
Emergent Dynamics of Joy, Distress, Hope and Fear in
Reinforcement Learning Agents

Elmer Jacobs
Interactive Intelligence, TU

Delft
Delft, The Netherlands

elmer.j.jacobs@gmail.com

Joost Broekens
Interactive Intelligence, TU

Delft
Delft, The Netherlands

joost.broekens@gmail.com

Catholijn Jonker
Interactive Intelligence, TU

Delft
Delft, The Netherlands

C.M.Jonker@tudelft.nl

ABSTRACT
We report on a study that shows plausible emotion dynam-
ics for joy, distress, hope and fear, emerging in an adaptive
agent that uses Reinforcement Learning (RL) to adapt to a
task. Joy/distress is a signal that is derived from the RL
update signal, while hope/fear is derived from the utility
of the current state. Agent-based simulation experiments
replicate psychological and behavioral dynamics of emotion
including: joy and distress reactions that develop prior to
hope and fear; fear extinction; habituation of joy; and, task
randomness that increases the intensity of joy and distress.
This work distinguishes itself by assessing the dynamics of
emotion in an adaptive agent framework - coupling it to
the literature on habituation, development, and extinction.
Our results support the idea that the function of emotion
is to provide a complex feedback signal for an organism to
adapt its behavior. We show this feedback signal can be op-
erationalized for RL agents. This is important because (a)
RL-based models can help understand the relation between
emotion and adaptation in animals, (b) the emotional state
might be used to increase adaptive potential, and (c) expres-
sion of an emotion to a human observer that it is grounded
in the learning mechanism of the agent should help interpret
the meaning of the emotion.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies/Artificial Intelligence]:
Learning

General Terms
Human Factors

Keywords
Reinforcement Learning, Emotion Dynamics, Affective com-
puting

1. INTRODUCTION
Emotion and reinforcement learning play an important

role in shaping behaviour. Emotions drive adaptation in
behaviour and are therefore often coupled to learning [1].
Further, emotions inform us about the value of alternative
actions [9] and directly influence action selection, for exam-
ple through action readiness [15]. Reinforcement Learning
(RL) [45] is based on exploration and learning by feedback
and relies on a mechanism similar to operant conditioning.
The goal for RL is to inform action selection such that it

selects actions that optimize expected return. There is neu-
rological support for the idea that animals use RL mecha-
nisms to adapt their behavior [10, 26, 44]. This results in
two important similarities between emotion and RL: both
influence action selection, and both involve feedback. The
link between emotion and RL is supported neurologically by
the relation between the orbitofrontal cortex, reward repre-
sentation, and (subjective) affective value (see [31]).

While most research on computational modeling of emo-
tion is based on cognitive appraisal theory [22], above men-
tioned similarities have inspired computational studies into
how emotion-like signals influence RL to create an adaptive
benefit for the agent [18, 36, 16, 35, 38, 43]. For example, it
has been shown that emotion-like signals can emerge as part
of the intrinsic reward function[36], that emotion-like signals
can function as metalearning parameters [18, 35], and that
emotional signals coming from others [5] or coming from a
cognitive assesment of the agent itself [16] can provide addi-
tional reward information for an RL learner. Other work can
be considered ’in between’ RL and cognitive emotion models
because it either looks at the emotion-cognition-RL relation
[21], or because it explicitly looks at utility (or payoff) mod-
els for emotion intensity [17, 23]. Our work is different in
that we aim to show a direct mapping between RL prim-
itives and emotions, and assess the validity by replicating
psychological findings on emotion dynamics, the latter be-
ing an essential difference with [12]. We believe that before
affectively labelling a particular RL-based signal, it is essen-
tial to investigate if that signal behaves according to what is
known in psychology and behavioral science. The extent to
which a signal replicates emotion-related dynamics found in
humans and animals is a measure for the validity of giving
it a particular affective label.

