
Abstract 
Emotion plays an important role in thinking. In this 
paper we focus on the regulatory influence of 
pleasure on information processing in simulated 
adaptive agents. Our agent's pleasure is a function 
of its performance on the tasks it executes in the 
environment. Our model is based on Reinforcement 
Learning and the Simulation Hypothesis. The main 
hypothesis tested is: if action-selection-bias is in-
duced by an amount of simulated anticipatory be-
havior, and if this amount is dynamically con-
trolled by pleasure feedback, then this provides 
additional survival value to an agent compared to 
a static amount of simulation. Experimental results 
illustrate that this hypothesis holds true. Dynamic 
adaptation results in a learning performance that at 
least equals static simulation strategies, and it re-
sults in a major decrease of mental effort required 
for this performance. This is relevant to the evolu-
tionary plausibility of the simulation hypothesis, 
for increased adaptation at lower cost is an evolu-
tionary advantageous feature. In addition, our re-
sults provide clues of a relation between the simu-
lation hypothesis and emotion. 

1 Introduction 
Emotion plays an important role in thinking. Evidence rang-
ing from philosophy [Griffith, 1999] through cognitive psy-
chology [Frijda, et al., 2000] to cognitive neuroscience 
[Damasio, 1994; Davidson, 2000] and behavioral neurosci-
ence [Berridge, 2003; Rolls, 2000] shows that emotionin 
whatever formis both constructive and destructive to a 
wide variety of cognitive phenomena. Normal emotional 
functioning seems to be necessary for normal cognition. 

In this research we focus on the low-level influence of 
emotion on information processing in simulated adaptive 
agents. We define emotion as a combination of pleasure and 
arousal factors [Russell, 2003]. The agent's arousal is based 
on a metadescription of its memory, e.g., prediction accu-
racy. Pleasure is a function of the agent's relative perform-
ance on the tasks it executes in the environment. The agent 
uses Reinforcement Learning (RL) [Sutton and Barto, 
1996]. In this paper we focus on the influence of pleasure as 

feedback to control the amount of simulated anticipatory 
behavior the agent uses to bias action selection. This influ-
ence is measured in terms of learning performance and total 
effort spent on simulated and overt interaction. Thus, we 
investigate the influence on learning if emotion is used to 
control the cognitive mechanism (i.e., simulation) that bi-
ases action-selection. We do not model categories of emo-
tions nor use such emotions as information in symbolic-like 
reasoning. Reasons for our low-level approach include: 

First, because emotion is integrated at multiple levels of 
processing and higherconscious, reflective reasoning 
levels have not always existed throughout evolution, one 
would expect an evolutionary advantage to integration at 
levels close to reward systems and behavioral control. On 
higher levels, emotion regulates information processing. 
Could emotion play such role at lower levels? 

Second, from a computational point of view lower levels 
tend be more generic. Therefore, regulative mechanisms 
found can be applied to a wider area of disciplines including 
cognitive science and machine learning, for example meta-
learninghow to autonomously monitor and, if necessary, 
adapt the learning mechanism used by the agent in order to 
better cope with the current task. If emotion is considered as 
a meta-learning system [Doya, 2000], it can be used to en-
hance artificial adaptive agents in a generic way. Regulative 
mechanisms that operate on higher cognitive levels may 
need a more complex concept of emotion or a dedicated 
cognitive architecture, and are therefore less generic.  

Third, a low-level interpretation allows us to stay close to 
behavioral control and action-selection mechanisms thereby 
avoiding philosophical debates about emotion. Conse-
quently, we use a modestbut broadly usable and less con-
troversialconcept of emotion as basis for the research.  

Fourth, Montague et al. [2004] recently argued that com-
putational models of RL can be used to model and under-
stand behavioral control, and to gain insights into the neuro-
physiological aspects of psychiatric disorders. By computa-
tionally studying how emotion relates to information proc-
essing and reinforcement we hope to extend the analogy 
between RL and behavior.  

To study the low-level regulatory influence of emotion on 
information processing, we use a computational RL model. 
Besides RL, our approach is based upon the following hy-
potheses. 1.) The Simulation Hypothesis, which assumes 
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that thinking is internal simulation of behavior using the 
same sensory-motor systems as those used for overt behav-
ior [Hesslow, 2002] 2.) interactivism, stating that thinking 
emerges from continuous interaction with the environment 
[Bickhard, 2001]. 

