently, the subjects were just left with the only con-
clusion that this inconsistent symbol had something to do with the timer time. However,
this may explain the result of the analyses on the performance measures, but not why no
interaction effect was found in the ease-of-use or satisfaction measures other than that the
subjects based their rating on the performance. However, this latter idea is not in line
with the findings. The performance measures only revealed an effect for the application
domain whereas the ease-of-use rating of the application and the clock, and the satisfac-
tion rating of the application revealed an effect for the Clock versions. The subjects gave
a lower rating when a prototype was equipped with the hot dish symbol instead of the
ringing mechanical alarm clock. The ringing mechanical alarm clock was probably a more
common presentation of the timer time, or it fitted better with the current time symbol,
which was a clock (Figure 5.27).

The finding that subjects needed less keystrokes, when operating the radio alarm clock
instead of the microwave, indicated that the usability of the radio alarm clock was higher
than the microwave. The findings that the subjects less often changed the clock mode,
and were more satisfied with the clock when they operated the radio alarm than when
they operated the microwave is more interesting. The same clock function was clearer in
one application domain than in the other. This means that the usability of the interac-
tion component depends on the application domain, which undermines LPT’s claim that
components operate independently. Two explanations can be given for this finding. First,
the subjects could understand the concept of a timer better in relation to the alarm clock
since it is more related to the main function of the alarm clock, which is waking someone,
than to the main function of the microwave which is preparing a meal. Second, the other
components of the microwave had a negative impact on the usability of the clock. When
operating the microwave, the subjects may have had a problem distinguishing the Clock
and the Period interaction component (Figure 5.26), which also deals with time —the
cooking time.

However, this finding does not indicate that a particular interaction component version fits
in better with particular application domains than other versions do, which the experiment
was expected to show.

5.6 General discussion

5.6.1 Theoretical implications

The results of the first two experiments show that the control of interaction components
can depend on other interaction components. E-feedback is interpreted with a component-
specific mental model, which E-feedback of other interaction components may have acti-

134

vated. The third experiment shows that the application domain may also have an impact
on the usability of interaction components. Here it was not inconsistency between the E-
feedback and the application domain, but that the functionality an interaction component
offers may be clearer in one application domain than in the other.

These findings may be limited to the phase were users learn to control an interaction
component as was the case in all three experiments. Once users gain experience with
controlling interaction components the dependency between them may lessen because the
correct component-specific mental model will be active. In the initial phase, users are
guided by E-feedback and later on they might be more directed by their own experience.

The dependency between components does not confirm LPT’s claim. The theory states
that the user-system interaction within a layer is independent of the other layers, to the
degree that they only exchange messages. However, the theory limits itself if it suggests
that control processes are solely based on the present interaction within one layer. Users
rely on their knowledge gained from previous interaction. Although LPT may be right in
stating that a control process aims at controlling a specific layer, it should not be concluded
that it only relies on the interaction component’s feedback to select actions.

5.6.2 Practical implications

The results of the experiment suggests that interaction component designers should be
aware that the usability of their interaction component could be dependent on other in-
teraction components to be deployed in a new user interface. First of all, designers should
try to predict which other interaction components will be used in relation with their in-
teraction component. If this is not possible, the interaction component could be designed
according to a set of specific rules. Later on, in the reuse phase when the new user in-
terface is constructed, the developers should make sure that the interaction components
they apply follow the same rules, or at least that there are no conflicting rules. These
rules can be laid down in a style guide. However, this does not guarantee a user interface
without inconsistency, because users do not have to agree with what designers consider
consistent. Only the involvement of users can solve this problem. Testers in a usability
test who evaluate only one version of a user interface (the single version testing paradigm)
should be aware that usability problems may not solely be attributed to one interaction
component, but that the combination of two or more interaction components may cause
them.

Once again, the component-base usability testing framework proved to be a useful eval-
uation method. In the first experiment, significant interaction effects were only found
in the analysis of the component-specific measures. Both the objective and subjective
component-specific measures where more powerful than their overall counterparts. The
SRC indicator showed its use in the second experiment. The results of SRC analysis con-
firmed the explanation that a lower-level layer caused the interaction effects found in the
higher-level interaction. Applying component-specific measures in the third experiment

135

revealed that the same interaction component could have a usability difference when im-
plemented in different applications domains. This latter effect could only be found with
a component-specific measure since a difference in the overall measures would simply be
explained as a usability difference between the two applications.

5.7 Conclusions and further research

By using the component-base usability testing framework described in chapter 3, this study
was able to show that interaction components in a user interface can affect each other’s
usability significantly. Interaction components in the same layer or in other layers can
activate an inappropriate component-specific mental model, which users apply to under-
stand the interaction component’s feedback to select actions. The inconsistency between
the application domain and an interaction component’s E-feedback was not found to affect
the interaction component’s usability. Whether this only was the case in this experiment
or can be generalised, is a topic for further research. However, the study did show that
the application domain had an effect on the users’ understanding of the functionality the
component provides.

The following chapter describes an experiment about another kind of factor that could
cause interaction components to lose their independence —mental effort.

136

Chapter 6

Effect of mental effort on the
usability of user interface components

6.1 Introduction

In chapter 5, consistency was studied as a factor that makes that the usability of the entire
user interface unpredictable based solely on the usability of the separate components. This
chapter describes a study of another such factor: mental effort. When faced with a control
strategy that is mentally too demanding to maintain, users may start deploying other
strategies at the expense of efficient control to reach the primary goal or to remain within
acceptable operational limits (e.g., Cnossen, 2000; Hockey, 1997; Meister, 1976; Sperandio,
1971). To make this more concrete, consider a driving example. After waiting for a traffic
light to turn to green, student-drivers may turn a corner still driving in the first gear and
only putting the car in the second gear after they have taken the corner. Although, the
first gear is mainly intended to get the car moving after a standstill and not to drive in,
student-drivers may be unable to change up fast enough before the corner while remaining
in control of the car in the bend. To avoid a loss of control over the car, students end up
taking the corner at a lower speed. In this case, improving the students’ skill in changing
the gear is more effective than improving their steering skills.

In this study, mental effort is proposed as a factor that links lower-level interaction compo-
nent with the control strategy of high-level interaction components. The objective of the
study reported here was to test this idea experimentally. Two calculators were designed
with different versions of a lower-level interaction component. With these calculators, the
mental effort and the higher-level control strategy was recorded when users calculated
equations with varying difficulty.

137

6.2 Method

The experiment involved an application, written in Delphi 5, consisting of two calculator
prototypes, a recording mechanism for the message exchange between the interaction com-
ponents, task instructions, and questionnaires. The sections below describe the calculator
prototypes, the hypothesis, the tasks the subjects had to perform, the measures that were
deployed, the experimental design, the subjects who participated and the experimental
procedure.

6.2.1 Prototypes

A calculator was chosen for this experiment because of its two-layered architecture. The
lower-level component established an equation and the higher-level component processed
it. Figure 6.1 shows the interaction structure. The two interaction components that were
distinguished are the Editor and the Processor € Memory interaction components. The
low-level interaction component, Editor, was responsible for forming the equation and
passing it on to the higher-level interaction component Processor & Memory. The subjects
could enter a complete equation, including special mathematical function (sine, In, square
root, etc), which would be passed on after the subjects pressed the ‘=" button, or the
‘STO’ button followed by a memory button (M1 to M6). The Editor only sent an equation
upward if the number of opening and closing brackets in the equation were the same. If
this was not the case, the Editor displayed an error message.

The high-level interaction component, Processor & Memory, processed the equation and
placed the result in one of six memory places if requested. The equation was processed
according to mathematical priority rules; calculation started with operations within the
brackets, then multiplication and division, and finally addition and subtraction. When
processing, the interaction component replaced the memory references in the equation
(M1 to M6) with the actual values in the memory places. The result of the equation was
sent back to the Editor; this could either be a value or an error message in the case of a
division by zero or if an illegal value was fed into a special mathematical function.

Two versions of the Editor interaction component were designed: one with a large display
(Figure 6.2), the other with a small display (Figure 6.3). The small display showed only a
small part of an equation, for example: a value, an operator (‘+’), a mathematical function
name (‘sin’), a reference to a memory place (‘M1’), or a list of consecutive opening and
closing brackets (‘(((’). The large display showed the equation on a screen of five lines
with 34 symbols each. If the equation was longer, the subjects could scroll up and down
in the large display.

138

Control Processor &

sub & end Memory
results
equation results, Calculate equation Calculate equation equation
equation formulated so far Calculate and store equation Calculate and store equation results
Control .
equation Editor
Press Buttons
Symbol, values and error messages Display characters
User Calculator

Figure 6.1: Layered interaction structure between a user and a calculator. The expectation
feedback is omitted.

6.2.2 Hypothesis

In this experiment, the hypothesis was tested that mental effort creates a link between the
Editor versions and the control strategy of the Processor & Memory interaction component,
which contradicts LPTs’ claim that the usability of a component is independent of other
components in the user interface. The advantage of the large display over the small display
was expected to be apparent when an equation was deeply nested. When subjects were
entering an equation, as presented in Figure 6.4, they would have to keep track of the
depth of the nesting and their location in the equation. With the large display, subjects
could check this information from the input on the display (message ‘equation formulated
so far’ in Figure 6.1), whereas in the case of the small display, subjects would have to
memorise this. The depth of nesting was expected to relate to the difficulty of an equation.
However, subjects might have the same control over the higher-level interaction component
by spending more mental effort. Therefore, the general memory load of the task was
increased in an attempt to exceed the effort subjects could invest, when they had to
solve a deeply nested equation. The memory load was increased by two factors. First,

139

LOMELE e i R e
LFS]

M w2l M3l oMl ms)

ME) ST0) exp' e

o5

M) CME) W) (e
W& ST e e
s tan W x2

In T (]

Figure 6.3: Calculator with small display.

subjects had to memorise the memory place of intermediate outcomes, which were stored
in advance. Second, the subjects were interrupted to perform another task. They had to
memorise where they left off, so that they could continue with the calculations after the
interruption.

6.2.3 Alternative hypothesis

To conclude that mental effort is the underlying factor that caused the variation in the
higher-level control, requires other factors to be ruled out, such as the ineffectiveness of
the Editor. The experiments in chapter 4 and 5 illustrate that ineffectiveness problems
of a lower-level interaction component can also influence the control of higher-level layers.
In this experiment, a possible ineffectiveness problem could be that subjects make more

140

((M3+61)*17+sin(0.12)*53)*(1.12+0.175)

* depth 0
+/\+
________ 7"\"_ __~_ depth1
* * 1.12 1.175
NG T
. SN 17 _sn 53
/\ | depth 2
M3 (61) 0.12

Figure 6.4: The same equation presented in an algebraic format and in a tree format. After
entering the number 61, users have to realise that the equation requires at least two more
closing brackets.

typing errors in the small display Editor than in the large display Editor, which results
unintentionally in more messages to the Processor & Memory interaction component whose
effects have to be undone. Therefore, an additional equation type was introduced, which
required almost no mental effort to calculate. If the effect between the two versions of the
Editor interaction component was caused by ineffectiveness, it should also become apparent
when subjects solve this very easy equation. If not, the alternative hypothesis became very
unlikely.

6.2.4 Tasks
Building project cost calculation

The intermediate outcomes, of which the subjects had to remember the memory places,
were part of a building project cost calculation. The whole experiment was planned around
a building company. The subjects were asked to calculate the cost based on a textual de-
scription of a building project (Figure 6.5). The seasonal labour cost per hour for the six
different workers was randomly stored in the calculators’ six memory places. The memory
places and workers’ labour cost were presented in a randomly ordered table on the PC
screen for 40 seconds, before the calculator became visible and accessible. When calculat-
ing, subjects could use the intermediate outcomes stored. If they forgot the location of an
intermediate outcome stored, they had to calculate the seasonal labour cost themselves,
which always required the use of a sine or a cosine function. These two functions were only
needed in the seasonal labour cost calculation and nowhere else. Therefore, the number of

141

times subjects entered these functions was an indicator of how well subjects remembered
the location of the intermediate outcomes.

The subjects in the experiment had to solve equations of three levels of difficulty (difficult,
easy and copy). Figure 6.5 illustrates a difficult equation. These equations had a nesting
depth of two (Figure 6.6). The easy equations could be solved without applying brackets
(nesting depth of zero). Instead of percentages, the absolute prices, including invoiced
VAT, were given in the instruction text of these equations. The easiest equations were
the copy equations, which were similar to the difficult equation, with the exception that
with the instructions the solution was also presented in an algebraic format. Therefore,
this equation was basically a copying task, which mainly involved the control of the Ed-
itor interaction component. The copy equation made it possible to study the potential
effectiveness problem in lower-level interaction components as the alternative hypothesis.
Although the equations had different levels of difficulty, all the equations required the same
number of keystrokes if entered in an optimal form.

Interruption

A task that interrupted the cost calculation was included because interruptions have proved
to negatively affect users’ performance in mentally demanding tasks (e. g. Bailey, Konstan,
& Carlis, 2001; Gillie & Broadbent, 1989; Kreifeldt & McCarthy, 1981). The computer
interrupted the subjects 35 seconds after they started entering an equation. A telephone
rang and a question was shown on the screen concerning the number of plumbers, carpen-
ters, bricklayers, etc. that were planned in a particular week. The subjects had to look at
a paper work schedule, search for projects where these workers were scheduled, and add
them up. The solution always consisted of a summation of four numbers between 10 and
50. Only after the subjects selected the correct answer, did the application restore the
previous screen, and could the subjects resume with the cost calculation task. During the
interruption, the subjects could not see the calculator or the description of the building
project. It was expected that the interruption was more memory demanding in the small
display version because subjects had to recall where exactly they left off in entering the
equation when the telephone rang. In the case of the large display, subjects could read
this on the display. Subjects were not allowed to make any notes or to use a pen or pencil,
during the whole experiment.