There are many reasons for wanting a valid affective label-
ing of RL-related signals. From a theoretical point of view,
the function of emotions is to provide complex feedback sig-
nals aimed at informing the agent about the current state of
affairs during learning and adaptation [14, 20, 27, 28, 29, 30,
6]. What do such signals look like in an adaptive agent? If
we can operationalize such signals for RL agents, a popular
computational model for reward-based learning in animals
[10, 26], we can computationally tie emotion to adaptation.
From a learning optimization point of view, correct labeling
will further our understanding of how emotions can increase
the agent’s adaptive potential [18, 36, 16, 35, 38, 43]. From
a human-robot interaction point of view the emotional sig-
nal can be expressed to a human observer. If this signal is
grounded in the learning mechanism of the agent it should



help interpret the meaning of the expressed emotion[7].
We propose a computational model of joy, distress, hope,

and fear instrumented as a mapping between RL primitives
and emotion labels. Requirements for this mapping were
taken from emotion elicitation literature [27], emotion de-
velopment[42], and habituation fear extinction [3, 4, 46, 25].
Using agent-based simulation where an RL-based agent col-
lects rewards in a maze, we show that the emerging emotion
dynamics are consistent with this psychological and behav-
ioral literature.

2. REINFORCEMENT LEARNING
Reinforcement Learning takes place in an environment

that has a state s ∈ S, where S is the set of possible states
[45]. An agent present in that environment selects an action
a ∈ A(st) to perform based on that state, where A(st) is
the set of possible actions when in state st at time t. Based
on this action, the agent receives a reward r ∈ R once it
reaches the next state, with R the set of rewards.

The action the agent executes is based on its policy π,
with πt(s, a) the probability that (at = a) if (st = s). In
Reinforcement Learning, this policy gets updated as a result
of the experience of the agent such that the total reward
received by the agent is maximized over the long run.

The total expected reward R at time t is finite in appli-
cations with a natural notion of a final time step, but can
become infinite in applications where such an end state does
not exist. To deal with such situations, a discount factor γ
was introduced, where 0 ≤ γ ≤ 1, discounting rewards that
are further in the future to ascertain a finite sum if all re-
wards are finite, such that:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=o

γkrt+k+1. (1)

Standard RL focuses on problems satisfying the Markov
Property, which states that the probability distribution of
the future state depends only on the previous state and ac-
tion. In these types of problems, two additional elements are
available: the transition probability P ass′ and the expected
reward Rass′ .

P ass′ = Pr{st+1 = s′|st = s, at = a} (2)

Rass′ = E{rt+1|st = s, at = a, st+1 = s′}. (3)

With these elements it is possible to determine a value
V π(s) for each state. The values are specific per policy and
are defined such that:

V π(s) = Eπ{Rt|st = s} = Eπ

{
∞∑
k=0

γkrt+k+1|st = s

}
. (4)

The value of a state is typically arbitrarily initialized and
updated as the state is visited more often. Since the val-
ues are policy dependent, they can be used to evaluate and
improve the policy to form a new one. Both are combined
in an algorithm called value iteration, where the values are
updated after each complete sweep of the state space k such
that:

Vk+1(s) = max
a

∑
s′

P ass′
[
Rass′ + γVk(s′)

]
. (5)

After convergence of the values, the policy simplifies to:

π(s) = arg max
a

∑
s′

P ass′
[
Rass′ + γV (s′)

]
(6)

The use of this algorithm requires a complete knowledge
of the state-space, which is not always available. Temporal
Difference Learning estimates values and updates them after
each visit. Temporal Difference learning has been prposed
as a plausible model for human learning based on feedback
[34, 19, 11, 2]. The simplest method, one-step Temporal
Difference Learning, updates values according to:

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)] (7)

with α now representing the learning rate. After conver-
gence, the values can be used to determine actions. Several
types of action selection exist, from completely random to
simply choosing the action resulting in the maximum pre-
dicted value. The Boltzmann distribution, argued to be a
model for human action selection [8, 24, 39, 40], gives a
probability of choosing each action and is given by:

eβQ(s,a)

n∑
b=1

eβQ(s,b)

(8)

where β is a positive parameter called inverse temperature
and Q(s, a) is the value of taking a specific action according
to:

Q(s, a) =
∑
s′

P ass′
[
V (s′) +Rass′

]
. (9)

3. MAPPING EMOTIONS
In essence, the computational model of emotion we pro-

pose is a mapping between RL primitives (reward, value,
update signal, etc..) and emotion labels. Our mapping fo-
cuses on well-being emotions and prospect emotions, in par-
ticular joy/distress and hope/fear respectively, two emotion
groups from the OCC model[27], a well-known computation-
ready psychological model of cognitive emotion elicitation.
We now detail the rationale for our mapping.