  These hypotheses have several important characteristics 
in common  [Broekens, 2005b], amongst which the follow-
ing are particularly important for this paper: 

a.) These hypotheses are primarily about neuronal sys-
tems, but do allow connectionist but non-neuronal model-
ing, the basis of our model. 

b.) Emotion plays a role in information processing. 
c.) These hypotheses closely relate to Damasio's [1994] 

concept of thinking as an "as-if body loop", involving simu-
lated actions that are evaluated by their somatic markers, 
emotional impact estimators. Four systems are critically 
involved: the body; the somato-sensory cortex (SSC), the 
emotional marker system that receives information from the 
body; the sensory and association cortexes (SC/AC); and the 
ventromedial prefrontal cortex (VM-PFC), the system that 
stores relations between factual representations stored in the 
SC/AC and somatic markers stored in the SSC. Interaction 
with the environment enables the VM-PFC to learn these 
links. Two important processing mechanisms are the "body-
loop" and the "as-if body loop". When facts about a situa-
tion are recognized, the SC/AC activate the VM-SSC, and 
links between the situational facts and emotional outcomes 
are activated. In the "body-loop", the VM-SSC activates the 
body, and the SSC that stores somatic-markers is organized 
according to the body. This loop thus involves the emotional 
evaluation of action. In the "as-if body loop", the VM-PFC 
signals the SSC to reorganized itself directly without signal-
ing the body. This loop thus involves the emotional evalua-
tion of simulated action. The "as if" loop produces imagined 
future factual-emotional states, and the somatic marker part 
of such states is the state's predicted accumulative emotional 
outcome (reward/punishment). This marker signal is used to 
bias decision-making [Damasio, 1994]. Even though we do 
not model the body of the agent, we use the somatic marker 
concept to understand the relation between reinforcement 
learning (RL), emotion and decision-making. 

In this paper we first introduce our computational ap-
proach without emotional feedback. Next, we introduce our 
concept of emotion and pleasure in more detail, and we ex-
plain how pleasure is used to control the amount of anticipa-
tory simulation of the agent. Finally, we discuss our results, 
related work and give directions for future research. 

2 Computational Approach 
Our experiments are performed in a gridworld, a two-
dimensional grid with positively and negatively reinforced 
locations, in our case, lava (negative reinforcement of –1), 
roadblocks (–0.5), food (+1.0) and empty cells (Figure 1). 
The agent can move everywhere, but is discouraged to walk 
on the lava (by a negative reinforcement). The agent's per-
ceptual field has either a chessboard, 8 neighbor  (Figure 
1b), or a cityblock, 4 neighbor metric (Figure 1a, c). In, e.g., 
Figure 1c, the agent would perceive "eleee" representing the 

(l)ava left of the agent and the (e)empty cells above, right, 
beneath, and below the agent. 

Figure 1 (left) and 2 (right). Fig. 1: three different experimental 
settings: agent (black), lava (dark gray, red), possible food (F), 
roadblock (B), possible start location (S). Tasks from left to right: 
find food, forage, invest. Fig. 2: examples of the agent's memory. 

2.1 Hierarchical-State Reinforcement Learning 
We first explain the basic model without emotional feed-
back. The agent's memory structure is modelled by a di-
rected graph. The memory is adapted while the agent inter-
acts with its environment (online learning) in the following 
way. The agent selects an action, a∈ A, from its set of po-
tential actions A={u, d, l, r}, executes the action in the grid-
world and perceives the result of that action, p. This is com-
bined into a situation, s=<a, p>, that is stored in the agent's 
memory according to a basic rule: if a situation s occurs, the 
agent creates a node in the graph if and only if there does 
not exist a node for s. For example in Figure 1c, if the agent 
has moved down, "d", and perceives "eleee". In an initially 
empty model a node is created to represent the situation 
s1=<d,eleee> (Figure 2a), because the graph does not yet 
contains this node. Now the agent moves again, resulting in 
a new situation, e.g., s2=<d,elele>, resulting in a new node 
that represents s2 (Figure 2b). To model that s2 follows s1 (or 
s1 predicts s2), the previous situation, s1, is now connected to 
the current situation, s2, by creating a new node, an interac-
tron, between s1 and s2 with edges as shown in Figure 2c. 
This process continues, never violating the basic rule. Also, 
the process is recursively applied to active interactrons. Ac-
tive in this case means that an interactron corresponds to the 
history of observed situations, e.g., node I1 in Figure 2c. If 
situation s2 is followed by s3, the resulting memory structure 
is shown in Figure 2d, with active nodes s3, I2 and I3. If, on 
the other hand s2 is followed by s1, the resulting structure is 
shown in Figure 2e, with active nodes s1, I2 and I3. 
 If at a later time the sequence of situations s1s2 is again 
observed then, according to the rule, I1 is not created again. 
Instead, a counter �, the usage of interactron I1, that is ini-
tially zero is increased by one. This � can be used to calcu-
late the probability P(s2 | s1) using the following more ge-
neric formula: 