6.2.5 Measures

The component-based usability testing framework described in chapter 3 was used to mea-
sure the performance, the ease-of-use and satisfaction of the entire system, but also of the
Editor and Processor & Memory interaction components separately. In accordance with
this framework, the message exchange between the interaction components was recorded
throughout the task execution. Objective overall performance measures obtain from this

142

Calculate the price for underfloor heating and house insulation

An amount of 3468 should be charged for materials and as a write-off of 1273
for the tools. A surcharge of 14.42% has to be paid for contingencies on labour,
material and tools. This surcharge and an environmental surcharge of 106 are
exempt from value-added tax (VAT). On all other costs (including labour cost)
a 17.5% VAT is applied.

The renovation will take place in week number 47 (S = 477/52 = 2.84), in
which a reduction of 8.47% is applied on the hourly rate of the carpenter, and
the electrician. Furthermore, the customer can claim a 12.37% reduction on the
hourly rate of the fitter and the carpenter because of an advertising campaign of
the Electricity Company. Extra workers have to be hired from other companies
because of increased activity in the winter. Therefore, a surcharge of 3.78% has
to be paid for the hourly rate of the painter and the fitter.

Correction for season Hourly rate Hours

Painter 14*Sin (S) — M5 74 15
Bricklayer 6*Sin (2*S) — M2 72 12
Electrician 6*Sin (3*S) — M1 61 13
Foreman 5*Sin (2*S) — M6 85 11
Fitter 18*Cos (S) — M4 74 48
Carpenter 12*Cos (S) — M3 62 21

All prices are without VAT

Figure 6.5: Instruction text of a difficult equation. After 40 seconds the M-codes would
disappear from the screen. In the case of a copy equation, letters that corresponded with
the solution given would replace the M-codes.

143

((M1461)x 13 x (1—0.0847)+
(M4 4 74) x 48 x (1.0378 — 0.1237)+
(M2 4 72) x 12+
(M6 + 85) x 11+
(M5 4 74) x 15 x 1.0378+
(M3 + 62) x 21 x (1 — 0.0847 — 0.1237) + 3468 + 1273

) x(1.1442 4 0.175) + 106 =

Figure 6.6: Solution of Figure 6.5 in an algebraic format. In the copy equation task, this
solution would be given in the task description. The M-codes would be replaced by letters,
which would also replace the M-code after 40 seconds in the labour cost table.

recording were the task time and the number of keystrokes, which in this case was similar
to the number of messages received by the Editor interaction component. The objective
component-specific performance measures of the Processor & Memory interaction compo-
nent were based on the number of messages this component received. This message stream
was split up into two types of messages that were sent with the following requests: an
equation to be processed including storing the result in one of its memory places (store-
request); and an equation only to be processed (process-request). This led to two objective
component-specific performance measures. An additional measure was obtain by looking
inside these messages and count the number of times the execution of a mathematical
function (sine or cosine) (function-request) was requested.

At the end of the experiment, the other subjective measures, ease-of-use and satisfaction
(Appendix B), were obtained by administering a questionnaire about the ease-of-use and
the satisfaction of the calculators, their Editor interaction component and their Processor
& Memory interaction component. The questionnaire consisted of 48 questions that were
presented in a random order. In the questionnaire, the calculator with a small display was
referred to as the small calculator and the other calculator as the large calculator. The
interaction components were referred to as the editor of the large calculator, the processor
and memory of the large calculator, etc. Along with the questionnaire, a picture of the
two calculators was given and a short definition of the Editor and Processor & Memory
interaction component.

The mental effort invested was measured with a subjective and with a physiological mea-
sure. After the subjects solved an equation, they rated the effort on the Rating Scale
Mental Effort (RSME) (Zijlstra, 1993). This one-dimensional scale employs verbally la-
belled anchor points that refer to an underlying continuum of effort expenditure. The scale
was presented on the screen, after which the subjects could move an arrow to the appro-
priate position on the scale. Heart rate variability (HRV) was taken as a physiological
measure. HRV relates to a person’s mental effort (G.Mulder, 1980; L.J.M.Mulder, 1988)
or, rather to the emotional reaction on the mental effort (Jorna, 1985). A person’s HRV

144

is reduced during the performance of effort-full mental tasks. Especially the frequency
band around 0.1 Hz, which relates to the baroreflex, regulating short-term blood pressure,
has been found to be sensitive to mental effort. To record the electrocardiogram (ECG)
signal, three silver-silver chloride (Ag-AgCl) lead electrodes were placed on the subjects,
two on the chest and one on the back of the neck. The electrodes were connected to an
electrocardiogram amplifier module (ECG100B). A Biopac MP100 data acquisition system
converted the analogue signal into a digital signal, which was processed and captured with
a sampling rate of 200 Hz by the AcqKnowledge 3.5.7. application running on a PC. The
subjects were instructed not to speak, not to move their feet and legs too much, and not
to touch the screen to avoid disturbances of the ECG signal.

6.2.6 Experimental design

The experiment had a 2 x 3 within-subjects design —editor (small or large) x equation
difficulty (difficult, easy, or copying). To control for learning and fatigue effects, a scheme
was applied to 24 subjects, ordering the six conditions according to four different Latin
squares that also counterbalanced for immediate sequential effects (Lewis, 1989).

6.2.7 Subjects

There were 28 subjects who participated, all students of Eindhoven University of Technol-
ogy. They were expected to have extensive experience with calculators and be acquainted
with mathematical priority rules. However, they were not expected to have experience
with calculating the building cost in the way it was done in this experiment. In soliciting
subjects for the experiment it was mentioned that because of the ECG measuring only
students without heart problems could enter the experiment.

6.2.8 Procedure

The experiment was divided into four phases: welcome phase, training phase, execution
phase and a debriefing phase. In the welcome phase, subjects were brought into a test
room of a usability laboratory. Here, they were told that the aim of the experiment was
to test the usability of two calculators. Next, the subjects sat down in front of the PC,
the electrodes were placed and the application was started. The experimenter left the
test room and went to the observation room. In the training phase, subjects first read
a paper introduction, which explained how building project costs were calculated. After
reading, the subjects practised with the calculators. The practise consisted of the following
operations: calculating the labour cost of one worker, storing an intermediate outcome in
the calculator’s memory, calculating the total labour cost by using stored intermediate
outcomes, trying to remember memory locations, and performing a copying task including
an interruption of the task, rating the experienced effort and waiting 45 seconds before

145

continuing. The training also shows that the task was finished once they produced the
correct answer and pressed the Finish button. The subjects were instructed to solve the
equation as quickly as possible. As a mnemonic for the memory locations, the instructions
advised the subjects to mentally order the workers according to their memory locations and
memorise the first letter of the workers. Subjects who managed to complete the training
phase within 45 minutes entered the next phase. Those who took longer were excluded
and received NLG 15 (€ 6.81). Subjects finishing the complete experiment received NLG
45 (€ 20.42).

In the execution phase, the subjects calculated the cost of six building projects and rated
the mental effort expenditure. This phase started with the PC randomly assigning the
subjects to an entry in the scheme. After this, the first building project description was
given. Subjects were given 75 seconds to read a description. Next, a table with the memory
locations and intermediate outcomes was presented for 40 seconds. When this time had
passed, the memory locations disappeared, the table rows were again randomly ordered and
the calculator became visible. After solving the requested equation correctly, the subjects
rated the effort and rested 45 second before continuing with the next task. In the debriefing
phase, subjects were asked to fill out the ease-of-use and satisfaction questionnaire. After
this the subjects received their financial reward.

To prevent subjects from endlessly trying to solve a task, a threshold time of 40 minutes was
set after which the experimenter would help the subjects. The threshold time was based
on a pilot study of three subjects and was set as the average task time (11.5 minutes) plus
three times the standard deviation (9.3 minutes). The experimenter entered the test room
in cases where subjects started a new attempt at solving the equation after crossing this
threshold time. The subjects received the algebraic format of the equation and were again
left to let them finish the task on their own.

6.3 Results

Four subjects did not finish the training phase within the time set. Four new subjects
replaced these subjects. A total of 8 females and 16 male subjects, between the ages of 19
and 25 years completed the experiment. Five subjects received help because they exceeded
the threshold time and one of them twice. In all these cases, the subjects were solving a
difficult equation, in three cases with the small display calculator and in two cases with
the large display calculator.

6.3.1 Data preparation
Questionnaire

For ease of analysis, the averages of the six ease-of-use and two satisfaction questions for
each of the six objects rated (2 x calculator overall, 2 x Editor versions, 2 X processor &

146

memory applied in a specific calculator) were taken as perceived ease-of-use and satisfaction
measures. After the debriefing, one subject indicated not to have paid attention to the
direction of the scale in the ease-of-use and satisfaction questionnaire. Therefore, the
answers of this subject were regarded as missing. Table 6.1 shows the results of reliability
analyses performed on this questionnaire. Each of the ease-of-use measures (six questions
per component or calculator) had an acceptable reliability of 0.8 or more. T'wo satisfaction
measures (two questions per component or calculator), on the other hand, were below the
0.7 — 0.8 minimal level often recommended (Landauer, 1997).

Table 6.1: Cronbach alpha derived from reliability analyses performed on the multiple-
items scales per component or calculator.

Coefficient Alpha

Measure Ease of use Satisfaction
Large calculator 0.89 0.53
Small calculator 0.92 0.88
Editor of the large calculator 0.80 0.79
Editor of the small calculator 0.93 0.77
Processor and memory of the large calculator 0.80 0.63
Processor and memory of the small calculator 0.89 0.92

Heart-rate variability

Before the HRV could be extracted from the ECG signal several transformations were
needed. The peak detector in the Acgknowledge application extracted the so-called R-
peaks of the ECG signal, to create a time series of the heartbeats. The time series were
pre-processed for possible artefacts such as missing or prolonged heartbeats and extra
heartbeats (L.J.M.Mulder, 1988). The extra heartbeats were removed; whereas missing
heartbeats were corrected by inserting extra beats based on a linear interpolation. For
one subject, the corrections made in three conditions took up more than 5% of the series;
therefore, the data were regarded as missing. Only the first five minutes were taken,
ignoring the first 30 seconds because they were not corrected for possible artefacts. In
this way, possible duration effects that could mask effects in the first 5 minutes were
prevented because the average task time of the conditions varied between 5.9 minutes and
18.9 minutes.

The corrected time series of heartbeats were of an unequal interval, which is inherent
in heart-rate variability. Therefore, a fifth order Lagrange interpolation was applied to
obtain equidistant time series (G.Mulder, 1980). The next step was the transformation
of the equidistant time series to modulation index series. This is the expression of each

147

sample as a percentage of the mean inter-beat-interval. This removes the possible effect
the heart-rate may have on the heart rate variability (Dellen, Aasman, Mulder, & Mulder,
1985). Finally, the frequency spectrum was analysed with a Fast Fourier Transformation
with a moving Hanning window of 100 seconds and a window shift of 5 seconds. Other
effects on the heart rate variability such as body temperature regulation (area between
0.02 to 0.06 Hz) and respiration-related fluctuations (area between 0.15 to 0.5 Hz) were
removed by only taking the area between 0.07 and 0.14 Hz, related with short-term blood
pressure regulation, as the HRV 0.1 Hz band measure. A decrease in this 0.1 Hz band is
related to an increase in mental effort (G.Mulder, Mulder, Meijman, Veldman, & Roon,
2000).

6.3.2 Statistical analyses

The experiment had a 2 x 3 design. However to reduce the complexity, the main hypothesis
was analysed separately from the alternative ineffectiveness hypothesis. For the main
hypothesis, analyses were conducted on a 2 x 2 design —editor (small or large) x equation
difficulty (easy or difficult)—, and for the alternative hypothesis, a separate analysis was
conducted that only looked at the effect the Editor versions (small or large) had on the
copying equation task.

Mental effort

The first statistical analysis looked for an effect of the Editor versions and the equation
difficulty on mental effort. A doubly MANOVA was performed on the logarithmically
transformed HRV 0.1 Hz band measure and the RSME score. The logarithmically trans-
formation was applied to decrease the effect of extremely high values. The within-subject
variables were the Editor version (2) and the equation difficulty (2). A significant main
effect for the equation difficulty on mental effort was found (£(2,21) = 14.57; p. < 0.001).
The same main effect was also found in the RSME score (£'(1,22) = 30.52; p. < 0.001).
The subject rated the required effort lower for an easy equation than for solving a difficult
equation (Figure 6.7). An interaction effect between the equation difficulty and the Editor
version was also found (F'(2,21) = 4.15; p. = 0.030). This effect can again be found in
the HRV (F'(1,22) = 8.01; p. = 0.010). Figure 6.8 shows the means in the four conditions.
For the small display calculator, the changeover from the easy to difficult equations seems
to be associated with an increase in the HRV, whereas for the large display calculator a
decrease is apparent.

Overall performance

The next analysis looked for effects of the Editor version and the equation difficulty in
the overall performance measures. A doubly MANOVA was conducted on task time and

148

90

small display
80
o
)
(8}
%]
w 70
=
%)
o
60
large displa
50)__ g play .
easy difficult

Equation

Figure 6.7: RSME score for the two editors given after performing an easy and a difficult
equation.

G~~
Sw
-
-~

271 large display Sao
Sw

Log-transformed HRV 0.1 Hz Band

L
28 ~‘~~
“°

-2.9

-3.0

small display
831, .
easy difficult

Equation

Figure 6.8: The logarithmically transformed HRV of the 0.1 Hz band for the two editors
while performing an easy and a difficult equation. A decrease in HRV is interpreted as an
increase in mental effort.

149

number of keystrokes. Both measures were first logarithmically transformed. The same
within-subject variables were applied as before, Editor version (2) and equation difficulty
(2). The analysis revealed a main effect for the equation difficulty (F(2,22) = 33.00; p.
< 0.001), and again in both the task time (F'(1,23) = 42.08; p. < 0.001) and the number
of keystrokes (F'(1,23) = 16.58; p. < 0.001). Inspection of the means showed that more
time and keystrokes were needed in the case of a difficult equation. The doubly MANOVA
revealed neither a significant main effect for the Editor version (£'(2,22) = 1.64; p. = 0.217)
nor a two-way interaction effect (£(2,22) = 0.19; p. = 0.831) between the equation difficult
and the Editor version.