3.1 Emotional development and habituation
Learning not only drives adaptation in human behaviour,

but also affects the complexity of emotions. Humans start
with a small number of distinguishable emotions that in-
creases during development. In the first months of infancy,
children exhibit a narrow range of emotions, consisting of
distress and pleasure. Distress is typically expressed through
crying and irritability, while pleasure is marked by satiation,
attention and responsivity to the environment [42]. Joy and
sadness emerge by 3 months, while infants of that age also
demonstrate a primitive form of disgust. This is followed by
anger which is most often reported between 4 and 6 months.
Anger is thought to be a response designed to overcome
an obstacle, meaning that the organism exhibiting anger
must have some knowledge about the actions required to
reach a certain goal. In other words, the capability of feel-
ing anger reflects the child’s early knowledge of its abilities.
Anger is followed by fearfulness, usually reported first at 7
or 8 months. Fearfulness requires a comparison of multiple



events [32] and is therefore more complex than earlier emo-
tions. Surprise can also be noted within the first 6 months
of life.

Apart from the development of emotions, habituation and
extinction are important affective phenomena. Habituation
is the decrease in intensity of the response to a reinforced
stimulus resulting from that stimulus+reinforcer being re-
peatedly received, while extinction is the decrease in inten-
sity of a response when a previously conditioned stimulus
is no longer reinforced [25, 3, 4, 46, 13]. A mapping of RL
primitives to emotion should be consistent with habituation
and extincition, and in particular fear extinction as this is a
well studied phenomenon [25].

3.2 Mapping joy and distress
Joy and distress are the first emotions to be observable in

infants. A first possible choice to map joy would be to use
the reward rt. Any state transition that yields some reward
therefore causes joy in the agent. However, anticipation and
unexpected improvement can result in joy [41] and this con-
tradicts the previous mapping. We need to add an anticipa-
tory element of RL. So, we could represent joy by rt+V (st).
However, this contradicts our knowledge about habituation,
which states that the intensity of joy attributed to a state
should decrease upon visiting that state more often. So, we
should incorporate the convergence of the learning algorithm
by using the term rt + V (st)− V (st−1), which continuously
decreases as values come closer to convergence. This map-
ping still lacks the concept of expectation [27]. We take care
of this by adding an unexpectedness term, derived from the
expected probability of the state-transition that just took
place, which is (1− P at−1

st−1st). We let:

J(st−1, at−1, st) = (rt+V (st)−V (st−1))(1−P at−1
st−1st) (10)

where J is the joy (or distress, when negative) experienced
after the transition from state st−1 to state st through action
at−1. Joy should be calculated before updating the previous
value, since it reflects the immediate emotion after arriving
in the given state. This mapping coincides with the mapping
in the OCC model, which states that joy is dependent on the
desirability and unexpectedness of an event [27].

3.3 Mapping hope and fear
According to theory about emotional development, joy

and distress are followed by anger and fearfullness. Hope
is the anticipation of a positive outcome and fear the an-
ticipation of a negative outcome [27]. Anticipation implies
that some representation of the probability of the event ac-
tually happening must be present in the mapping of both
of these emotions. The probability of some future state-
transition in Reinforcement Learning is P atstst+1

. This is im-
plicitly represented in the value V (st) which after conversion
is a sampling of all chosen actions and resulting state tran-
sitions, so a first decision may be to use V (st) as the hope
and fear representation. Under this mapping, fear extinction
can happen by a mechanism similar to new learning [25]. If
action-selection gives priority to the highest valued transi-
tion, then a particular V (s) that was previously influenced
by a negatively reinforced next outcome will, with repeated
visits, increase until convergence, effectively diminishing the
effect of the negative association by developing new associ-
ations to better outcomes.

Alternatively, we can use probability and expected joy/distress
explicitly in order to determine the hope/fear value for each
action. However, as any transition in a direction that de-
creases reward translates to a loss in value this would also
be a source of fear. As a result, the agent would experience
fear even in a situation with only positive rewards. In some
situations, loss of reward should trigger fear (losing all your
money), but it is difficult to ascertain if fear is then in fact
a precursor to actual negativity, or a reaction to the loss of
reward. As such we stick to the simpler model where the
intensity of hope (HF > 0) and intenstity of fear (HF < 0)
equals to:

HF (st) = V (st) (11)

The OCC model states that hope and fear are dependent
on the expected joy/distress and likelihood of a future event
[27], which is again consistent with our mapping.