a 

b 
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,where y is an active interactron or situation, x∈ Xy 
={x1,…,xn} the set of predicted situations by y (represented 
by their corresponding interactrons, e.g., I1 representing the 
prediction of s2). This formula is true, for I1 is conditionally 
active upon s1, and � is only increased if an interactron is 
active and multiple sequences other than s1s2, e.g., s1s3, s1s4 
etc., have their own interactron attached to s1 with its own � 
increased if and only if the corresponding sequence is ob-
served. Furthermore, we define a threshold, θ, representing 
the minimal "survival probability" for an interactron. If P(x | 
y)<θ, the corresponding interactron is forgotten and re-
moved from the memory, including its dependencies. This 
corresponds to Bickhards [2000] notion of interaction 
(de)stability based on consistent confirmation of predicted 
interactions, see also [Broekens and DeGroot, 2004]. 

The memory maintains a distributed, hierarchical predic-
tion of the next situation. Every active interactron predicts 
potential next situations, k of these interactrons can be ac-
tive, and the 1st till k-th interactron predict potential next 
situations with a history of length 1 till k respectively (e.g., 
I3 is a k=2 interactron with history s1s2). Learning in the 
context of this memory can be seen as the online learning of 
1…k-th order Markov Decision Processes in parallel. 

In addition to a predictive probability, every interactron 
has a reinforcement value, called a marker, �, with �=λ+ν, 
where λ is the interactron’s direct reinforcement value and ν 
is a back-propagated indirect reinforcement value. Thus, the 
value of an interactron is a function of it’s own reward and 
the rewards of those situations it predicts. More specific, 
first, all k active interactrons are reinforced by a signal from 
the environment, rt, at time t. For every such interactron y, 
λy, is adapted according to the formula: 
 
 
, where ρ  is the agent’s learning rate. Second, for every 
interactron y, νy, is calculated as follows: 
 
 
 
, where �t(xi | y) is defined as the marker of interactron xi, 
with xi predicted by y. This indirect part of an interactron’s 
(say y) value is thus the weighted average of the markers 
belonging to the interactrons Xy that represent the situations 
that y predicts, where weighted is according to the probabil-
ity distribution P(xi | y) over all i. 
 Action-selection is based on the parallel inhibition and 
excitation of actions in the set of actions, A. The inhibi-
tion/excitation originates from the k active interactrons and 
is calculated using the formula: 
 
 
 
, where lt(ah) is defined as the level of activation of an ac-
tion ah∈A at time t, yi an active interactron, and xi

j predicts 
action ah. This last clause is needed, for the memory stores 

action-perception pairs and any of these pairs that are pre-
dicted by any of the k active interactrons should inhibit 
(negative marker) or excite (positive marker) the corre-
sponding action, but not other actions. Additionally, of all 
good actions (any lt(ah)>0) the best action ah, i.e., 
lt(ah)=max(lt(a1),…,lt(a|A|)), is always selected. If there are 
only bad actions (all lt(ah)<0) a stochastic selection is made 
based on (lt(a1),…,lt(a|A|); the action with the highest activa-
tion therefore has the highest chance of being chosen result-
ing in a probabilistic Winner-Take-All action-selection. 

The process described in this section is our agent’s "body 
loop". Next, we describe our agent’s "as-if" loop, its simula-
tion mechanism. For a discussion on the relation between 
Damasio's somatic marker hypothesis and our computa-
tional model, see [Broekens, 2005b]. 

2.2 Internal Simulation and Action-Selection Bias 
To study anticipatory simulation we add the following ca-
pability to our model: after every real interaction with the 
environment, the model simulates one time-step ahead. In-
stead of selecting an action based on past interactions the 
following process is executed: 

1.) Interaction-selection: at time t select a subset of to-be-
simulated interactions from the set of interactions predicted 
by all k active interactrons. 