High-level control

To study the higher-level control strategy, the number of function requests, store requests
and process requests sent to Processor & Memory interaction were taken as dependent
measures for a doubly MANOVA. All measures were logarithmically transformed to reduce
the influence of extreme values. The same within-subject design was used. The analysis
revealed a significant main effect for the Editor versions. Subjects made significantly more
process requests (F'(3,21) = 4.03; p. = 0.021) when they had to calculate the building cost
with the small display calculator than with the large display calculator (Figure 6.9).

Although no significant effect (F'(3,21) = 2.85; p. = 0.062) for the equation difficulty was
found in the multivariate analysis of the joint measure, significant effects were found in
the univariate analyses of the number of process requests (F(1,23) = 8.82; p. = 0.007),
function requests (F'(1,23) = 5.81; p. = 0.024) and the store requests (F'(1,23) = 7.07;
p.= 0.014) separately. The subjects made more process and store requests (Figure 6.9 and
6.10) and requested more often the execution of a mathematical function when they solved
a difficult equation than in the case of an easy equation. The analysis found no two-way
interaction effect (F'(3,21) = 2.62; p. = 0.077) in the joint measure. However, it found a
two-way interaction effect (F'(1,23) = 6.81; p. = 0.016) in the number of store requests.
Inspection of the means (Figure 6.10) indicates that the subjects more often requested to
store a result when they had to solve a difficult equation with a small display calculator
than in all other conditions.

Effectiveness hypothesis

The alternative explanation for the variation in high-level control, was an effectiveness
difference between the two Editor versions. A doubly MANOVA was conducted on the high-
level performance measures and on the mental effort measures of the subjects performing a
copying equation to examine this idea. The Editor version was taken as a within-subjects
variable in this analysis. A significant effect (F'(5,18) = 3.00; p. = 0.038) for the Editor
versions was found by multivariate analysis on the joint measure. However, this effect
was only found in univariate analyses of the HRV 0.1 Hz band (F(1,22) = 9.02; p. =
0.007) and the RSME (F(1,22) = 8.65; p. = 0.008) measures, but not in the number of

150

2.0

1.8

1.6

1.4 small display

1.2

transformed number of process-requests

‘—
1.0 -
-
.8 —‘o" large display
-
-
6 ‘—”
4l .
easy difficult

Equation

Figure 6.9: Log-transformed numbers of process-requests for the two editors while per-
forming an easy and a difficult equation.

1.2

1.0

small display

transformed number of store requests+1

.8
large display
A4
2] .
easy difficult

Equation

Figure 6.10: Log-transformed numbers of store-requests (plus 1) for the two editors while
performing an easy and a difficult equation.

151

function requests (£(1,22) = 2.06; p. = 0.165), store requests (F(1,22) = 1; p. = 0.328),
or process requests (F'(1,22) = 2.19; p. = 0.153). Inspection of the means showed a higher
RSME rating and lower HRV value when the subjects used the small display instead of
the large display calculator. Furthermore, the standardised reception coefficient (SRC) for
the two Editor versions was calculated for each of the different levels of equation difficulty
(Table 6.2). All values were below 1. An SRC value greater than 1 would have suggested
ineffectiveness.

Perceived usability

The averages of the subjective overall and component-specific usability measures were
analysed for an effect for the Editor version only. A MANOVA was conducted on the
perceived ease-of-use and satisfaction measures with the Editor version (2) as a within-
subjects variable. The analysis revealed an effect for the Editor versions in the ease-of-use
(F'(3,20) = 26.31; p. < 0.001) and the satisfaction (£(3,20) = 27.95; p. < 0.001) measures.
This effect was reflected in all measures separately (Table 6.3).

6.4 Discussion and conclusions

The results support the main hypothesis that mental effort creates a link between the
Editor versions and the control strategy of the Processor & Memory interaction component.
When solving a difficult equation with a small display calculator, subjects changed to a
less efficient strategy and spent less effort in solving the equation. Although apparently
reasonable to assume, the experiment did not demonstrate a causal relation between effort
expenditure and the change in strategy. Mental effort was an intermediate variable, not
under the direct control of the experiment, which is needed to make a causal inference.
On the other hand, mental effort can never be directly manipulated, only the situation in
which a person has to operate.

6.4.1 Interpretation results
Observed control

The benefit of the component-based usability testing framework becomes apparent when
looking at the findings of the objective overall and component-specific performance mea-
sures. The overall performance measures did not reveal a main effect for the Editor version
or an interaction effect between the Editor version and the equation difficulty. Apparently,
the high-level strategy change was too subtle to be observed in the overall performance
measures. The component-specific performance measures of Processor & Memory inter-
action component were more powerful. The strategy change was found in the number of

152

Table 6.2: Mean standardised reception coefficient values of the Editor interaction compo-
nent for each level of equation difficulty.

Equation difficulty

Editor FEasy Difficult Copying
Small 0.78 0.55 0.76
Large 0.84 0.63 0.87
Note. All values are significantly smaller
(p. < .01) than 1.

Table 6.3: Results of multivariate and univariate analyses of variance with the answers on
the ease-of-use and satisfaction questionnaire as dependent variables.

Measure df’s F D n?
Ease-of-use
Joint measure 3,20 26.31 <0.001 0.79
Total calculator 1,22 85.86 <0.001 0.80
Editor 1,22 7150 <0.001 0.77
Processor & Memory 1,22 34.30 <0.001 0.61
Satisfaction
Joint measure 3,20 27.95 <0.001 0.81
Total calculator 1,22 87.84 <0.001 0.80
Editor 1,22 82.05 <0.001 0.79

Processor & Memory 1,22 33.04 <0.001 0.60

153

times subjects sent a request to process an equation and to store the result. When the
subjects were solving a difficult equation with the small display calculator, they more of-
ten stored intermediate outcomes than in the other conditions. Presumably, the subjects
applied a so-called problem-reduction strategy (Halasz & Moran, 1983). This means break-
ing the problem into sub-problems, solving the sub-problem, storing them away and finally
combining the intermediate outcomes into the overall result. In the other conditions, the
subjects tend towards calculating the building cost within a single equation. The results
of the process-requests suggest that they were less successful in doing this when working
with the small display calculator than with the large display calculator.

Perceived control

Contrary to the objective overall measures, the analysis of the overall perceived ease-of-use
and satisfaction did reveal an effect for the Editor version. The effect was also found in
the separate rating of the Editor and in Processor & Memory interaction components. At
first, it seems that Editor versions affected the subjects’ attitude towards the Processor &
Memory interaction component and the overall calculator. Although the relation between
Editor version and the rating of the overall calculator is to be expected because the Editor
interaction component is a part of the calculator, the relation between the Editor version
and the rating of the Processor & Memory interaction component is less straightforward.
Three explanations can be offered for this finding: (1) the subjects rated the Processor
& Memory interaction component for their suitability in the context of the Editor; (2)
the subjects made no clear distinction in their control experience of the two interaction
components; (3) or the subjects gave socially desirable answers. The first explanation is
in line with the main thesis of this chapter. The way interaction components affect one
another may have a negative impact on their usability. The second explanation could mean
that the subjects did not experience controlling two interaction components, or the given
definition did not relate unambiguously to their object of control. In the previous studies
(see chapter 4 and 5), subjects proved to be able to rate different interaction components,
which means that they can make distinctions in their control experience. However, in
chapter 4 it was clearly shown that other interaction components could have an impact on
subjective component-specific measures. The third explanation should also be considered
because this study was set up as a within-subject design. The subjects were confronted
with the Processor & Memory interaction component in both calculators. Asking to rate
them might have pushed the subjects into believing that they were expected to see a
difference and they might have been led by their attitude towards the display size in doing
SO.

Mental effort

At first, the results obtained with RSME and HRV did not give a coherent picture. The
perceived effort was rated higher for a difficult equation than for an easy equation, and

154

no effect was found for the Editor version. The results of the HRV did not show main
effects, but only an interaction between Editor version and equation difficulty. Whereas the
subjects spent less effort when solving a difficult rather than an easy equation with the small
display, the opposite seems to be true when subjects solved them with the large display.
Different results between RSME and HRV has been observed before (Zijlstra, 1993). The
explanation was that the RSME could be conceived as an expression of subjective, or
psychological costs, which people estimate according to two criteria: time and effort. HRV,
on the other hand, only relates to mental effort. Since the task duration was indeed higher
for difficult equations than for easy equations, it appears that the subjects took the task
duration as the main estimation criterion in rating the psychological costs. Therefore,
interpreting the RSME and HRV in this light, it appears that the subjects were able to
solve the easy equation with the small display, although this required more mental effort
than solving it with the large display calculator. When the subjects had to solve a difficult
equation, subjects with large display spent more mental effort, whereas subjects with the
small display changed to a less efficient strategy and ended up in spending less mental
effort, although they perceived it as if they had spent more effort.

Refutation of alternative hypothesis

The results did not support the alternative ineffectiveness hypothesis. When the subjects
had to solve the copying equation, no effects were found in the number of higher-level
messages. If an effectiveness variation between the Editor versions was the root of the
variations in the number of higher-level messages, it also had to be apparent in this very
easy question. The absence of such an effect made the alternative hypothesis very unlikely.
Indeed, the effort measures even showed that subjects spent more mental effort with the
small display than with the large display calculator in this predominantly Editor-controlling
task. Although all SRC values were smaller than 1, this does not suggest that all messages
were intentionally sent upwards. However, these SRC values would certainly not suggest
ineffectiveness.

6.4.2 Theoretical implications

Mental effort is a factor that makes the usability of the entire user interface involve more
than only the usability of the separate components. This finding contradicts LPTs’ claim
that control loops are unaffected when lower-level layers are replaced as long as they provide
the same messages services to the layer above it. The usability of the Processor & Memory
interaction component depended on the version of the Editor interaction component. The
small display editor may be very usable with a processor that automatically calculates
intermediate outcomes and does not wait until an ‘=" button is pressed. However, preferring
the small display editor to the large display editor is a mistake when it comes to the
Processor & Memory interaction component used in this experiment.

155

The study shows that the relation between higher and lower control levels is more than
only setting the reference value and receiving the higher-level feedback. Within PCT and
LPT, two interpretations can be offered how mental effort connects the control levels with
each other in this experiment. The first interpretation is that the lower-level control loop
exhausted a limited mental resource, which was shared by the higher-level control loop.
The second interpretation is that the lower-level control loop supported the higher-level in
such a way that it required less mental effort to control.

Mental resources as intrinsic controlled variables

The concept of limited mental resource is used in limited mental capacity theories (Broad-
bent, 1958; Kahneman, 1973; Wickens, 1984), which state that the fundamental constraint
that underlies all mental operations is a limited information-processing capacity. These
theories suggest a mechanism that interferes with all control loops. The only mechanism
within PCT that can do this is the reorganisation system (Powers, 1973). This system,
responsible for altering the operations of all control loops, is an inherited control process
that is concerned with keeping a set of critical variable near built-in reference conditions,
such as nutrition and temperature. Although mental resources are not explicitly mentioned
as one of these variables, it would explain the change in the higher-level strategy control as
set in motion by the reorganisation system to bring the mental effort expenditure within
intrinsic limits.

Besides memory capacity, the suggested interference effect could also be applicable to other
types of resource sharing. The sharing could take place in the following dimensions: the
stages of processing (perception, working memory, and cognition versus responding); the
codes of perceptual, working memory and cognitive processing (verbal versus spatial); the
input modalities (visual versus auditory); and response modalities (manual versus vocal)
(Wickens, 1984). On the other hand, the inefficiency of some combination can of course
be explained through masking. Overlaying windows makes it impossible for users to see
the content of underlying windows and loud sounds can suppress other sounds.

Lower-level feedback to support higher-level control

Opposing this idea of limited capacity are theories (Allport, 1980; Logan, 1988; Neisser,
1976) that take skill as the limiting factor. Mental activities are conceived as a collection
of acquired skills rather than the operation of a fixed mechanism. The choice for a control
strategy depends on the subjects’ skill of applying the strategy with all the interaction
components. For a single-equation solution of the difficult equation with the small display,
the subjects lacked the skill of keeping track of the intermediate realisation of the equation
in their mind. The large display did not require the extra skill. The subjects could simply
read this from the display.

The lower-level interaction component supported the higher-level interaction component,
in the construction of a message it wanted to pass on, by sending upwards the feedback

156

message ‘equation formulated so far’ (Figure 6.1). For the large display, this meant the
complete equation entered so far, whereas for the small display, this meant only the last
value or operator. The Processor & Memory interaction component did not send this
message; hence, the conclusion is that lower-level layers can offer higher-level layers support
in formulating of their high-level actions. However, can this kind of message be qualified
as E-feedback? E-feedback guides users in establishing expectations of what is achievable
within a layer and guides users in selecting appropriate actions. The support can be
interpreted as guiding the selection of the appropriate actions; however, these actions were
of a higher-level layer. If this support is seen as another kind of feedback, is this only related
to cases in which the absence of this support is accompanied by increase of mental effort
or changes in higher-level strategies? Without an answer to this question, it seems only
justified to propose a new kind of history message for now, which prevents high memory
load. This message supports higher-level layers in constructing their lower-level messages
by offering them information on the realisation of the message so far. The quality of this
message affects the efficiency of higher-level layers.

6.4.3 Practical implications

When designing a user interface, attention should be given to situations where users have
to cope with a heavy memory load. Especially in these situations, lower-level interaction
components should support users when they establish complex higher-level messages. In-
formation needed to accomplish a task should preferably be distributed more to the system
than to the user side of the interaction (Zhang & Norman, 1994). In that case, users no
longer have to cope with the memory demand of keeping this information active. In this
experiment the memory load was pushed to the extreme by interrupting the task and the
memorisation of the memory location places. More practical situations can also be imag-
ined; for example, when users are easily interrupted as they dial a telephone number. In
such a situation it helps to use a telephone where the entered number is displayed, rather
than only giving sound feedback to indicate that a digit is entered.