4. VALIDATION
The main research question in this paper concerns the

validity of the mapping we propose between the emotion
labels joy/distress/fear/hope and the RL primitives as de-
tailed above. To test the validity, we first state four require-
ments based on habituation, development and extinction lit-
erature.

Requirement 1. In all simulations, joy/distress is the
first emotion to be observed followed by hope/fear. As men-
tioned earlier, human emotions have an order in their de-
velopent in individuals from simple to complex [42].

Requirement 2. Simulations should show joy habitua-
tion and fear extinction over time. Habituation of joy when
the agent is presented repeatedly to the same reinforcement
[3, 4, 46, 13] should be observed. as well as fear extinction
through the mechanism explained above [25]. In our instru-
mentation, if joy and fear show this behavior, then distress
and hope will also show this as these are symetrical, so we
test only for joy and fear.

Requirement 3. Lowered expectation decreases hope and
results in a higher intensity for joy/distress [46, 27]. So,
when we lower the expectation of an agent of its environ-
ment (by adding a wall collision penalty), we should observe
an increase in its joy reaction to positively reinforced situa-
tions as well as a decrease in hope due to lower expectation.

Requirement 4. Increasing the unexpectedness of results
of actions increases the intensity of the joy/distress emotion.
Predictability relates to the expectedness of an event to hap-
pen, and this can be manipulated by adding randomness to
action selection and action outcomes. Increasing unexpect-
edness should increase the intensity of joy/distress [27, 33].

4.1 Experimental setup
We ran our validation tests in an agent-based simulation

implemented in Java. A RL agent acts in a small maze. The
maze has one final goal, represented by a single positively
rewarded state. The task for the agent is to learn the optimal
policy to achieve this goal. The agent always starts in the
top-left corner and can move in the four cardinal directions.
Collision with a wall results in the agent staying in place.



Figure 1: The maze used in the experiments. Each
square is a state. The agent starts at S and the
reward can (initially) be found at R.

Table 1: Control and varied values of different pa-
rameters used in the simulations

Control setting Variations
Collision penalty 0.0 0.01
P (remain in place) 0.1 0.25
Reward action Return to start Relocate reward

Maze locations are states (17 in total). The agent learns
online (no separate learning and performing phases). The
maze used in all experiments is shown in Figure 1.

In all simulations the inverse action-selection temperature
beta equals 10, the reward in the goal state r(goal) equals
1, and the discount factor γ equals 0.9. To test the effect
of expectation and predictability of the world, we varied
several parameters of the task (see Table 1). To manipulate
an agent’s high versus low expectation of the task, we varied
collision penalty (the reward for bumping into a wall was 0 or
−0.01, representing a less favorable world in the latter case).
To manipulate predictability we varied the chance that an
action does not have an effect (0.25 versus 0.1, representing
an unpredictable versus a predictable world respectively) as
well as the consequence of gathering the goal reward (agent
returns to start location versus reward is relocated randomly
in the maze, the latter representing unpredictable goal loca-
tions). A simulation consists of a population of 50 different
agents, each agent runs the task once for a total of 10000
steps, which appeared in pre-testing to be long enough to
show policy convergence. To reduce the probability that our
results are prodcued by a ’lucky parameter setting’, each run
has gaussian noise over the parameter values for β, γ, the
collision penalty and the probability that an action fails.
We pulled these values from a normal distribution such that
95% of the values are within 5% of the given mean, with the
exception of the case where the collision penalty is 0.

The mappings from RL primitives to emotions as defined
in the emotional model require knowledge of transition prob-
abilities. Temporal Difference learning does not require a
model, while Value Iteration requires a complete model.
Therefore, we use a form of value iteration that uses an
estimate of the transition model to update the value of the
current state, such that:

V (st)←− max
a

∑
s

P ass′
[
Rass′ + γV (s′)

]
. (12)

This is a simple method that converges to the correct
values under the same circumstances as any Monte Carlo
method. After a transition to some state s′, the estimated

transition model of state s is updated, allowing V (s) to be
updated at the next visit to that state. This approach is
similar to Temporal Difference Learning with learning rate
α = 1 as presented in Equation 7 but uses a model instead
of sampling.