2.) Simulate: send the subset of selected interactions to 
the model as if they were real interactions. The memory 
advances to time t+1.  

3.) Reset-state: to be able to select an appropriate action, 
reset the memory's state (the active interactrons) to the pre-
vious timestep, i.e., time t. 

4.) Action-selection: select the next action using the stan-
dard mechanism described above. Thus, the propagated 
markers of the simulated predicted interactions directly bias 
action-selection. Our anticipation mechanism is best under-
stood as state anticipation [Butz et al, 2003]. 

5.) Reset-markers: reset µ, λ and ν of the interactions that 
were changed at step 2 (simulation) to the values of µ, λ and 
ν of these interactions before step 2. 

Step 1 selects predicted interactions to be simulated, and 
is a critical component in our simulation mechanisms since 
it defines the amount of internally simulated information. In 
a previous experiment [Broekens, 2005] we used four static 
selection criteria (also referred to as simulation strategies). 

a.) No simulation (NON). The actions are selected as de-
scribed in the previous section and the 5-step simulation 
procedure is not executed. b.) Simulation of the predicted 
best interaction (BEST). The winning interaction of the 
WTA selection resulting from step 1 is sent to the model for 
simulation (step 2). Any real interaction is accompanied by 
a reinforcement signal. As this is a simulation we lack such 
a signal. Instead, this signal is simulated using the µ of the 
winning interaction as reinforcement. We simulate the pre-
dicted interaction and its associated value. c.) A selection of 
the predicted 50% best interactions, i.e., a more balanced 
selection, (BEST50). Again we simulate the reinforcement 
signal using the µ’s of the simulated interactions. d.) All of 
the predicted interactions (ALL). 
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In essence, NON, BEST, BEST50 and ALL simulate dif-
ferent values for the selection threshold of the WTA interac-
tion selection ranging from infinite (NON) to high (BEST) 
to medium (BEST50) to low (ALL).  This threshold filters 
the set of predicted interactions used to simulate. The final 
result of simulation is a bias to the predicted rewards of the 
set of next possible interactions, with action-selection based 
on these biased rewards (Figure 3). This means that our 
model of internal simulation influences action-selection in a 
way that is compatible with the somatic marker hypothesis 
[Damasio, 1994] and the simulation hypothesis [Hesslow, 
2002]. For more on the compatibility between our model 
and the simulation hypothesis see [Broekens, 2005].  

 Figure 3. Architecture of the different components in our model. 

2.3 Differences in Performance of Static Simulation 
Strategies Motivate the Feedback Control 

In a previous study [Broekens, 2005] we showed that simu-
lation in general, and simulation of all possible next interac-
tions (ALL) in particular, has a clear adaptive advantage. 
The agent learns the tasks quicker and converges better to 
the solution. The agent had to learn three tasks (Figure 1): 

1.) Continuously try to find a randomly changing food lo-
cation, thereby learning the optimal route to both possible 
food locations in the gridworld maze (Figure 1a). 

2.) Learn to forage (Figure 1b). Now, the agent is initially 
placed in the environment, after which it should explore and 
find food. Again, food locations are randomly selected.  

3.) The same as the first, but the agent additionally had to 
learn to accept an initial negative reinforcement (roadblock 
in Figure 1c) in order to get to a larger positive one (food in 
Figure 1c). With this task we wanted to test how the differ-
ent simulation strategies handle investment, which is a rele-
vant problem for natural adaptive agents [Doya, 2002]. 

Intuitively it is not really a surprise that ALL "wins", as it 
is the heuristic using the most information. However, for 
some experimental settings BEST or BEST50 do result in a 
better performance (i.e., a smaller amount of simulation 
results in a better performance). This suggested a relation 
between the parameters of the experimental setting, and the 
effect of the amount of simulation used by the agent. 

Analysis of this relation revealed that the goal oriented-
ness of the task and the complexity of the task influence this 
performance. When the agent is solving a goal oriented task 

(find food, invest), it benefits from a narrow (i.e., BEST) 
simulation strategy with a high learning rate, while in an 
uncertain or more exploratory task (forage) it benefits from 
a broad (i.e., BEST50 or ALL) simulation strategy. 

Simple goal-oriented tasks are solved by quickly propa-
gating the delayed reward to the beginning, specifically if 
there is "just one hill to climb". Local solutions converge to 
a global solution. The faster the convergence the quicker the 
global solution is found, as reflected by previous results. 