Since the mental effort affect the users’ performance, it is better to perform a usability
test in a realistic environment, which requests the same mental effort expenditure. An
indication for a strategy shift is observed when a decrease in user performance coincides
with a decrease in mental effort expenditure. Expanding a usability test with a mental
effort measure is advisable, because component-specific measures may be affected by mental
effort. In this study the physiological HRV measures was capable of measuring only the
mental effort, whereas the RSME was more correlated with the task duration. To replace
the physiological measure, another subjective measure is needed that is less correlated
with the task duration and only measures mental effort. Another point of interest for
usability tests, is the low reliability of the component-specific satisfaction measures in this
experiment. Extending the two satisfaction questions may help to increase the reliability
of this measure.

157

Finally, the experiment also shows the benefit of dividing the stream of messages received by
an interaction component according to its content (store or process request) and analysing
it separately. As was already noted in chapter 2, it may provide more insight into the
layered user-system interaction.

158

Chapter 7

Discussion and conclusions

7.1 Recapitulation

As user interfaces are assembled out of a set of components, suitable theories are needed to
create usable products this way. The Layered Protocol Theory (LPT), a user-system inter-
action theory, fits the component-based software engineering approach of user interfaces.
LPT describes the user interface as consisting of several layers of interaction. The main
tenet of LPT is that the purpose of any behaviour is to control perception. Therefore, the
theory considers the users’ desire to perceive a system state that matches their internal
reference value as the main purpose for user-system interaction. In this theory, usability
can be regarded as the ease with which users control a system. Central concepts in the
theory are the perceptual-control loop and the accumulation of these control loops. The
accumulation creates multiple layers on which interaction takes place. Each control loop
is regarded as an exchange of messages, which has to obey a protocol.

Since the users try to control the system on several layers of interaction, the system usability
might also be decomposed into the usability of the individual layers. In practice this would
mean that the usability of interaction components, identified in the software architecture,
are assessable. This possibility is very welcome since the creation and deployment of
components is allocated to different software engineering processes. Usability evaluation
of a component in the creation process would be more efficient than testing the usability
of the component each time it is deployed in an application. Usability evaluation in the
deployment process would not be necessary if the usability of an entire application only
depends on the usability of the individual components. The latter is the case according
to LPT because control loops are unaffected when lower-level layers are replaced as long
as they provide the same message services to the layer above it. Until now, LPT has only
been used to analytically evaluate the user interface of products. However, LPT is also
suggested to provide a basis to evaluate the usability of components empirically.

This thesis had the following main research question: Is usability compositional? The
question basically had two underlying questions:

159

1. Whether and how the usability of components can be tested empirically.

2. Whether and how the usability of components can be affected by other components.

In this final chapter the main conclusions drawn (Table 7.1) in the previous chapters are
again presented with their limitations. The implications of the research findings both
theoretical and practical are discussed. The chapter concludes by looking at possible
further research topics.

Table 7.1: Main conclusions drawn in this thesis.

No Conclusions

1 The Layered Protocol Theory provides a basis for empir-
ical evaluation of the user interface for different layers of
interaction.

2 An analysis of the number of messages received by an interac-
tion component is as effective or more effective in determining
usability variations between versions of both lower and higher-
level interaction components than an analysis of the number of
keystrokes in cases where components operate independently.

3 Inconsistency can cause interaction components to affect each
other’s usability.

4 Mental effort can cause interaction components to affect each
other’s usability.

7.2 Main conclusions and limitations

7.2.1 Component-based usability testing

The first main conclusion that can be drawn is that LPT indeed provides a basis for em-
pirical evaluation of the user interface at different layers. A framework was established for
component-based usability testing. The framework allows usability evaluation of elemen-
tary units within a device that receive and send signals to and from users, so users can
perceive and alter the units’ physical state. If a unit, called an interaction component, is
part of a higher-level control loop, the interaction is mediated by lower-level interaction
components. The testing framework supports two testing paradigms, the single version
and the multiple versions testing paradigm. In the single version testing paradigm, only

160

one version of each interaction component is tested. The focus then is to identify interac-
tion components that hamper the overall usability of the user interface. In the multiple
versions testing paradigm, different versions of interaction components are compared with
each other. The question in this case is which version has the highest usability.

The number of messages a component receives was proposed as the objective component-
specific performance measure (chapter 2 and 3). This measure reflects the users’ effort
to control their perception of a component. Each message is an expression that users are
unsatisfied with the current system state they perceive and that they spend effort to match
it with their reference value. When assuming that the amount of effort to send a message
is similar for each message, the messages can simply be added up to create a performance
measure. If this is not the case, individual effort values can be assigned to each message
as is done in the single version testing paradigm.

Special attention could be given to situations where the minimal numbers of messages
required to perform that task differ for each version of the component. The analysis can
be done on the number of messages made in addition to the minimal number by subtracting
the minimal number from the observed one as was sometimes done in chapter 4 and 5. This
corrected number presents the performance relative to the optimal performance. However,
the absolute number would be more preferable when choosing the most usable version of
a component. After all, what counts in a usability test is how much effort users have to
spend on controlling a component, and not how this relates to the amount of effort an ideal
user would need to perform the same task.

The study described in chapter 4 shows that an objective component-specific performance
measure is as effective or more effective in determining usability variations between versions
of both lower and higher-level interaction components than overall performance measures
in cases where components operate independently. The power of this component-specific
measure comes from the reduction in statistical variance by limiting its focus to one control
loop, and, consequently, locking out the variance caused by the users’ effort to control other
components. In cases where components are more dependent, limiting the focus to one
control loop might be counterproductive. In theory, objective overall performance measures
might then be more powerful since they take into account all control loops that might be
affected.

For the single version testing paradigm, the number of messages a component receives is
set against the performance of an ideal user and is corrected for control effects of lower
and higher-level components (chapter 3). An effort value is assigned to each message
received. These effort values are based on the effort value of the lowest-level messages
that are linked to higher-level messages. At the lowest-level layer, weight factors of an
arbitrary unit are assigned to the messages, which present the user effort value to send a
single lower-level message. The measure has been shown to correlate well with overall and
component-specific usability measures and allows evaluators to order the components on
their usability improvement potential (chapter 4). However, when it comes to applying
this measure, it is presumed that components only receive messages that were sent with

161

the intent of controlling the components. The Standardised Reception Coefficient was
introduced to help evaluators check whether messages were sent unintentionally as a side
effect of lower-level control loops, which is labelled as an ineffectiveness problem.

The component-specific ease-of-use and satisfaction measures were obtained through a
questionnaire. These component-specific measures were not found to be more effective in
determining perceived ease-of-use or the satisfaction variations between versions of a com-
ponent than their overall counterparts in the case of the multiple versions testing paradigm
(chapter 4). The component-specific measures were expected to be more powerful because
the specific questions could assist users in the recall of their control experience of indi-
vidual interaction components (chapter 3). However, in the experimental set-up, subjects
received both component-specific and overall questions in an randomly ordered sequence.
The recollection triggered by the component-specific questions might have influenced the
users when answering the overall questions. The benefit of component-specific ease-of-use
and satisfaction measures lies in the single version testing paradigm. Here, evaluators
can use them to compare the interaction components with each other, a quality overall
measures do not possess in the single testing paradigm since they could only offer overall
assessments of the single device.

The testing framework also has its limitations and evaluators should know them when
interpreting results obtained by the testing framework (Gray & Salzman, 1998). First of
all, ecological validity is always a point of concern when it comes to empirical evaluations
because evaluations often affect the situation and working practices under consideration
(Parsons, 1974). In the current framework participants receive a description of the goal
they have to achieve as quickly as possible. Evaluators are responsible for setting goals
that users normally would set themselves. Conclusions about the usability are only as
valid as the goal given. Furthermore, as evaluators have to select achievable goals, the
framework can not escape the “I know it can be done or you wouldn’t have asked me to do
it” bias (Cordes, 2001). This limits the framework. The users’ ability to find out about the
product’s capabilities and limitations can not be tested since they are already presented
in the task instruction. Besides the bias for the goal setting, the speed constraint will not
always be an important value of the interaction. However, it lowers the users’ ability to
compensate for bad usability, and therefore, increases the power of the method. Although
all the studies were conducted in a usability laboratory, the framework did not impose
this. On the contrary, the framework lends itself for usability evaluations in the natural
interaction environment. The objective performance measures are non-intrusive and the
perceived ease-of-use and satisfaction measures are only obtained after the interaction.

The ultimate criterion for effectiveness of a usability evaluation method is how well the
method helps evaluators discover real usability problems. Or phrased in a more general
question, has it something to say about what people do in ‘real’, culturally and economically
significant situations? This is a question often posed when it comes to cognitive theories
(e.g. Hoc, 2000; Kaptelinin, 1996; Neisser, 1976). A usability problem is ‘real’ if it is a
predictor of a problem that users will encounter in real work-context usage and that will
have an impact on usability. In this study, the ‘reality’ was obtained by seeding known

162

usability problems into the prototypes. This approach has been criticised (Hartson, Andre,
& Williges, 2001) as a standard approach to test analytic usability evaluation methods
because it heavily depends on the researchers’ skill to shape a problem in the prototype.
Furthermore, the prototype is designed with the intent of testing and not of using, putting
ecological validity in doubt. A more common approach is to take a product used in real
life, with real-life usability problems, and to compare the results of analytic and empirical
methods with each other.

Still, ‘seeding’ seems a more appropriate approach to evaluate the testing framework at
this stage. Otherwise, it would require extensive research to find a device in real life with
components that had real-life usability problems and also satisfied the demands of the
experimental evaluation study described in chapter 4 (a troubling lower-level and higher-
level component and a troubling component that effected the components in higher-level
layers). Furthermore, the testing framework already is an empirical method, and other
component-specific measures to compare with are not available at this stage. Next, the
conclusions drawn agree with the conclusions derived from the commonly used empirical
overall measures. Finally, the experiment was conducted on high fidelity prototypes, which
were implemented on a computer, and closely emulated the E- and I-feedback of an actual
product, including both visual and auditory system feedback.

Knowledge about the limitations of the range of usability problems the framework can
handle is also valuable for evaluators. The experiments show that the framework can handle
usability problems caused by the lack of understandable feedback, cognitive complexity,
inconsistency and mental effort. The framework is based on the control of perception.
Usability problems not related to the control of perception are not dealt with, such as
health effects, both mental (e.g. stress) and physical (e. g. repetitive strain injury).

7.2.2 The independence of the component’s usability

The other main conclusion that can be drawn is that the usability of interaction compo-
nents can be affected by other interaction components. The usability of the entire product
can not be predicted solely on the usability of the individual interaction components. The
results of the experiments described in chapters 2 and 4 did not show that components
affect each other’s usability. However, inconsistency and mental effort are factors that
make interaction components reduce users’ ability to control another interaction compo-
nent. The study described in chapter 5 showed that inconsistency could cause interaction
components in the same layer or in higher layers to activate an inappropriate mental model
for other interaction components. The likelihood that a mental model will be activated
and applied to another interaction component, seems to depend on how powerful (often or
recently applied) the mental model is. Inconsistency between the application domain and
an interaction component was not found to affect the interaction component’s usability.
Whether this only was the case in this experiment or can be generalised, is a topic for
further research. However, the study did show that the application domain had an effect

163

on the users’ understanding of the functionality the component provides. The experiment
described in chapter 6 showed that mental effort could link the control of higher-level in-
teraction components to lower-level interaction components. A poor implementation of
the lower-level layers can force users to adopt less efficient higher-level control strategies
to cope with a mentally over-demanding task.

With respect to ecological validity, the situations created in the experiments of chapter
5 and 6 may be too extreme to occur in real life. The experiments primarily aimed at
demonstrating that these factors do indeed exist. Taking a less extreme situation would
give an unclear answer if no effect was found. However, tasks that are interrupted by other
tasks, the applications used, and the goals given were not uncommon in real life, and some
problematic component combinations even have direct representatives in applications used
nowadays.

7.3 Implications

7.3.1 Theoretical implications

The conclusions drawn about the testing framework still strengthen LPT and the Per-
ception Control Theory (PCT) as theories that can be successfully applied to the area of
user-system interaction. The study illustrates the ability to determine from observation
whether users successfully controlled their perception at the different layers of interaction.
The theories also seem to set a framework for obtaining information how the users per-
ceived their control in each of the different layers. Then again, the conclusions also indicate
that control loops should no longer be seen as operating completely independently from
each other, as posed in LPT and PCT. Memory emerges as an important connecting factor,
for reasons of content as well as mental demand.

Strictly speaking, the relationship between control loops consists of setting reference val-
ues and of ultimately receiving the feedback messages. However, the study illustrates that
memory load can force users to change higher-level control strategies when confronted with
large mental demands. At first, mental effort has no explicit place in LPT or PCT. Still, the
following two interpretations can be offered within the boundaries of these theories: mem-
ory support of lower-level layers for the construction of higher-level messages, or mental
effort as an intrinsic reference signal that directs a reorganisation system. The difference
between the two explanations comes down to the allocation of the mental effort in the
control loop itself or in lower-level control loops. In the first interpretation, lower-level
layers can support higher-level layers in the construction of a message it wants to pass
on by sending feedback about the message’s part sent so far. This lower-level mnemonic
device reduces the mental effort put into the higher-level control loop. In the second inter-
pretation, the relation between control loops is made by a reorganisation system (Powers,
1973). This system, responsible for altering the operations of all control loops, is an inher-
ited control process that is concerned with keeping a set of critical variables near built-in

164

Initially filled with

memory content of {;—¥ Memory ;
other similar control
loops, but later
adjusted to actual

experience
Intention Action Action
User: formation selection [execution
E-feedback T |-feedback E-feedback l
System: Hidden internal workings

Figure 7.1: In the perceptual-control loop, memory helps with interpretation and creating
expectations based on prior actions and feedback.

reference conditions, such as nutrition, temperature, and perhaps also mental resources.
When there is a difference between sensed intrinsic state and the intrinsic reference sig-
nals, a reorganisation process is set in motion, which stops when the difference is close to
zero. The strategy change observed in higher-level layers can be seen as the reorganisation
process triggered when lower-level control loops exhaust mental resources.