5. EXPERIMENTAL RESULTS

5.1 Habituation, development, fear extinction
To test if joy habituates over time, we ran a simulation

using the control settings in Table 1. We analyse a repre-
sentative signal for joy/distress for a single agent during the
first 2000 steps of the simulation (Figure 2). We see that, for
a number of steps, the agent feels nothing at all, reflecting
not having found any rewards yet. A sudden spike of joy oc-
curs the first time the reward is collected. This is a reaction
to the update of the Value function in combination with the
fact that the rewarded state is completely novel, i.e., high
unexpectedness. Then joy/distress intensity equals 0 for
some time. This can be explained as follows. Even though
there are state value updates, the unexpectedness associated
with these changes is 0. As there is only a 10% chance that
an action is unsuccessful (i.e. resulting in an unpredicted
next state s′), it can take some time before an unexpected
state change co-occurs with a value update. Remember that
joy/distress is derived from the change in value and the un-
expectedness of that update. Only once an action fails, the
joy/distress signals start appearing again, reflecting the fact
that there is a small probability that the expected (high-
valued) next state does not happen. The joy/distress signal
is much smaller because it is influenced by two factors: at
convergence the unexpectedness goes to 0.1, and, the differ-
ence between the value of two consecutive states approaches
0.1 (taking the discount factor into account, see discussion).
Individual positive spikes are caused by succesful transitions
toward higher valued states (and these continue to occur, as
the discount factor is non-zero), while the negative spikes are
transitions toward lower valued states, both with low inten-
sities caused by high expectedness. These results show that
joy and distress emerge as a consequence of moving toward
and away from the goal respectively, which is in accordance
with [27]. Habituation of joy/distress is also confirmed: the
intensity of joy goes down each time the reward is gathered.

Based on the same simulation, we test if joy/distress is the
first emotion to be observed followed by hope/fear. We plot
the mean joy/distress and hope over all 50 agents for the first
2000 steps. We can see that joy (Figure 3) appears before
hope (Figure 4). We explained earlier that state values can
only be updated once a reward is gained, and therefore hope
and fear can only emerge after the agent has some expected
gain/loss as represented by the values of states. This order
of emergence becomes clear from the simulation.

To test for the occurance of fear extinstion, we introduce a
wall collision penalty. We ran a novel simulation (50 agents,
10000 steps) with the same settings as the previous simula-
tion except for the collision penalty (see Table 1). We plot
the average intenisty of fear for 50 agents in Figure 5. Fear
is caused by running into the wall at the beginning of the
simulation. Fear goes to 0 after a small number of steps.
However, the agent always has options available that never
cause it to collide. Because of the max function in Equation
12, these types of actions take precedence in the value up-
dates. Using this update function, if any action is available



Figure 2: Intensity of joy/distress for a single agent,
observed in the first 2000 steps

Figure 3: Intensity of joy/distress, mean over 50
agents, observed in the first 2000 steps

that causes no penalty whatsoever, the value is never nega-
tive. It represents an agent that assumes complete control
over its actions and is therefore not afraid once it knows how
to avoid penalties. The agent updates its utility of the state
and the initial fear associated with that state extincts to 0.
This demonstrates a know mechanism for the habituation
of fear, called new learning [25]). New learning explains
fear extinctions by proposing that novel associations with
the previously fear-conditioned stimulus become more im-
portant after repeated presentation of that stimulus. This
results in a decrease in fear response, not because the fear
association is forgotten but because alternative outcomes be-
come more important. Our mode thus replicates findings on
fear extinction.

5.2 Lowered expectation
To test our requirement (in this case more so a hypothe-

Figure 4: Intensity of hope, mean over 50 agents,
observed in the first 2000 steps

Figure 5: Intensity of fear, mean over 50 agents, in
the presence of a collision penalty

Figure 6: Intensity of hope, mean over 50 agents,
without (first run) and with (second) collision
penalty

Figure 7: Intensity of joy/distress, mean over 50
agents, without (first run) and with (second) col-
lision penalty

Figure 8: Intensity of joy/distress, mean over 50
agents, with a probability of 0.1 (first run) and 0.25
(second run) of failing an action