If a task is complex, the agent benefits from broader 
simulation, for this allows it to mentally explore multiple 
options and make a more balanced choice. This relates to 
the exploration-exploitation problem [cf. Doya, 2002]. Es-
sentially our agent has to vary its simulation strategy (in-
stead of its action selection) between mental exploitation 
and mental exploration. 

These findings suggested that it is beneficial to the agent 
to dynamically adapt simulation to accommodate the task. 
Additionally, we hypothesized that dynamic adaptation of 
simulation could outperform any of the four static strategies 
tested, for dynamic adaptation could be beneficial to the 
agent at different stages of learning a task. The main hy-
pothesis addressed in this paper is: if action-selection-bias is 
induced by an amount of simulated anticipatory behavior, 
and if this amount is dynamically controlled by pleasure 
feedback, then this provides additional survival value to an 
agent, compared to a static amount of simulation. Our ap-
proach is compatible with Cañamero's [2000] view on why 
and how emotion systems should be designed. 

3 Emotion as Pleasure and Arousal Factors 
That Control Information Processing 

Before describing how we add emotional feedback to the 
simulation mechanism, we present some rationale for our 
concept of emotion. Emotion influences thinking. This in-
fluence is found at low and high levels of information proc-
essing and is both positive as well as negative. For example, 
at the neurological level malfunction of certain brain areas 
not only destroys or diminishes the capacity to have (or ex-
press) certain emotions but also has the same effect on the 
capacity to make sound decisions [Damasio, 1994] and on 
the capacity to learn new behavior [Berridge, 2003], which 
indicates that these areas are linked to emotions as well as 
"classical" cognitive and instrumental learning phenomena. 
At the cognitive psychological level a person's beliefs about 
something are updated according to the emotion. The cur-
rent emotion is used as information about the perceived ob-
ject [Clore and Gasper, 2000; Forgas, 2000], and emotion is 
used to make the belief resistant to change [Frijda and Mes-
quita, 2000]. Emotions are "at the heart of what beliefs are 
about" [Frijda et al., 2000]. For example, your belief about 
roller coasters tells you something about the emotion at-
tached to your cumulative experiences with roller coasters. 

More specifically, emotion is related to the regulation of 
adaptive behavior and to information processing. Emotions 
can be defined as states elicited by rewards and punishments 
[Rolls, 2000]. Behavioral evidence suggests that the ability 



to have sensations of pleasure and pain is highly connected 
to basic mechanisms of learning and decision-making [Ber-
ridge, 1998; Cohen and Blum, 2002]. Behavioral neurosci-
ence teaches us that positive emotions reinforce behavior 
while negative emotions extinct behavior, so at this lower 
level one type of regulation of behavior has already been 
establishedi.e., approach versus avoidance. The emotion 
resulting from an unconditioned natural stimulus is associ-
ated with the conditioned stimulus or with a specific action. 
In the future, upon presentation of the conditioned stimulus 
to the animal, this association results either in more actively 
choosing the action that leads to the unconditioned stimulus 
(rats' lever pressing behavior) or in behavior that is associ-
ated with the unconditioned stimulus (Pavlov's dog produc-
ing saliva). At this lower level, emotion has a di-
rectmostly associativeeffect (but also other effects are 
reported [Dayan and Balleine, 2002]). 

At the higher level of cognitive psychology, evidence 
suggests that the processes involved in emotion are crucial 
for both evaluating the world around us at different levels of 
abstraction [Scherer, 2001] as well as actually taking action 
[Frijda, 2000]. Emotion also plays a role in the regulation of 
cognitive processes. Scherer [2001] argues that emotions are 
related to the continuous checking of the environment for 
important stimuli. More resources are allocated to further 
evaluate the implications of an event, only if the stimulus 
appears important. This suggests that certain emotions are 
related to regulation of the amount of information process-
ing. This finding provides an important clue to our approach 
of adding emotional control to the amount of simulation 
used by the agent. Furthermore, in the work of Forgas 
[2000] the relation between emotion and information proc-
essing strategy is explicit: depending on the strategy used, 
the influence of mood on thinking changes. 