The other argument against the independence claim is also related to memory. In its initial
deployment, a control loop may depend on the memory recordings of other control loops.
For the creation of control loops, Powers (1992) suggests a random reorganisation process,
independent of other control loops. He suggested randomness (or noise) to explain how
even the first new control loops come into being when there are no memory recordings to
rely on. Still, this study illustrates that when new control loops show some similarity, users
apply their experience from other control loops. ‘Similarity’ is defined here by whatever
memory recordings are activated in this new situation. Memory recordings from other
control loops may be copied or directly used as a base to start from in a new control
loop. Memory in a control loop plays an essential role in the users’ ability to imagine
the effect actions may have on perception (Powers, 1973). The current perception can
be uncoupled from the control loop, while memory feeds the control loop old perceptions
that are associated with actions. This ability is precisely what a mental model would
offer. Without proposing what is recorded and its exact place in the perceptual-control
loop, memory clearly guides users to alter their perception to their liking (Figure 7.1).
However, applying memory in the wrong situation may get them into trouble. Especially
when recordings are not made in the actual deployment of the control loop, but copied

165

from other seemingly similar control loops.

7.3.2 Practical implications

The research leads to a component-based usability testing framework, but also illustrates
that components should not be designed, deployed and evaluated entirely independently of
the other interaction components in user interfaces. Within the component-based software
engineering approach, the creation and deployment processes are separate. Therefore, two
kinds of usability evaluations are advised: one focusing on interaction components in isola-
tion, the other focusing on the interaction component within the context of the particular
application. As part of the creation process, the emphasis would be on the usability of the
functionality offered by the interaction component. New interaction components could be
evaluated in a test bed that presents potential future applications. The multiple versions
testing paradigm would be most suitable in this environment. Different versions of a com-
ponent could be compared with each other, and the most usable version could be shipped
off to the component repository. Evaluation in this process is an efficiency step because it
would affect many applications at once; usability problems related to the individual nature
of the interaction component are already eliminated before components are deployed in
applications.

As early as in the creation process, designers should be attentive to potential compromis-
ing factors that can turn against the usability later on in the deployment process. Two
important factors are consistency and mental effort. To reduce future inconsistencies a
set of interaction components should be envisaged that would be used together with the
interaction component under construction. If this is not possible, designers may try to
design according to some design rules; a style guide for example. In the deployment pro-
cess, developers should check the anticipated environment or the applied design rules to see
whether there are conflicting situations. In addition, the rules, but also the set of future
components, can guide the design of a good test bed. Designers should also be cautious
about creating interaction components that require a large amount of mental effort to
operate, since the mental load may have a negative side effect on the operations of other
interaction components as well. The search of interaction components that reduce the
memory load of other interaction components is also effective. For example, interaction
components could show what users have already done so far, so they do not have to rely
on their memory when they need an overall view to proceed.

The usability of an entire product can not always be predicted from the usability of the
individual interaction components. Therefore, a usability test, as part of the deployment
process, should estimate the usability of the entire product and looks for usability problems
in the context of the whole application. The single version testing paradigm fits well
into this process, at least, if developers do not want to compare different versions of an
interaction component in their application. At this point, evaluators should realise that the
source of a usability problem can lie outside an interaction component or be a combination

166

with another interaction component. Measuring the mental effort may give more insight
into this.

For user interfaces that are not developed according to the component-based engineering
approach, the testing framework can still be useful once the control loops are identified.
This would mean reverse engineering of a suitable compositional structure of the user
interface. When this is established, the subjective component-specific perceived ease-of-
use and the satisfaction measures can be obtained. Since there probably is no real message
exchange between the components that were identified afterwards, objective component-
specific performance measures can only be obtained by simulating the message exchange.
Lower-level messages, such as keystrokes, should be fed into a conversion process that
simulates the message exchange between the components, which is again recorded in a log
file. The benefits of applying the testing framework are the statistical power of the objective
component-specific measure, and the ability to study the individual component of the user
interface directly instead of for its impact on the overall usability. The latter is especially
useful within the single version testing paradigm where the individual components can not
be assessed on the basis of overall usability measures.

7.4 Future work

The proof of the pudding is in the eating. The component-based usability testing frame-
work seems promising. However, the real benefit will only become apparent when actual
designers and developers put it into practice and the usability of the final product is assessed
(Stanton & Young, 1999). It will then become visible how much extra effort and money is
involved and how it fits in with normal working routines. Comparing usability predictions,
made with the testing framework and field assessment of interaction components, may also
help in establishing a better picture of the framework’s effectiveness. This again, relates
to a still open, more general question about the effectiveness of laboratory-based usability
tests on the whole (Hartson et al., 2001). A field-based usability evaluation framework
for components would do more justice to the ecological validity, putting the study in an
social, organisational, and cultural context, in relation to goals, plan and values of users
(Kaptelinin, 1996). Although the perceived ease-of-use and satisfaction measure could be
adopted, the objective measure requires external goal-setting and time limitation. Tak-
ing the users’ own goal setting into the evaluation creates a more comprehensive usability
view. Furthermore, field-based studies on components open the door to long-term usability
studies, which are rarely conducted (see for exceptions e.g. Nes & Itegem, 1990; Petersen,
Madsen, & Kjeer, 2002; Thomas, 1998). A component would be a more practical study
object than an entire application since components have a longer life span.

In the experiment, subjects gave answers that were influenced by the usability of other
interaction components. This led to recurring questions like, how does the observed control
relate to the perceived control, and, what do users think they are controlling? Although
according to LPT, the user-system interaction can be divided into several layers, it still

167

is undecided whether users make a clear distinction in their control experience of the
different interaction components. If this were the case, LPT could also be a framework
for the way in which users consciously perceive their interaction with a system. One step
further would be an attempt to relate the users’ utterances made in a usability test to
the components in the user interface. This could form the basis for another component-
specific usability measure, one that does not require extra coding in the prototype, and
would fit the Thinking Aloud Protocol method often applied in usability tests. The action
identification theory (Vallacher & Wegner, 1987) might give some ideas for a measure. The
theory states that users will think in terms of higher levels of identification when the task
is easy, but move to lower levels if their action proves difficult to maintain with higher-level
identities in mind. An additional question, about users’ perception of a component, can
be put forward when an interaction component is in fact a composition of multiple smaller
interaction components. Do users perceive a compound component as a coherent identity
with the same functionality in different applications? If this is the case, developers can
start building compound components that can be reused in different applications. If not,
developers should construct user interfaces only by using basic interaction components.

168

Bibliography

Allport, D. A. (1980). Attention and performance. In G. Claxton (Ed.), Cognitve psychol-
ogy: new directions (p. 112-153). London: Routledge & Kegan Paul.

Aykin, N. (1994). Software reuse: A case study on cost-benefit of adopting a common
software development tool. In R. G. Bias & D. J. Mayhew (Eds.), Cost-justifying
usability (p. 177-202). London: Academic Press.

Bailey, B. P., Konstan, J. A., & Carlis, J. V. (2001). The effects of interruptions on task
performance, annoyance, and anxiety in the user interface. In M. Hirose (Ed.), IN-
TERACT 01, IFIP TC.18 International conference on human-computer interaction
(p. 593-601). Amsterdam: IOS Press.

Beaudet, D. B., & Williges, R. C. (1988). The role of screening studies in sequential
research designs. In Proceedings of the human factors society 32nd annual meeting
(p. 1174-1178). Santa Monica, CA: Human Factors Society.

Blanchard, H. E., Lewis, S. H., Ross, D., & Cataldo, G. (1993). User performance and
preference for alphabetic entry from 10-key pads: Where to put Q and Z? In Proceed-
ings of the human factors and ergonomics society 37th annual meeting (p. 225-229).
Santa Monica, CA: Human Factors and Ergonomics Society.

Booch, G., Rumbaugh, J., & Jacobson, 1. (1999). The unified modeling language user
guide. Amsterdam: Addison Wesley.

Bourbon, W. T., & Powers, W. T. (1999). Models and their worlds. International Journal
of Human-Computer Studies, 50, 445-461.

Broadbent, D. E. (1958). Perception and communication. London: Pergamon.

Brodsky, R. (1991). Your evolving phone number. American Heritage of Invention and
Technology, 6, p. 64.

Card, S. K., Moran, T. P.,; & Newell, A. (1980). The keystroke-level model for user
performance time with interactive systems. Communications of the ACM, 23, 396-
410.

169

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer
interaction. London: Lawrence Erlbaum.

Chandler, D. (2002). Semiotics: the basics. London: Routledge.

Chéry, S., & Farrell, P. S. E. (1998). A look at behaviourism and perceptual control theory
in interface design (DCIEM No. 98-R-12). North York, (Ontario), Canada: Defence
and Civil Institute of Environmental Medicine.

Chin, J. P., Diehl, V. A., & Norman, L. K. (1988). Development of an instrument measuring
user satisfaction of the human-computer interface. In Conference proceedings on
human factors in computing systems (p. 213-218). New York, NY: ACM Press.

Cnossen, F. (2000). Adaptive strategies and goal management in car drivers. Doctoral
dissertation, Rijksuniversiteit Groningen, The Netherlands.

Coleman, W. D., Williges, R. C., & Wixon, D. R. (1985). Collecting detailed user evalu-
ations of software interfaces. In R. W. Swezey, T. J. Post, & L. B. Strother (Eds.),
Proceedings of the human factors society - 29th annual meeting (p. 240-244). Santa
Monica, CA: Human Factors Society.

Cordes, R. E. (2001). Task-selection bias: A case for user-defined tasks. International
Journal of Human-Computer Interaction, 13, 411-419.

Coutaz, J. (1987). PAC, an object oriented model for dialog design. In H.-J. Bullinger
& B. Shackel (Eds.), INTERACT’87: 2nd IFIP international conference on human-
computer interaction (p. 431-436). Amsterdam: North-Holland.

Coutaz, J., Nigay, L., & Salber, D. (1996). Agent-based architecture modelling for inter-
active systems. In D. Benyon & P. Palanque (Eds.), Critical issues in user interface
systems engineering (p. 191-209). Berlin: Springer Verlag.

Curren, M. T., & Harich, K. R. (1994). Consumers’ mood states: The mitigating influence
of personal relevance on product evaluation. Psychology ¢ Marketing, 11, 91-107.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly, 13, 319-340.

Dellen, H. J. van, Aasman, J., Mulder, L. J. M., & Mulder, G. (1985). Time domain versus
frequency domain measure of heart-rate variability. In J. F. Orlebeke, G. Mulder,
& L. J. P. Doornen (Eds.), Psychophysiology of cardiovascular control (p. 353-374).
New York, NY: Plemum Press.

Detweiler, M. C., Schumacher, M. C.; & Gattuso, N. (1990). Alphabetic input on a
telephone keypad. In Proceedings of the human factors society 34th annual meeting
(p. 212-216). Santa Monica, CA: Human Factors Society.

170

Docampo Rama, M. (2001). Technology generations handling complex user interfaces.
Doctoral dissertation, Technische Universiteit Eindhoven, The Netherlands.

Doll, W. J., Hendrickson, A., & Deng, X. (1998). Using Davis’s perceived usefulness
and ease-of-use instruments for decision making: A confirmatory and multigroup
invariance analysis. Decision Sciences, 29, 839-869.

Driskell, J. E., & Olmstead, B. (1989). Psychology and the military: Research applications
and trends. American Psychologist, 44, 43-54.

Duce, D. A., Gomes, M. R., Hopgood, F. R. A., & Lee, J. R. (1990). User interface
management and design. Berlin: Springer-Verlag.

Edwards, J. L., & Sinclair, D. (2000). Design intelligence: A case of explicit models and
layered protocols. In M. M. Taylor, F. Néel, & D. G. Bouwhuis (Eds.), The structure
of multimodal dialogue II (p. 249-269). Amsterdam: John Benjamins.

Eggen, J. H., Haakma, R., & Westerink, J. H. D. M. (1993). Layered protocols in user
interfaces for consumer equipment. In S. Ashlund, K. Mullet, & A. Henderson (Eds.),

INTERACT ’93 and CHI 93 conference companion on human factors in computing
systems (p. 165-166). New York, NY: ACM Press.

Eggen, J. H., Haakma, R., & Westerink, J. H. D. M. (1996). Layered protocols: Hands-on
experience. International Journal of Human-Computer Studies, 44, 45-72.

Eijk, R. van. (2000). Simulatie van een mobiele telefoon; requirement, specificatie, onder-
werp en realisatie. Unpublished bachelor’s thesis, Fontys Hogescholen, Eindhoven,
The Netherlands.

Engel, F. L., Goossens, P., & Haakma, R. (1994). Improved efficiency through I- and
E-feedback: A trackball with contextual force feedback. International Journal of
Human-Computer Studies, 41, 949-974.

Engel, F. L., & Haakma, R. (1993). Expectations and feedback in user-system communi-
cation. International Journal of Man-Machine Studies, 39, 427-452.

Farrell, P. S. E., Hollands, J. G., Taylor, M. M., & Gamble, H. D. (1999). Perceptual control
and layered protocols in interface design: I. Fundamental concepts. International
Journal of Human-Computer Studies, 50, 489-520.

Farrell, P. S. E., & Semprie, M. A. H. (1997). Layered protocol analysis of a control
display unit (DCIEM No. 97-R-70). North York (Ontario), Canada: Defence and
Civil Institute of Environmental Medicine.

Foley, J. D., & Dam, A. van. (1983). Fundamentals of interactive computer graphics.
Amsterdam: Addison-Wesley.

171

Freudenthal, T. D. (1998). Learning to use interactive devices; Age differences in the
reasoning process. Doctoral dissertation, Technische Universiteit Eindhoven, The
Netherlands.

Gediga, G., Hamborg, K.-C., & Diintsch, 1. (1999). The IsoMetrics usability inventory: an
operationalization of ISO 9241-10 supporting summative and formative evaluation of
software systems. Behaviour and Information Technology, 18, 151-164.