Figure 9: Intensity of joy/distress, mean over 50
agents, returning the agent (first run) or relocating
the reward (second run)

sis) that lowered expectation decreases hope and results in
a higher intensity for joy, we contrast the results of a task
in which a wall collision penalty is present against a task in
which this penalty is not present (see Table 1). Adding a
collision penalty lowers the expectations in any state, since
a chance exists for making such a punished move. The
mean hope and joy over 50 agents with and without col-
lison penalty are shown in Figures 6 and 7. The intensity
of hope is almost unaffected by the collision penalty, while
joy decreases a bit. At first sight, this seems to falsify our
hypothesis, which stated that the collision penalty would
result in a decrease in expectation resulting in an increase
in joy intensity and a decrease in hope. Upon further in-
spection, we find that the collision penalty actually causes
a faster convergence of values. This has two reasons. First
of all, as we discussed before, the use of max in Equation
12 results in the agent not considering the possibility for a
penalty in the updates of values. Very quickly, the penalty
is not represented anymore in the state values. Secondly,
the Boltzmann action selection method selects actions with
potentially negative reward less often than neutral actions,
resulting in faster convergence toward the optimal policy.
As a result, state values are approximately the same in both
conditions. Our manipulation of expectation is not adequate
to manipulate hope and joy. As such, the hypothesis is nei-
ther falsified nor supported.

5.3 The effect of unexpectedness
To test our requirement that increasing the unexpected-

ness of results of actions increases the intensity of joy/distress,
we vary predictability of the world. In our current setting,
there are three ways to vary predictability, two of which
match with unexpectedness. First, we can make action se-
lection a random process. This results in unpredictable be-
haviour and an inefficient policy, but does not change the
predictability of the effects of an action once it is chosen.
Second, we can make the results of an action stochastic, for
example by letting the action fail completely every once in
a while. Third, we give rewards at random points rather
than at the same transition all the time. This randomizes
the reinforcing part of an experiment. The last two options
increase the unexpectedness of the result of an action and
we test both of them.

First of all, we increased the probability for an action to
fail (failure results in no state change). The resulting mean
intensity of joy for 50 agents is shown in Figure 8. The

second simulation consisted of randomly relocating the re-
ward after each time it was collected, instead of returning
the agent to the starting position. The mean intensity of
joy for 50 agents is shown in Figure 9. We can see that
in both simulations the intensity of joy/distress reactions is
larger (bigger spikes). The effect of relocating the reward
is much more prominent, since it reduces the predictabil-
ity of a reward following a specific transition from close to
100% to about 6%(1/17states). This reduction is greater
than making it 2.5 times more likely that an action fails,
which is reflected in the larger intensity increase. Further-
more, the randomness of receiving rewards also counteracts
the habituation mechanism. Repeated rewards following the
same action are sparse, so habituation does not really take
place. Therefore, the intensity of the joy felt when receiving
a reward does not decrease over time. These results are con-
sistent with the psychological finding that unpredictability
of outcomes result in higher intensity of joy [27, 33].

6. DISCUSSION
The speed at which the habituation takes place is high as

a result of how unexpectedness is calculated in the model.
In the beginning unexpectedness is 0 for many state transi-
tions because the probablity of an action to fail is small and
the world model is empty. In other words, the agent does
not know about any alternative action outcomes and thus
can only conclude that there is no unexpectedness associated
with a particular outcome. This differs from humans, who
in general have certain expectations about alternative out-
comes. We can simulate such experiences by starting with
a default model of the environment, or by assuming a small
default probablity for all states as potential outcome of an
action in an arbitrary state (i.e., all Psas′ are non-zero) The
latter is probably closer to reality.

Technically speaking, joy/distress in our model is not de-
rived from the update signal, but based on the difference
in expected value between the current state and the previ-
ous state, i.e., rt + V (st)− V (st−1). If we assume a greedy
policy and an update function that uses the maxa value
to update states then this signal is equivalent to the up-
date signal because the expected value of the any previous
state V (st−1) converges to rt + V (st) (the policy ensures
this). The main difference then is that a model that is de-
rived from the RL update signal includes a discount factor
gamma and a learning rate alpha. Inclusion or exclusion of
these variables result in different joy/distress signals. In our
model, the amount of residual distress/joy present at conver-
gence is proportional to the discount factor, because the dis-
count factor determines the difference between V (st−1) and
rt + V (st) at convergence. If joy/distress were really equal
to the update signal, then joy/distress would become 0 at
convergence because the update signal would be 0. Also, the
intensity of joy/distress would be proportional to the learn-
ing rate alpha if joy/distress is derived from the RL update
signal. If alpha is high, joy/distress reactions are close to
V (st−1)−rt+V (st), if alpha is small the signal is close to 0.
In our model, this is not the case, as the actual V (st−1) and
rt + V (st) are taken, not the difference weighted by alpha.
We observed the discount-dependent habituation effect in
our simulations as habituation of joy/distress intensity does
not end up at 0. The discount factor ensures that expec-
tations are always smaller than the actual outcome. This
translates to humans that still experience a little bit of joy,



even when getting a reward that they have often received.
In our model habituation predicts a diminishing intensity
but not a complete loss of joy/distress response. Further
study should investigate the plausibility of the two alterna-
tive models for joy/distress.