Although many different emotions (and emotion theories) 
exist, and emotion consists of many different compo-
nentse.g., facial expression, a tendency to act, subjective 
evaluation of the situation, the core-affect theory of emo-
tion states that emotion (mood) consists of two fundamental 
factors, pleasure and arousal [Russell, 2003]. Pleasure re-
lates to emotional valence, while arousal relates to action-
readiness, or activity, of the organism. Many different situa-
tions can be emotionally described using these two factors, 
for example, winning the lottery (a high arousal high pleas-
ure emotion), or losing a friend (a low arousal and low 
pleasure emotion). Although Mehrabian [1996] argues for 
dominance as a third factor, he agrees with, and shows con-
siderable evidence for, the pleasure and arousal factors. 

Certain cognitive appraisal theories argue that pleasure 
and arousal can be produced by very simple stimulus check-
ing functions. This suggests that low-level mechanisms like 
intrinsic pleasantness checks and suddenness checks are 
involved [Scherer, 2000]. 

The suggestion that pleasure and arousal factors are fun-
damental to emotion, that these factors can be produced by 
simple mechanisms and that these factors can influence fur-
ther information processing inspired us to look at how these 
two factors could result from low-level features of the 

agent's memory structure and its performance, and subse-
quently how these factors could then influence information 
processing in a way that is compatible with cognitive ap-
praisal theory. In this paper we focus on the pleasure factor. 

3.1 Pleasure As a Measure for Relative Task-
Performance 

According to cognitive appraisal theory positive emotions 
are related to top-down goal oriented processing while nega-
tive emotions are related to bottom-up stimulus oriented 
processing [Fiedler and Bless, 2000]. Furthermore, emotion 
is often seen as an indication of the current performance of 
the agent [Clore and Gasper, 2000]. To capture these find-
ings we measure pleasure in the following way: 

The current pleasure, ep, of the agent is the short-term run-
ning average over the reinforcement signal, r, with a win-
dow size of star steps, normalized around the agent’s long-
term running average over the same reinforcement signal 
with a window size of ltar steps. This value is normalized 
using f times the standard deviation of the long-term distri-
bution of reinforcement signals σltar. So, ep is a continuous 
measure for how well the agent is currently performing on a 
task, relative to what it is used to, according to the recent 
past. A large f results in smaller fluctuations around 0.5, 
while a small f results in larger fluctuations around 0.5. 
Also, ep is clipped between 0 and 1. Information processing 
can be influenced by ep in the following way (Figure 3). 
When ep=1, interaction-selection (Step 1) selects only the 
best interactions for simulation, i.e. a high selection thresh-
old. When ep=0 it selects all interactions, i.e., a low selec-
tion threshold. The agent thus varies between BEST and 
ALL depending on its pleasure. It can be argued that our use 
of pleasure relates more to mood than to emotion, due to its 
timescale. Moods typically occur at longer timescales, while 
emotions are short complex reactions to events. Pleasure in 
our case is measured over multiple interactions and does not 
react to one interaction in particular. Even if ep is interpreted 
as the agent's mood, the modeled effects of positive versus 
negative emotion is consistent with the previously men-
tioned ideas about top-down versus bottom-up processing 
related to respectively positive and negative emotions as 
well as to the concept of emotion influencing the amount of 
processing needed. If the agent goes well, little processing 
(focussed attention) is needed, if it goes bad more process-
ing (broad attention) is needed. 

4 Experimental Setup 
To test our hypothesis we created a combined task in which 
simple and complex elements are present as well as goal 
oriented and exploratory behavior is needed. The first half 
consists of the find food task (Figure 1a), and the second 
half consists of the invest task (Figure 1c). The agent is un-
aware of this change; it is abruptly replaced in a slightly 
different environment and has to learn about this change by 
interacting with the environment. The hypothesized effect is 
that the agent dynamically adapts the amount of simulation 
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according to the change in complexity and goal oriented-
ness. We predicted the following changes to simulation dur-
ing the task: BEST�ALL�BEST. BEST performs best on 
the goal-oriented find food task. The change to the invest 
task induces a pleasure decrease, resulting in simulation 
close to ALL: mentally explore the new task. During learn-
ing of the invest task, simulation should return to one that is 
close to BEST because the agent's pleasure increases, result-
ing in goal oriented behavior of the agent. 
 

f: 1  1.5  2  
star: 50  100 50  100 50  100 
ltar: 200 400 200 400 200 400 
 250 500 250 500 250 500 
 375 750 375 750 375 750 
 500 1000 500 1000 500 1000 
 750 1500 750 1500 750 1500 

Table 1:  ltar, star, and f configurations used in the experiment. 