Gillie, T., & Broadbent, D. E. (1989). What makes interruptions disruptive? A study of
length, similarity, and complexity. Psychological-Research, 50, 243-250.

Gray, W. D., & Salzman, M. C. (1998). Damaged merchandise? A review of experiments
that compare usability evaluation methods. Human-Computer Interaction, 13, 203-
261.

Green, M. (1983). Report on dialogue specification tools. In G. E. Pfaff (Ed.), User
interface management systems (p. 9-19). Berlin: Springer-Verlag.

Grudin, J. (1989). The case against user interface consistency. Communications of the
ACM, 32, 1164-1173.

Haakma, R. (1998). Layered feedback in user-system interaction. Doctoral dissertation,
Technische Universiteit Eindhoven, The Netherlands.

Haakma, R. (1999). Towards explaining the behaviour of novice users. International
Journal of Human-Computer Studies, 50, 557-570.

Hahn, J. (2001). The dynamics of mass online marketplaces: a case study of an online
auction. In Proceedings of the SIGCHI conference on human factors in computing
systems (p. 317-324). New York, NY: ACM Press.

Halasz, F. G., & Moran, T. P. (1983). Mental models and problem solving in using a
calculator. In A. Janda (Ed.), Proceedings of 1983 conference on human factors in
computing systems (p. 212-216). New York, NY: ACM Press.

Hartson, H. R., Andre, T. S., & Williges, R. C. (2001). Criteria for evaluating usability
evaluation methods. International Journal of Human-Computer Interaction, 13, 373-
410.

Heineman, G. T., & Councill, W. T. (2001). Component-based software engineering:
Putting the pieces together. London: Addison-Wesley.

Herrnstein, R. J. (1967). Introduction to J. B. Watson. In Behavior; An introduction to
comparative psychology (p. xi-xxxi). New York, NY: Holt, Rinehart and Winston.

Hertzum, M. (2000). Component-based design may degrade system usability: Conse-
quences of software reuse. In C. Paris, N. Ozkan, S. Howard, & S. Lu (Eds.), OZCHI
2000 conference proceedings (p. 88-94). Sydney: Ergonomics Society of Australia.

172

Hertzum, M., & Jacobsen, N. E. (2001). The evaluator effect: A chilling fact about usability
evaluation methods. International Journal of Human-Computer Interaction, 13, 421-
443.

Hilbert, D. M., & Redmiles, D. F. (2000). Extracting usability information from user
interface events. ACM Computing Surveys (CSUR), 32, 384-421.

Hilbert, D. M., & Redmiles, D. F. (2001). Large-scale collection of usage data to inform
design. In M. Hirose (Ed.), INTERACT 01, IFIP TC.13 International conference on
human-computer interaction (p. 767-768). Amsterdam: 10S Press.

Hoc, J.-M. (2000). Toward ecological validity of research on cognition. In Ergonomics
for the new millennium: Proceedings of IEA 2000/HFES 2000 congress (Vol. 1, p.
549-552). Santa Monica, CA: Human factors and Ergonomcs Society.

Hockey, G. R. J. (1997). Compensatory control in the regulation of human performance
under stress and high workload: A cognitive-energetical framework. Biological Psy-
chology, 45, 73-93.

Hollemans, G. (1999). User satisfaction measurement methodologies: Extending the user
satisfaction questionnaire. In H.-J. Bullinger & J. Ziegler (Eds.), Human-computer
interaction: Ergonomics and user interfaces, proceedings of the Sth international
conference on human-computer interaction (Vol. 1, p. 1008-1012). Mahwah, NJ:
Lawrence Erlbaum.

Holyer, A. (1992). Top-down object-based user interface definition and design paradigms.
In J. Gornostaev (Ed.), Proceedings of Fast-West international conference on human-
computer interaction (p. 421-428). Moscow: ICSTI.

ISO. (1994). Information technology - open systems interconnection- basic reference model:
The basic model (ISO/IEC No. 7498-1). Geneva: International Organization for
Standardization.

ISO. (1998). Ergonomic requirements for office work with visual display terminals (VDTs)
Part 11. Guidance on usability (ISO No. 9241-11). Geneva: International Organiza-
tion for Standardization.

Jacobson, 1., Griss, M., & Jonsson, P. (1997). Software reuse: Architecture, process and
organization for business success. New York, NY: ACM Press.

John, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis techniques:
comparison and contrast. ACM Transactions on Computer-Human Interaction, 3,
320-351.

John, B. E., & Marks, S. J. (1997). Tracking the effectiveness of usability evaluation
methods. Behaviour and Information Technology, 16, 188-202.

173

Jorna, P. G. A. M. (1985). Heart-rate parameters and coping process underwater. In J. F.
Orlebeke, G. Mulder, & L. J. P. Doornen (Eds.), Psychophysiology of cardiovascular
control (p. 827-839). New York, NY: Plemum Press.

Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice-Hall.

Kaptelinin, V. (1996). Activity theory: Implications for human-computer interaction. In
B. A. Nardi (Ed.), Context and consciousness (p. 103-116). London: MIT Press.

Kellogg, W. A. (1989). The dimensions of consistency. In J. Nielsen (Ed.), Coordinating
user interfaces for consistency (p. 9-20). London: Academic Press.

Kieras, D., & Polson, P. G. (1985). An approach to the formal analysis of user complexity.
International Journal Man-Machine Studies, 22, 365-394.

Kieras, D. E., & Bovair, S. (1984). The role of a mental model in learning to operate a
device. Cognitive Science, 8, 255-273.

Kirakowski, J., & Corbett, M. (1993). SUMI: The software usability measurement inven-
tory. British journal of educational technology, 24, 210-212.

Kobryn, C. (2000). Modeling components and frameworks with UML. Communications
of the ACM, 43(10), 31-38.

Kramer, J. J. (1970). Human factors problem in the use of pushbutton telephones for data
entry. In Human factors in telephony: 4th international symposium (p. 241-258).
Berlin: VDE-Verlag.

Krasner, G. E., & Pope, S. T. (1988). A cookbook for using the Model-View-Controller
user interface paradigm in Smalltalk-80. Journal of object-oriented programming, 1,
27-49.

Kreifeldt, J. G., & McCarthy, M. E. (1981). Interruption as test of the user-computer
interface. In Proceedings of the 17th annual conference on manual control, JPL
publication 81-95 (p. 655-667). University of California.

Landauer, T. K. (1997). Behavioral research methods in human-computer interaction.
In M. G. Helander, T. K. Landauer, & P. V. Prabhu (Eds.), Handbook of Human-
Computer Interaction (p. 203-227). Amsterdam: Elsevier.

Lecerof, A., & Paterno, F. (1998). Automatic support for usability evaluation. [IEEFE
Transactions on Software Engineering, 24, 863-888.

Lewis, J. R. (1989). Pairs of latin squares to counterbalance sequential effects and pairing
of conditions and stimuli. In Proceedings of the human factors society 33rd annual
meeting (p. 1223-1227). Santa Monica, CA: Human Factors Society.

174

Lewis, J. R. (1995). IBM computer usability satisfaction questionnaires: Psychomet-
ric evaluation and instructions for use. International Journal of Human-Computer
Interaction, 57-78.

Lin, H. X., Choong, Y.-Y., & Salvendy, G. (1997). A proposed index of usability: A
method for comparing the relative usability of different software systems. Behaviour
and Information Technology, 16, 267-278.

Logan, G. D. (1988). Automaticity, resources, and memory: Theoretical controversies and
practical implications. Human Factors, 30, 583-598.

Lohse, G. L., & Spiller, P. (1998). Quantifying the effect of user interface design features
on cyberstore traffic and sales. In C.-M. Karat, A. Lund, J. Coutaz, & J. Karat
(Eds.), Conference proceedings on human factors in computing systems (p. 211-218).

Los Angeles, CA: ACM /Addison-Wesley.

Mecllory, M. D. (1979). Mass produced software components. In P. Naur, B. Randell,
J. N. Buxton, & NATO science committee (Eds.), Software engineering: concepts
and techniques: proceedings of the NATO conferences, 1968 and 1969, Garmisch,
Germany, and Rome (p. 88-98). New York, NY: Mason/Charter.

Meister, D. (1976). Behavioral foundations of system development. New York, NY: John
Wiley & Sons.

Meister, D. (1999). The history of human factors and ergonomics. London: Lawrence
Erlbaum.

Mulder, G. (1980). The heart of mental effort: Studies in the cardiovascular psychophysiol-
ogy of mental work. Doctoral dissertation, Rijksuniversiteit Groningen, The Nether-
lands.

Mulder, G., Mulder, L. J. M., Meijman, T. F., Veldman, J. B. P., & Roon, A. M. van.
(2000). A psychophysiological approach to working conditions. In R. W. Backs &
W. Boucsein (Eds.), Engineering pychophysiology; Issues and applications (p. 139-
159). London: Lawrence Erlbaum.

Mulder, L. J. M. (1988). Assessment of cardiovascular reactivity by means of spectral
analysis. Doctoral dissertation, Rijksuniversiteit Groningen, The Netherlands.

Myers, B. A. (1998). A brief history of human-computer interaction technology. Interac-
tions, 5(2), 44-54.

Nardi, B. A. (1996). Studying contex: A comparison of activity theory, situated action

models, and distributed cognition. In B. A. Nardi (Ed.), Context and consciousness
(p. 69-102). London: MIT Press.

175

NATO. (2001). Visualisation of massive military datasets: human factors, applications,
and technologies (RTO-TR No. 030). Hull (Québec), Canada: North Atlantic Treaty
Organization.

Neerinex, M. A.; & Greef, H. P. de. (1998). Cognitive support: Extending human knowl-
edge and processing capacities. Human-Computer Interaction, 13, 73-106.

Neisser, U. (1976). Cognition and reality. San Francisco, CA: W.H. Freeman and company.

Nes, F. L. van, & Itegem, J. P. M. van. (1990). Hidden functionality: how an advanced
car radio is really used. In F. L. Engel, D. J. Hermes, & J. B. O. S. Martens (Eds.),
IPO annual progress report 25 (p. 101-112). Eindhoven, The Netherlands: The
Reproduction and Photography section of the Technische Universiteit Eindhoven.

Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user interfaces. In J. C. Chew &
J. Whiteside (Eds.), Conference proceedings on empowering people : Human factors
in computing system: special issue of the SIGCHI Bulletin (p. 249-256). New York,
NY: ACM Press.

Nigay, L., & Coutaz, J. (1991). Building user interfaces: organizing software agents. In
Commission of EC, directorate-general: Telecommunication, Information, Industries
and Innovation (Ed.), Proceedings of annual Esprit conference (p. 707-719). Office
for Official Publications of the European Communities.

Nigay, L., & Coutaz, J. (1993). A design space for multimodal systems: concurrent
processing and data fusion. In S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel,
& T. White (Eds.), Conference proceedings on human factors in computing systems
(p. 172-178). Amsterdam: ACM Press.

Norman, D. A. (1981). Categorization of action slips. Psychological Review, 88, 1-15.

Norman, D. A. (1984). Stages and levels in human-machine interaction. International
Journal of Man-Machine Studies, 21, 365-375.

Olsen, D. R., & Halversen, B. W. (1988). Interface usage measurements in a user interface
management system. In Proceedings of the ACM SIGGRAPH symposium on user
interface software (p. 102-108). New York, NY: ACM Press.

Palay, A. J., Hansen, W. J., Kazar, M. L., Sherman, M., Wadlow, M. G., Neuendorffer,
T. P., Stern, Z., Bader, M., & Peters, T. (1988). The Andrew toolkit - An overview.
In Proceedings of the winter USENIX conference (p. 9-21). Berkeley, CA: USENIX
Association.

Parsons, H. M. (1974). What happened at Hawthorne? Science, 183, 922-932.

Paterno, F. (2000). Model-based design and evaluation of interactive applications. London:
Springer.

176

Payne, S. J., & Green, T. R. G. (1989). The structure of command languages: An
experiment on task-action grammar. International Journal Man-Machine Studies,
30, 213-234.

Petersen, M. G., Madsen, K. H., & Kjer, A. (2002). The usability of everyday technol-
ogy: emerging and fading opportunities. ACM Transactions on Computer-Human
Interaction, 9, 74-105.

Polson, P. G. (1988). The consequences of consistent and inconsistent user interfaces.
In R. Guindon (Ed.), Cognitive science and its applications for human-computer
interaction (p. 59-108). Hillsdale, NJ: Lawrence Erlbaum.

Polson, P. G., Lewis, C., Rieman, J., & Wharton, C. (1992). Cognitive walkthroughs:
A method for theory-based evaluation of user interfaces. International Journal of
Man-Machine Studies, 36, T41-T73.

Powers, W. T. (1973). Behavior: the control of perception. New York, NY: Aldine de
Gruyter.

Powers, W. T. (1992). Living control systems II. Gravel Switch, KY: The Control Systems
Group.

Powers, W. T. (1998). Making sence of behavior. New Canaan, CT: Benchmark Publica-
tions.

Rauterberg, M. (1995). Four different measures to quantify three usability attributes: ‘feed-
back’ ‘interactive directness’ and ‘flexibility’. In P. Palanque & R. Bastide (Eds.),
Design, specification and verification of interactive systems : proceedings of the Eu-
rographics workshop (p. 209-223). Wien: Springer.

Reisner, P. (1993). APT: A description of user interface inconsistency. International
Journal of Man-Machine Studies, 39, 215-236.

Sanderson, P. M., & Fisher, C. (1994). Exploratory sequential data analysis: Foundations.
Human-Computer Interaction, 9, 251-317.

Sanderson, P. M., & Fisher, C. (1997). Exploratory sequential data analysis: qualitative
and quantitative handling of continuous observational data. In G. Salvendy (Ed.),
Handbook of human factors and ergonomics (2 ed., p. 1471-1513). Chichester: Wiley-
Interscience.

Shneiderman, B. (2000). Universal usability. Communications of the ACM, 43(5), 84-91.

Sinclair, R. C., Mark, M. M., Moore, S. E., Lavis, C. A., & Soldat, A. S. (2000). An
electoral butterfly effect. Nature, 408, 665 - 666.