The habituation of fear was demonstrated in the exper-
iment with a collision penalty. Here, fear habituates to 0
once the agent learns that every state has some action that
on average does not result in a penalty. This is because our
agents use the maximum of the possible outcomes to up-
date the value of states, as is common in RL. This means
that they are very optimistic, and assume complete control
over their actions. Our model predicts that fear extinction
rate does not depend on the strength of the negative rein-
forcer, as even a collision penalty of −1000 would still show
extinction as soon as a better alternative outcome is avail-
able (the value of the state would get updated immediately
to the value of the better outcome). This is caused by two
factors: first, the assumption of complete control in the up-
date function as explained above; second, the learning rate
alpha is 1, meaning that V (st−1) is set to rt +V (st) at once
erasing the old value. The influence of update functions and
learning rates should be investigated further.

Hope (expectation) did not decrease when adding a colli-
sion penalty. This can also be attributed to the use of the
best possible outcome in the update function, since bad ac-
tions are simply not taken into account in V (s). We were
not able to validate hypothesis 3 because we wrongfully as-
sumed that the solution method would take bad actions into
account, which would result in lower hope and higher joy
intensity. This is a strong argument for taking utmost care
when constructing a task to test hypotheses. All settings for
the parameters of the simulation should be considered with
respect to their counterparts in the animal world to ensure
a correct test, pointng towards the need for standardized
benchmark tests. To elaborate a little further on this point,
many of the task/learning parameters including the update
function, discount factor, action-selection and learning rate,
of which the effects were not investigated in this paper, can
influence the signals we label as emotions. It is important
that future research focuses on drawing a correct parallel
between parameters of Reinforcement Learning and human
behaviour. An understanding of the effect of each of these
parameters allows us to construct more thorough hypothe-
ses as well as benchmark tests. Comparing the results of a
simulation to emotions shown by human subjects in a sim-
ilar setting [17] is essential to further our understanding of
the validity of different RL-based models of emotion.

We limited ourselfs to joy/distress and hope/fear. A direct
next step would be the mapping of confirmation emotions as
these are the consequence of hope/fear. If we assume that
confirmation is the percentage or ratio reflecting how much
of an expectation has actually come true the next state, then
this can be expressed as follows:

C(st−1, at−1, st) =
V (st) + rt
V (st−1)

P
at−1
st−1st (13)

This mapping is in accordance with the OCC model [27],
which states that confirmation depends on the intensity of
the prospect emotion, the degree of realization and unex-
pectedness of the event. It is mathematically only defined if
V (st−1) 6= 0, which is in accordance with reality as having
no expectations whatsoever can never result in confirmation.

None of the emotions we modelled involve the appraisal of
agency, which is by definition not available in Reinforcement
Learning. However, adding agency (e.g., in multi-agent RL),
it is not unthinkable that social emotions could emerge from
RL primitives. Attempts at using social values in reward
construction have been tried recently in a multi-agent RL
setting [37]. This would also be a good moment to try to map
anger to RL primitives. Validation of such signals should be
further investigated.

7. CONCLUSION
We have proposed a computational model of emotion based

on reinforcement learning primitives. We derive joy/distress
from the RL update signal weighted by the unexpectedness
of the outcome, and hope/fear from the learned value of the
current state. Our contribution is that we replicate impor-
tant (cited) properties of emotion dynamics in humans with
our model, including habituation of joy, extinction of fear,
and the occurance of hope and fear after joy and distress.
We conclude that our model is a plausible RL-based instru-
mentation for joy/distress and hope/fear. However, we are
aware of the difficulties of labeling RL-based signals as par-
ticular emotions, as discussed. Also, we feel that in general
a more structured approach is needed to develop scenar-
ios (tasks/learning approach/RL parameters) to test for the
plausibility of affective labeling of RL-based signals.
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