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Abstract

This paper explores the complexity and performance of the
XML-RPC system for remote method invocation. We de-
veloped a program that can use either XML-RPC-based net-
work communication or a hand-rolled version of networking
code based on the java.net package. We first compare our two
implementations using traditional object-oriented metrics. In
addition, we conduct tests over a local network and the Inter-
net to assess the performance of the two versions of the net-
working code using traditional internetworking metrics. We
find that XML-RPC reduces the programming complexity of
the software by roughly 50% (across various metrics). On the
other hand, the hand-rolled java.net-based implementation of-
fers up to an order of magnitude better network performance
in some of our tests.

1 Introduction

The notion of remote procedure calls (RPC) was first outlined
in [4]. The idea behind RPC is that a software developer is al-
ready familiar with the idea of making a procedure call (or
a method call in object-oriented programming vernacular).
Therefore, to make the development of distributed systems
more accessible to all programmers RPCs provide the devel-
oper an interface to communications code that is as close as
possible to simply making a procedure call. Using this no-
tion the developer does not have to write networking code,
thus allowing programmers who do not happen to be experts
in developing network code to write large complex systems
distributed across any number of hosts on a network.

Many systems have tried to implement the notion of RPC in
various ways. Sun RPC was an early, widely deployed and
used variant of RPC, with CORBA [15], DCOM, JavaRMI,
SOAP [6] and many others following. While these sys-
tems are all meant for slightly different environments (e.g.,
CORBA is an object-oriented version of RPC) they all share
the same major goal of making distributed applications easier
to write and maintain. In the study presented in this paper we
focus on a remote procedure call system called XML-RPC1.

At its core, XML-RPC defines a framework for transmitting
method calls and the resulting responses between processes
across hosts. The transactions are encoded in a standard way
using XML [7]. The XML-RPC approach differs from more

�
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traditional RPC systems in several ways:

� In some RPC systems, such as Sun RPC, the RPC sys-
tem (with input from the programmer) generates stubs
for the programmer to call. For instance, if the program-
mer wanted to call a remote method foo() they would
call a local method foo() which would be a stub gen-
erated by the RPC system. XML-RPC differs from such
systems, as it does not generate stubs for the program-
mer. Rather, XML-RPC provides several primitives for
programmers to use to construct method requests and
obtain the corresponding response. The XML-RPC sys-
tem reduces the work required by programmers because
the programmer does not have to tightly specify their re-
mote procedures for a stub generator. On the other hand,
XML-RPC requires developers to know more about the
underlying system than an RPC system that provides a
stub generator.

� Since XML-RPC uses a standard XML encoding strat-
egy the system is highly interoperable. A system like
Sun RPC can be used across architectures, operating sys-
tems and languages. However, the programmer must
have the same RPC system on all platforms. On the other
hand, XML-RPC represents a loose coupling between
hosts. As long as the hosts both work to the specification
they can communicate trivially.

� Argument marshaling is a non-issue in XML-RPC since
all data is encoded as text before transmission.

� XML-RPC is easily layered on top of existing appli-
cation protocols (e.g., the HyperText Transfer Protocol
(HTTP) [3, 8]). Therefore, integrating XML-RPC with
other applications is straightforward.

While the motivation behind RPC (and in particular XML-
RPC) is compelling we wondered about the benefits versus
the costs. The XML-RPC system is quite flexible and generic
and therefore likely not optimized for any particular situation.
While this is a feature it may also be a disadvantage if an
implementer is trying to obtain good network performance.
The goal of this paper is to assess XML-RPC by comparing
a set of simple remote procedure calls implemented in XML-
RPC, as well as using hand-rolled networking code based on
the java.net package. While we use the Java version of the
XML-RPC system, we note that XML-RPC is implemented
for many other languages.

Our comparison of manually written networking code with
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XML-RPC-based code has two major thrusts. First, we com-
pare the two systems in terms of object-oriented code metrics.
That is, we assess the difficulty of writing and maintaining the
two variants, as well as the complexity of the resulting code.
The second area for comparison is in terms of the network
performance attained by the two variants.

The remainder of this paper is organized as follows.
�

2 out-
lines our testing program and the environment in which our
tests were conducted.

�
3 outlines the results of applying

object-oriented metrics to both versions of the communica-
tions subsystem that we implemented.

�
4 outlines the results

of applying traditional network performance metrics to our
two versions of networking code.