177

Smilowitz, E. D. (1995). Methaphors in user interface design: An empirical investigation.
Unpublished doctoral dissertation, New Mexico State University, Las Cruces, NM.

Snowberry, K., Parkinson, S. R., & Sisson, N. (1983). Computer display menu. Ergonomics,
26, 699-712.

Sperandio, J. C. (1971). Variation of operator’s strategies and regulating effects on work-
load. Ergonomics, 14, 571-577.

Stanton, N. A.; & Young, M. S. (1999). What price ergonomics? Nature, 399, 197-198.

Taylor, M. M. (1988a). Layered protocol for computer-human dialogue. I: Principles.
International Journal Man-Machine Studies, 28, 175-218.

Taylor, M. M. (1988b). Layered protocols for computer-human dialogue. II: Some practical
issues. International Journal Man-Machine Studies, 28, 219-257.

Taylor, M. M. (1989). Response timing in layered protocol: A cybernetic view of natural
dialogue. In M. M. Taylor, F. Néel, & D. G. Bouwhuis (Eds.), The structure of
multimodel dialogue (p. 159-172). Amsterdam: Elsevier science.

Taylor, M. M. (1993). Principals for intelligent human-computer interaction; A tutorial on
layered protocol theory (DCIEM No. 93-92). North York (Ontario), Canada: Defence
and Civil Institute of Environmental Medicine.

Taylor, M. M., Farrell, P. S. E., & Hollands, J. G. (1999). Perceptual control and layered
protocols in interface design: II. The general protocol grammar. International journal
Human-Computer Studies, 50, 521-555.

Taylor, M. M., McCann, C. A., & Tuori, M. . (1984). The interactive spatial information
system (DCIEM No. 84-R-22). Downsview, (Ontario) Canada: Defence and civil
institute of environmental medicine.

Taylor, M. M., & Waugh, D. A. (2000). Multiplexing, diviplexing, and the control of
multimodal dialogue. In M. M. Taylor, F. Néel, & D. G. Bouwhuis (Eds.), The
structure of multimodal dialogue II (p. 439-456). Amsterdam: John Benjamins.

The UIMS Tool developers workshop. (1992). A metamodel for the runtime architecture
of an interactive system. ACM SIGCHI Bulletin, 24 (1), 32-37.

Thomas, R. C. (1998). Long term human-computer interaction: An exploratory perspective.
London: Springer.

Vallacher, R. R., & Wegner, D. M. (1987). What do people think they’re doing? Action
identification and human behavior. Psychological Review, 94, 3-15.

Vollmeyer, R., Burns, B. D., & Holyoak, K. J. (1996). The impact of goal specificity on
strategy use and the acquisition of problem structure. Cognitive Science, 20, 75-100.

178

Wickens, C. D. (1984). Processing resources in attention. In R. Parasuraman & D. R.
Davies (Eds.), Varieties of attention (p. 63-102). London: Academic Press.

Zhang, J., & Norman, D. A. (1994). Representation in distributed cognitive tasks. Cogni-
tive science, 18, 87-122.

Zijlstra, F. R. H. (1993). Efficiency in work behaviour; A design approach for modern
tools. Doctoral dissertation, Delft University of Technology, The Netherlands.

179

180

Appendix A

Formal specification objective
performance measure in the single
version testing paradigm

A more informal description of this formal specification can be found in chapter 3 starting
on page 49.

= =
\[}D/H

record received below : (sender, type, content, effort, time) (

record sent upwards : (recipient, type, content, effort, time) (

Data structure of a message

P : array|0..S) of record received below (A.3)
Q : array[0..T) of record sent upwards (A.4)

Data structure of an optimal (ideal-user) log file per interaction component

X :array[0..M) of record receive below (A.5)
Y :array[0..N) of record sent upwards (A.6)

Data structure of an observed (real-user) log file per interaction component

181

effect(z) — effect of message x on higher level
interaction component (A.7)
optimalEffort(y) — q.effort : geQ A y.type = ¢.type
A effect(y) = effect(q) (A.8)
receivedEffort (K, L,n) — (Sumk: ke K A (n =0 — k.time < L[n|.time) A
(n >0 — L[n — 1].time < k.time < L[n].time) :
k.effort) (A.9)

Definition functions

(Vi,j: 0<i<MAO0<j<S:P[jislowest level message — P[j].effort = w[g] A
X [i] is lowest level message — X|i].effort = optimalEffort(X[:])) (A.10)

Basic effort-values have to be assigned to the messages at the lowest-level layer

(Vi:0<i<T:Q][i.effort = receivedEffort(P, @, 1)) (A.11)

Assignment of the effort value to messages sent upwards in optimal task performance

(Vi:0<i<N:YJieffort =
if (37:0<j<T:Q[j]-type = Y[i].type A effect(Q][j].type) = effect(Y[:]))
then Min(optimalEffort(Y[i]), received Effort(X, Y, 7))
elseif (35 : 0 < j < T :Qlj].type = Y[i].type) (A.12)
then Min((Max j : 0 < j < T A Q[j].type = Y[i].type : Q[j].effort),
receivedEffort(X, Y, 7))
else receivedEffort(X, Y, 7))

Assignment of effort value to message sent upwards in observed tasks

Total Effortoptima = (Sum i : 0 < i < .S : P[i].effort) (A.13)
Total Effortopservea = (Sumi : 0 <7 < M : X[i].effort) (A.14)

Effort made by user to control interaction component

182

Total Eff: tobserve
User Effortopserved = ora]i); bserved ' (A.15)

Effort corrected for inefficiency higher-level layers

Extra user effort = UserEffortopservea — Total Effort,ptimal (A.16)

Extra effort a user has to make on top of the effort an ideal user would make

1: =0
;doi#N
— |[[if (Fj: 0 <j < T: Qlj].type = Y[i].type) A
(Vj: 0 <j < T:Q[j]-type = Y[i].type — effect(Q]j]) # effect(Y]i])) — remove(Y,i)
fi
di=i+1
]
od

Figure A.1: All messages observed that have a different effect on a higher-level interaction
component than in optimal task execution should be ignored in the log file of the real users.

183

184

Appendix B

Standard questions used in the
questionnaires

The six perceived ease-of-use questions taken from the Perceived Usefulness
and Ease-of-Use (PUEU) questionnaire (Davis, 1989).

Learning to operate [name] would be easy for me.

Unlikely O O O O O O O Likely

extremely quite slightly neither slightly quite extremely

I would find it easy to get [name| to do what I want it to do.

Unlikely O O O O O O O Likely
extremely quite slightly neither slightly quite extremely

My interaction with [name] would be clear and understandable.

Unlikely O O O O O O O Likely

extremely quite slightly neither slightly quite extremely

185

I would find [name] to be flexible to interact with.

Unlikely O O O O O O O Likely

extremely quite slightly neither slightly quite extremely

It would be easy for me to become skillful at using [name].

Unlikely O O O O O O O Likely
extremely quite slightly neither slightly quite extremely

I would find [name] easy to use.

Unlikely O O O O O O O Likely

extremely quite slightly neither slightly quite extremely

The two satisfaction questions taken from the Post-Study System Usability
Questionnaire (PSSUQ) (Lewis, 1995).

The interface of [name| was pleasant.

Strongly O O O O O O (O Strongly

disagree agree
1 2 3 4 5 6 7

[like using the interface of [name].

Strongly O O O O O O (O Strongly

disagree agree
1 2 3 4 5 6 7

186

Summary

Everyday, people are confronted with devices they have to control for all kinds of reasons.
Designers hope that their creations can be controlled easily. For that purpose, they can turn
to user-system interaction theories to guide them in design and evaluation. However, so far,
no empirical methods have been developed to evaluate the usability that corresponds well
with the increasingly popular approach of component-based software engineering. Instead
of building a device from scratch, the component-based software engineering approach
focuses on building artefacts from already made components (e.g. pop-up menus, radio
buttons, and list boxes). The usability of components has not yet been assessed individ-
ually, but only for their impact on the overall usability (e.g. number of keystrokes, task
duration, or questionnaires about the overall ease of use and satisfaction).

The Layered Protocol Theory (LPT) regards interaction as an exchange of messages be-
tween components and the user. LPT decomposes the user-system interaction into dif-
ferent layers that can be designed and analysed separately. It claims the possibility of
component-specific usability evaluation. This is indeed very welcome since the creation
and deployment of components is allocated to different processes in the component-based
software engineering approach. Usability evaluation of a component in its creation process
would be more efficient than testing the usability of the component each time it is deployed
in an application. Usability evaluation in the deployment process is not even necessary
if the usability of an entire application only depends on the usability of the individual
components. The latter is the case according to LPT, because layers are unaffected when
lower-level layers are replaced as long as they provide the same message services to the
layer above it.

Until now, LPT has only been used to analytically evaluate the user interface of products.
However, LPT is also suggested to provide a basis to evaluate the usability of separate
components empirically. To do so the claim about the independence of the layers is essen-
tial, which however, has not yet been examined empirically. Therefore, the thesis has the
following main research question: Is usability compositional? The question basically has
two underlying questions:

1. Whether and how the usability of components can be tested empirically.

2. Whether and how the usability of components can be affected by other components.

187

The research was conducted in a series of laboratory experiments in which subjects had
to perform tasks with prototypes of various user interfaces. The first experiment was
conducted to search for an objective component-specific performance measure. In this
explorative experiment, 80 university students operated a fictitious user interface. In a
training session, the subjects received one out of eight instruction sets, which were created
by providing or withholding information about three components. Before and after the
subjects performed the tasks their knowledge about the components was tested. Further-
more, the message exchange between the components was recorded in a log file during
the task execution. The results showed that the subjects’ knowledge about a component
affected the number of messages it received. This suggests that the number of messages a
user interface component received can be taken as an objective component-specific perfor-
mance measure. The measure indicates the users’ effort to control their perception of the
component. Each message is an expression that users are unsatisfied with the state of the
system they perceive, and that they spend effort changing it to a perception they desire.

A framework has been established to test the usability of components, which is based
on the findings from this explorative experiment. The testing framework supports two
testing paradigms, a single version and a multiple versions testing paradigm. In the single
version testing paradigm, only one version of each component is tested. The focus is on
identifying components that hamper the overall usability of the user interface. In the
multiple versions testing paradigm, different versions of components are compared with
each other. The question in this case is which version has the highest usability.

For the single version testing paradigm, the number of messages a component receives is
compared with the performance of an ideal user and is corrected for control effects of lower
and higher-level components. An effort value is assigned to each message received. These
effort values are based on the effort value of the lowest-level messages that are linked to
higher-level messages. At the lowest-level layer, weight factors are assigned to the messages,
which represent the user effort value of sending a single lower-level message.

The subjective component-specific measure for the ease of use and satisfaction were ob-
tained through a standard usability questionnaire. These measures were expected to be
more powerful than subjective overall measures, because the specific questions could assist
users in the recall of their control experience of individual components.

In a second experiment, the framework was evaluated by comparing overall and component-
specific usability measures for their ability to identify usability problems that were created
in advance. Eight different prototypes of a mobile telephone were constructed by designing
two versions of three components. The versions of each component were designed to differ
clearly with respect to their usability. Eight groups of ten university students had to
complete a set of tasks with one specific mobile telephone prototype. The results did
not reveal subjective component-specific measures to be more effective in determining
variations in the perceived ease of use or the satisfaction between versions of a component
than their overall counterparts in the case of the multiple versions testing paradigm. This,
however, could be an artefact of the experiment because both component-specific and

188

overall questions were given in a random order. The memory recall of the component-
specific questions could have affected the overall questions as well.

The results of the second experiment did, however, show that an objective component-
specific performance measure is more effective in determining usability variations between
versions of both lower and higher-level components than overall performance measures
in cases where components operate independently. The power of this component-specific
measure comes from the reduction in statistical variance by limiting the focus to one com-
ponent, and, consequently, locking out the variance caused by the users’ effort to control
other components. For the single version testing paradigm, the results showed the objec-
tive component-specific performance measure to correlate well with overall and subjective
component-specific usability measures and to allow evaluators to order the components
according to their potential to improve the usability.

LPT’s claim about the independence of a component was examined in two other experi-
ments. Two factors were studied which cause components to influence one another, i.e.
consistency and mental effort. The first experiment explored the effects that inconsistency
has at various layers of the user-system interaction. In the experiment, 48 university stu-
dents operated PC simulations of room thermostats, web-enabled TV sets, microwaves and
radio alarm clocks. The effect of inconsistency was examined between components on the
same or on different layers, and between components and the application domain. The
results of the experiment showed that components in a user interface could affect each
other’s usability significantly. Components in the same layer or in other layers can acti-
vate an inappropriate component-specific mental model, which users apply to understand
the feedback of another component. The inconsistency between the application domain
and a component’s feedback was not found to affect the component’s usability. Whether
this only was the case in this experiment or can be generalised, is a topic for further re-
search. However, the study did show that the application domain had an effect on the
users’ understanding of the functionality the component provides.

In another experiment it was shown that mental effort could link the control of higher-level
components to lower-level components. A poor implementation of the lower-level layers
can force users to adopt less efficient higher-level control strategies to cope with a task
that is mentally over-demanding. In this experiment, 24 university students had to solve
equations with calculators, which were composed of different versions of a component that
operated on a low-level layer. One calculator was equipped with a small display, which
could only display one value. The other calculator was equipped with a large display, which
could display 5 lines of 34 symbols each. The subjects’ cardiovascular activity was recorded
as well as the message exchange between the components. Furthermore, after solving an
equation, the subjects rated the effort experienced on the Rating Scale Mental Effort and,
at the end of the experiment, the subjects filled out a questionnaire with ease-of-use and
satisfaction questions regarding the calculators and their specific components. Results
showed a significant interaction effect between the equation difficulty and the display size
in the heart-rate variability, which is regarded as a mental effort index. Next, a significant
interaction effect between the same variables was found in the number of times subjects

189

stored intermediate outcomes in a calculator, which is regarded as a change in control
strategy of the high-level component.