One experimental setting is a combination of f, star, ltar, 
θ and ρ. These parameters are varied as follows: the forget-
ting rate θ=(0, 0.01, 0.03, 0.05), learning rate ρ=(1, 0.8) and 
ltar, star and f according to Table 1. For every experimental 
setting the agent had 255 trials (defined as one run) to get to 
the food. It had to learn the task within these 255 trials, 
which showed to be enough to conclude convergence.  

For every experimental setting, we recorded the agent's 
total number of actions needed to complete a run (i.e. 255 
trials), and averaged over 15 runs. This resulted in averages 
for 5×6=30 (f, star, ltar) configurations per (θ, ρ) configura-
tion. The goal of these experiments is not to find out what 
the exact parameters are to get the best dynamic result, but 
to investigate the potential benefit of pleasure controlling 
simulation effort in general. We assume that there should be 
an overall benefit to emotional feedback. Therefore, averag-
ing again aggregates these 30 averages. The result is one 
value per (θ, ρ) depicted by the red (gray) lines in Figure 4. 
Red lines should be interpreted as the average performance 
of an agent that uses emotional feedback to dynamically 
control the amount of simulation (DYN). Performance is in 
terms of the total number of interactions needed to complete 
a run (Figure 4a and c), and mental effort in terms of the 
total number of simulated interactions needed to complete a 
run (Figure 4b and d). Black lines show the corresponding 
performance of the static strategies (NON, BEST, BEST50, 
ALL) averaged over 30 runs per (θ, ρ) configuration. 

5 Results 
The performance of our dynamically adapting agent is com-
parable to (Figure 4a and c), and in several special cases 
even better than (Figure 4e, result of one setting averaged 
over 30 runs instead of 15), the performance of our static 
agents. If this effect is put in light of total simulation (men-
tal) effort, it is even more dramatic. DYN uses about 33% of 
the mental effort needed for ALL and about 70% of the ef-
fort needed for BEST50 but performs comparably. The pre-
dicted effect of the pleasure feedback is confirmed. Figure 5 

depicts a typical pleasure flow (15 run ep average) of an 
agent that uses DYN. Just after the task switch (at trial 128) 
a steep decrease of pleasure is observed, this results in more 
simulated interactions, i.e., broader attention. While explor-
ing, the agent improves at the invest task, and pleasure 
gradually increases, resulting in goal-directed simulation.  
 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Figure 4a and b ρ =0.8, 4c and 4d ρ=1. Figure 4e,f, DYN 
(star=100, ltar=1500, f=1) performing better (one-tailed t-test, 
n=30, α=0.05) than static strategies with ρ=0.8 and θ=0.01. 

 
 
 
 
 

Figure 5. Pleasure flow during one run, averaged over 15 runs. 

6 Discussion and Conclusions 
Under the assumption that total simulation effort positively 
correlates with total energy consumption of the agent, de-
crease of mental effort reduces the energy need for informa-
tion processing, thereby saving energy for occupancies other 
than foraging. If dynamic adaptation reduces mental effort 
and if this is an hereditary feature, it becomes evolutionary 
advantageous. This suggests that dynamic adaptation of the 
amount of simulation has a strong evolutionary drive. 

Our results show that the relation between (1) positive 
emotions and top-down goal oriented thinking, and (2) 
negative emotions and bottom-up stimulus driven thinking 
could result from the feedback of a simple measurement of 

b 

c d 

a 

e f 



the performance of the agent to the selection threshold of 
the simulation mechanism. These results show one possible 
relation between emotion and the simulation hypothesis, as 
well as provide experimental evidence for the fact that even 
simple emotional integration processes can be used to adapt 
cognitive processes. 

6.1 Related Work 
Our work is highly related to Gadanho's [2003] work on the 
"Alec" architecture. However, in their RL based adaptive 
system, stochastic action-selection is biased by a fixed value 
produced by a rule-based cognitive system. In our system 
this value is dependent on the predicted states and the cogni-
tive process is not separated from the adaptive system. We 
chose not to separate the cognitive system from the reactive 
system, as this is important for the evolutionary continuity 
between simulating and non-simulating agents [Broekens, 
2005; Cruse, 2002; Hesslow, 2002]. 