Based on the conducted research the following answers can be given to the question: Is
usability compositional? A first answer is yes; LPT indeed provides a basis for empirical
evaluation of user interface components. A second answer is no; the usability of the
entire user interface can not always be predicted solely on the usability of the individual
components. Inconsistency and mental effort are factors that allow one component to
reduce the users’ ability to control another component. Therefore, components should not
be designed, deployed and evaluated entirely independently of other components in the
user interface. Within the component-based software engineering approach, the creation
and deployment processes are separate. Therefore, two kinds of usability evaluations are
advised: one focusing on components in isolation when they are created, and the other
focusing on the component within the context of the particular application in which they
are deployed.

190

Samenvatting (Summary in Dutch)

Dag in, dag uit worden mensen geconfronteerd met apparaten die ze moeten bedienen om
allerlei redenen. De ontwerpers van deze apparaten hopen dat hun creaties gemakkelijk te
bedienen zijn. Hiervoor kunnen ze zich wenden tot mens-systeem interactie theorieén die
hen kunnen leiden bij het ontwerp en de analyse. Echter, tot nu toe sluiten empirische
methodes om de bruikbaarheid van apparaten te analyseren gebrekkig aan bij de, steeds
vaker aangewende, componentgerichte ontwikkelingsbenadering van programmatuur. In
plaats dat ieder product helemaal vanaf het begin wordt ontwikkeld, worden producten
in de componentgerichte ontwikkelingsbenadering geproduceerd door het samenstellen van
reeds bestaande componenten (zoals een dialoogvenster, een schuifbalk, een keuzelijst,
een werkbalk). De bruikbaarheid van componenten wordt momenteel niet individueel
vastgesteld, maar alleen afgeleid op basis van hun invloed op de algemene bruikbaarheid
van een product (zoals het aantal toetsaanslagen, taaktijd, of een vragenlijst die zich richt
op het algemene gebruiksgemak en de tevredenheid).

De Layered Protocol (gelaagde protocollen) theorie (LPT) beschouwt interactie als een
uitwisseling van berichten tussen componenten en de gebruiker. LPT ontleedt de mens-
systeem interactie in verschillende lagen die onathankelijk ontworpen en geanalyseerd kun-
nen worden. De theorie claimt de mogelijkheid van een componentspecifieke bruikbaar-
heidsevaluatie. Een dergelijke evaluatie zou erg welkom zijn, omdat bij de component-
gerichte ontwikkelingsbenadering het ontwikkelen en het inzetten van een component plaats
vindt in twee verschillende processen. Bruikbaarheidsevaluatie van een component tijdens
het ontwikkelproces van de component zou efficiénter zijn dan het evalueren van zijn bruik-
baarheid iedere keer dat de component gebruikt wordt in de assemblage van een nieuw
product. Een bruikbaarheidsevaluatie in het assemblageproces is overbodig wanneer de
algemene bruikbaarheid van een toepassing alleen afhankelijk is van de bruikbaarheid van
de individuele componenten. Dit laatste is het geval volgens LPT, omdat de componenten
niet beinvloed worden wanneer componenten in onderliggende lagen vervangen worden,
zolang deze componenten maar dezelfde diensten aanbieden aan de componenten in de
voor hen bovenliggende lagen.

Tot nu toe is LPT alleen toegepast voor het analytisch evalueren van gebruikersinter-
faces. Echter, LPT is ook naar voren geschoven als basis voor empirische evaluaties van
de bruikbaarheid van individuele componenten. Van belang bij de verwezenlijking van een
dergelijke evaluatiemethode is de claim omtrent de onafthankelijkheid van de componenten.

191

Deze was nog niet empirisch onderzocht. Het proefschrift behandelt daarom de volgende
onderzoeksvraag: Is bruikbaarheid opdeelbaar? Deze vraag heeft de volgende onderliggende
vragen:

1. Kan de bruikbaarheid van een component empirisch getest worden en zo ja, op welke
manier?

2. Kan de bruikbaarheid van een component beinvloed worden door andere componen-
ten en zo ja, op welke manier?

Het onderzoek werd uitgevoerd in een reeks van laboratorium experimenten waarin proef-
personen taken moesten uitvoeren met verschillende op de PC gesimuleerde consumenten-
producten. Het eerste experiment richtte zich op het vinden van een componentspecifieke
objectieve prestatiemaat. Tachtig universiteitsstudenten bedienden een fictief gebruikersin-
terface in dit experiment. Voorafgaand ontvingen de proefpersonen één van de acht instruc-
tiesets in een trainingssessie. De instructiesets waren samengesteld uit het verstrekken of
onthouden van informatie omtrent drie componenten. Voor- en nadat de proefpersonen de
taken hadden uitgevoerd is hun kennis omtrent de drie componenten getoetst. Daarnaast
is gedurende de taakuitvoering de berichtuitwisseling tussen de componenten vastgelegd
in een logbestand. De resultaten van het experiment laten zien dat de kennis die proef-
personen hadden over een component, het aantal berichten dat deze component ontving
beinvloedde. Dit deed vermoeden dat het aantal berichten dat een component ontvangt,
beschouwd mag worden als een componentspecifieke objectieve prestatiemaat. De maat
geeft de inspanning aan die gebruikers moeten leveren om hun perceptie van een compo-
nent te sturen. Het versturen van een bericht geeft aan dat gebruikers ontevreden zijn met
de waargenomen systeemtoestand en dat zij zich inspannen deze te laten overeenstemmen
met de door hun gewenste toestand.

Op grond van dit experiment is een methode ontwikkeld waarmee de bruikbaarheid van
een component getoetst kan worden. De methode ondersteunt twee toetsingsparadigmata,
voor een enkele versie en voor meerdere versies. In het geval van een enkele versie wordt
van iedere component maar één versie getoetst. De toets richt zich op het identificeren van
componenten die de algemene bruikbaarheid van een product belemmeren. In het geval
van meerdere versies worden meerdere versies van een component met elkaar vergeleken.
De toets richt zich hierbij op het identificeren van de meest bruikbare versie.

In het geval van een enkele versie wordt het aantal berichten dat een component ontvangt
afgezet tegen de prestatie van een ideale gebruiker, daarnaast wordt het gecorrigeerd voor
bedieningseffecten van componenten in de boven- en onderliggende lagen. Aan elk bericht
wordt een inspanningswaarde toegekend. Deze inspanningswaarden zijn gebaseerd op de
inspanningswaarde voor het versturen van berichten op het laagste niveau, die op hun
beurt doorberekend zijn naar berichten op hogere niveaus. Op het laagste niveau worden
er weegfactoren toegekend aan de berichten, die de inspanning om een bericht te verzenden
op dit niveau moeten weergeven.

192

De componentspecifieke subjectieve maten voor het gebruiksgemak en de tevredenheid
worden verkregen met een standaard vragenlijst. Verondersteld werd dat deze maten
effectiever waren dan algemene subjectieve maten, omdat specifieke vragen de gebruiker
helpen bij het herinneren van de bedieningservaringen van een specifieke component.

De methode is geévalueerd in een tweede experiment door algemene en componentspeci-
fieke maten met elkaar te vergelijken op hun capaciteit om bruikbaarheidsproblemen te
detecteren die vooraf gecreéerd waren. Acht verschillende prototypes van een mobiele tele-
foon werden geconstrueerd door voor drie componenten twee versies te ontwerpen. De
versies werden zo ontworpen dat ze duidelijk verschilden in hun bruikbaarheid. Tachtig
universiteitsstudenten, verdeeld over acht groepen, moesten ieder een reeks taken uitvoeren
met één van de prototypes. De resultaten van het experiment lieten ondanks de verwachting
niet zien dat componentspecifieke subjectieve maten beter zijn dan algemene subjectieve
maten in het opsporen van verschillen in het gebruiksgemak en de tevredenheid binnen
het toetsingsparadigma voor meerdere versies. Dit kan echter een tekortkoming zijn van
de experimentele opzet. De componentspecificke en algemene vragen waren door elkaar
gesteld, waardoor de ervaring opgeroepen door de specifieke vragen ook de beantwoording
van de algemene vragen beinvloed kan hebben.

De resultaten van het experiment lieten wel zien dat, mits de componenten onafhanke-
lijk van elkaar zijn, een componentspecifieke objectieve prestatiemaat bruikbaarheidsver-
schillen effectiever constateert dan een algemene objectieve prestatiemaat. Dit geldt zowel
voor componenten die opereren in een hoge als in een lage laag. De kracht van de com-
ponentspecifieke prestatiemaat ligt in het reduceren van de statistische variantie door
de analyses op één component te richten en aldus de variantie te minimaliseren die on-
staat doordat gebruikers andere componenten bedienen. Binnen het kader van het toets-
ingsparadigma voor een enkele versie laat het experiment zien dat de componentspecifieke
objectieve prestatiemaat goed correleert met algemene en componentspecifieke subjectieve
bruikbaarheidsmaten en dat op basis van deze maat de componenten gesorteerd kunnen
worden op hun potentie om de bruikbaarheid te verbeteren.

De claim van LPT omtrent de onafhankelijkheid van een component is onderzocht in twee
andere experimenten. Twee factoren zijn bestudeerd die er voor zorgen dat componen-
ten elkaar kunnen beinvloeden, namelijk: consistentie en mentale inspanning. Het eerste
experiment richtte zich op het effect dat inconsistentie kan hebben op verschillende lagen
van de mens-systeem interactie. Achtenveertig universiteitsstudenten bedienden in een
experiment verschillende PC simulaties van een kamerthermostaat, een webtelevisie, een
magnetron en een wekkerradio. Het effect van inconsistentie werd bestudeerd in drie situa-
ties, namelijk: (1) tussen componenten opererend in dezelfde laag, (2) tussen componenten
opererend in verschillende lagen en (3) tussen een component en het applicatiedomein. De
resultaten van het experiment laten zien dat componenten in een gebruikersinterface elkaars
bruikbaarheid significant kunnen beinvloeden. Componenten in dezelfde of in een andere
laag kunnen een ongeschikt componentspecifiek mentaal model activeren dat een gebruiker
toepast om de informatie van een andere component te interpreteren. Geen effect voor
de inconsistentie tussen een component en het applicatiedomein werd gevonden. Of dit

193

alleen geldt voor dit experiment of dat dit gegeneraliseerd mag worden is een vraag die
blijft openstaan voor vervolgonderzoek. Fchter, het onderzoek liet wel zien dat het ap-
plicatiedomein invloed had op het gemak waarmee gebruikers de functionaliteit van de
component gebruikten.

Het laatste experiment laat zien dat de mentale inspanning de bediening van een com-
ponent in een hogere laag kan verbinden met de bediening van een component in een
lagere laag. Een slecht ontworpen component in een lagere laag kan gebruikers dwingen
minder efficiénte besturingsstrategieén aan te wenden voor een component in een hogere
laag wanneer de gebruikers geconfronteerd worden met een te zware mentale taak. In het
experiment losten 24 universiteitsstudenten berekeningen op met twee gesimuleerde calcu-
lators. De calculators hadden twee verschillende implementaties van een component op het
laagste niveau. Eén calculator had een klein venster dat maar één getal tegelijk kon laten
zien. De andere calculator had een groot venster dat 5 regels met 34 symbolen tegelijk
kon laten zien. Tijdens de taakuitvoering werden van iedere proefpersoon de cardiovas-
culaire reacties en de berichtuitwisseling tussen de componenten geregistreerd. Daarnaast
beoordeelden de proefpersonen de mentale inspanning die nodig was na het uitvoeren van
iedere berekening. Aan het einde van het experiment vulden de proefpersonen ook nog
een vragenlijst in over het gebruiksgemak van en hun tevredenheid over de calculators en
de componenten. De resultaten van het experiment laten een significante interactie zien
in de hartslagvariabiliteit tussen de moeilijkheidsgraad van een som en de grootte van het
venster. Hartslagvariabiliteit geldt als een fysiologische maat voor mentale inspanning. De
resultaten laten ook een significante interactie zien tussen dezelfde factoren maar dit maal
in het aantal keer dat de proefpersonen tussenresultaten opsloegen in het geheugen van een
calculator. Dit kan geinterpreteerd worden als een strategieverandering voor het bedienen
van een component in de hogere laag van de calculator.

Terugkijkend op het onderzoek kunnen de volgende antwoorden gegeven worden op de
onderzoeksvraag: Is bruitkbaarheid opdeelbaar? Een eerste antwoord is ja; LPT verschaft
een kader voor empirische evaluaties van gebruikersinterface componenten. FEen ander
antwoord is nee; de bruikbaarheid van de gehele gebruikersinterface kan niet altijd cor-
rect worden voorspeld aan de hand van alleen maar de bruikbaarheid van de individuele
componenten. De bediening van een component kan de bruikbaarheid van andere com-
ponenten verminderen door factoren zoals de consistentie en de mentale inspanning. Een
component moet daarom niet geheel onafthankelijk van de andere componenten in de ge-
bruikersinterface ontworpen, ingezet en geévalueerd worden. Zoals eerder vermeld, is in
de componentgerichte ontwikkelingsbenadering de ontwikkeling van een component en een
product van elkaar gescheiden. Daarom wordt er voor twee soorten bruikbaarheidsevalu-
aties gepleit; één die zich richt op de component zelf, tijdens de ontwikkeling hiervan, en
één die zich richt op de component binnen de context van een bepaald product, wanneer
de component daadwerkelijk wordt ingezet.

194

Curriculum vitae

30 Dec. 1970
1984 - 1988
1988 - 1991
1991 - 1995
1995 - 1998
1996 - 1997
1998 - 2003

Born in Middelburg, The Netherlands

Klarenbeek LTS (junior technical school), Middelburg
— Installation Technology

MTS (intermediate technical school), Zeeland College, Vlissingen
— Information Technology

Hogeschool Eindhoven (technical college)
— B. Sc. Information Technology

Technische Universiteit Eindhoven (university of technology)
— M. Sc. (cum laude) Technology & Society

Part-time position at the usability laboratory of the Rabobank

Technische Universiteit Eindhoven (university of technology)
— Ph. D. at the J. F. Schouten School for User-System Interaction
Research

195