The "Salt" model by Botelho and Coelho [1998] relates to 
ours in the sense that the agent's effort to search for a solu-
tion in its memory depends on, among other parameters, the 
agent's mood valence. Our approach differs in that we focus 
on simulation of behavior (not specifically targeted towards 
search), we use a dynamic influence to link emotion to the 
cognitive system (not a rule-based system), and we specifi-
cally define how our agent's mood is produced.  

Our work relates to emotion and motivation based con-
trol/action-selection, in that it explicitly defines a role for 
emotion in biasing behavior-selection [Avila-Garcia and 
Canamero, 2004; Canamero, 1997; Velasquez, 1998]. The 
main difference is that in these studies emotion directly in-
fluences action-selection (or motivation(al states)), while we 
have studied the indirect effect of emotion as a metalearning 
parameter affecting information processing that on its turn 
influences action-selection (cf. Gadanho [2003]). 

Up until now our agent is unable to learn the representa-
tion of a goal (what is a goal) and thus is unable to consider 
different goals in its final action selection. We learn from 
behavioral neuroscience that rats adapt learned behavior 
contingent on their drives (i.e., lever-pressing when hungry 
versus button-pushing when thirsty) [Dayan and Balleine, 
2002]. They argue that the rat's motivation acts as a gate 
between the learned predictive state and the incentive value 
associated with it. Such a mechanism can be implemented 
using a Markov Decision Process [Smith et al, 2003]. They 
model a conditioning task whereby the learned reward is 
multiplied by an artificially varied "gating factor", i.e., a 
simulated dopamine signal that is necessary for the agent to 
see the consequences of its actions. 

However, implementations such as [Smith et al, 2003] are 
still limited since many animals develop multiple complex 
goals, suggesting that they can learn to use many representa-
tions as gating factor for the predicted reinforcement signal 
in a certain situation. In this case, a learned goal can influ-
ence behavior without the behavior being directly associated 
with a positive or negative reinforcement signal. Learned 
goals could even become reinforcers by themselves. This 

approach relates to one proposed by Singh et al. [2004], 
where multiple different reinforcement techniques are used 
to learn hierarchical collections of skills that function as 
intrinsically motivating actions for the agent. Further, it re-
lates to work by Gadanho [2003], where multiple 
goalsrelated to homeostatic variablesdetermine the 
reinforcement for the adaptive system, and to work on emo-
tion learning by, for example, Botelho and Coelho. 

6.2 Future work 
We have investigated one way in which pleasure can influ-
ences information processing. Combining arousal and 
pleasure as feedback to control simulation might give addi-
tional insights into the relation between these two factors, as 
well as introduce a second learning metaparameter. 

To measure arousal, the agent could compare to what ex-
tend the predicted environment equals the actual environ-
ment. This measurement is called the stimulus predictability 
check [Scherer, 2000]. We can implement this in our model 
by comparing the probabilities of next interactions with the 
actually occurring interactions. 

Another way to measure arousal is the stimulus familiar-
ity check [Scherer, 2000]. This check measures how much 
of the environment is actually known. In our model we can 
count the number of active interactions in the state hierarchy 
(high number = familiar, low number = unfamiliar). 

These two arousal measurements can be integrated into 
one signal, say ea that, e.g., influences the absolute amount 
of effort put in simulation (information processing). A high 
ea results in a large amount of effort put into simulation, 
while a low ea results in a low amount of effort. The ea fac-
tor combined with ep results in a distribution of maximum 
available simulation steps over the potential next interac-
tions. Along these lines, we plan to adapt our model so that 
it is able to simulate multiple steps ahead depending on a 
cut-off depth based on the total amount of effort available 
for that specific branch. This approach is highly similar to 
planning and algorithms for depth-first, breadth-first and 
iterative deepening search. We hope that techniques follow-
ing from our research are generic in terms of their ability to 
modify solution-search behavior in these kinds of algo-
rithms. 

A different way to influence simulation is by letting ea 
control the amount of randomness in the interaction selec-
tion process. This is analogous to the role of noradrenaline 
as proposed by Doya [2002]. 

6.3 Conclusions 
Experimental results show that if pleasure is used to dy-
namically adapt the amount of simulation, this results in a 
learning performance that, at least, equals static simulation 
strategies. Importantly, our results show a major decrease of 
mental effort required for this performance. This observa-
tion is relevant to the understanding of the evolutionary 
plausibility of the simulation hypothesis, as increased adap-
tation at lower cost is an evolutionary advantageous feature. 
In addition, our results provide clues of a relation between 
the simulation hypothesis and emotion theory. 
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