�
5 discusses using com-

pression techniques to reduce the size of XML-RPC transac-
tions – which is found to be a major cause of performance
problems for XML-RPC. Finally,

�
6 gives our conclusions

and outlines future work in this area.

2 Test Environment

To examine the differences between our manually written
code based on the java.net package and XML-RPC code we
wrote two modest testing programs (a client and a server)
that perform a number of operations. The client can use the
java.net or XML-RPC code to call on the server to perform the
requested operations based on command-line options given
by the user. The server program receives requests from the
client, performs the requested operation and returns the re-
sults. Like the client, the server can use either the java.net-
based or XML-RPC code for communication.

The four operations the program performs were chosen to
use different kinds of requests and responses. While we only
scratch the surface of all possible method calls and responses
we believe the following methods offer a useful exploration
of the space. The operations we use are:

� boolean IsPrime (int n)
This function determines whether the given integer is
prime and returns this determination. This method rep-
resents a small request/small response transaction.

� double Average (Vector numbers)
This function returns the average of the given vector of
double-precision numbers. The server can handle a vec-
tor of arbitrary size. In the tests reported in this paper
we use a list of 50,000 randomly chosen numbers. This
method represents a big request/small response transac-
tion.

� Vector GetRandNums (int n)
This function returns a vector of � double-precision ran-
dom numbers. In the tests reported in this paper the
client requests 50,000 random numbers. This method
represents a small request/big response transaction.

� Vector LogTransform (Vector numbers)
This function takes a vector of double-precision num-
bers, performs a log transformation on each value and
returns a vector containing the transformed values. The

server can handle vectors of arbitrary size as input. In
our experiments, the client requests the log transforma-
tion of 50,000 randomly chosen values. This method
represents a big request/big response transaction.

Most of the code in the testing programs is the same regard-
less of which mechanism is being used to communicate over
the network. For instance, the code that actually performs the
above actions is implemented in a PerfActions class and
is shared.

Network

Client Server

Comm Comm

Figure 1: Layout of testing programs.

The general program flow is shown in figure 1. As shown,
both the client and server applications communicate through
some communications system which, in turn, exchanges mes-
sages over some network. The communication system used
in our test program depends on command-line input from the
user. The three currently implemented subsystems are a hand-
rolled application layer protocol based on java.net, an XML-
RPC-based system for remote method invocation and a mech-
anism that simply invokes the methods locally rather than run-
ning the method on another host (for debugging purposes).
The first two subsystems are explained in the following sub-
sections.

2.1 java.net Code
The first communication subsystem we discuss is based on the
java.net package. We use the Socket and ServerSocket
classes to setup a separate connection for each transaction.
In principle, we can leave the connection open to serve more
than one transaction. However, as an initial study, we did
not want to call multiple methods through a single connection
(likewise, we did not use XML-RPC’s boxcar or multi-call
feature). We used the Transmission Control Protocol (TCP)
[14] to ensure reliable data delivery across the network. In
addition, in some of our tests (as outlined in

�
4.3) we increase

the size of the send and receive socket buffers to 60 KB.

We implement the client networking code in one class and
the server code in another. In addition, we use a third class
for generic networking routines to implement three methods
needed by both the client and server. A longer discussion of
the complexity of the implementation is given in

�
3.

We implement our own simple application layer protocol to
conduct the transactions. The first item sent from the client
is a 2 byte short integer identifying the remote method we
wish to invoke. Everything sent after this identifier in both the
request and the response is specific to the particular method
being invoked. For example, the IsPrime() request sends
a 4 byte integer after the 2 byte method identifier and receives
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a 1 byte response from the server (whether the given integer
is prime).

2.2 XML-RPC Code
Next we implement a communication subsystem for our test-
ing program based on XML-RPC. TCP is used by XML-RPC
for reliable data delivery. In addition, the HyperText Trans-
fer Protocol (HTTP) [3, 8] is used as the application protocol
due to its vast deployed base. The data portion of the payload
is an XML request to run a particular method with the given
parameters or an XML response that encodes the results of
the remote method call. As with the implementation based
on the java.net package, the XML-RPC code uses one TCP
connection per transaction. Future work in this area should
include reusing TCP connections and assessing the impact of
conducting multiple transactions in short amounts of time.

Unlike our hand-rolled java.net-based implementation we do
not have to specify the application layer protocol used by
XML-RPC. As discussed in

�
4 we captured the packets

involved in the XML-RPC transactions to measure perfor-
mance. A side-effect of this is that we are able to show a
sample of an XML-RPC transaction from our tests, which is
given below2:

POST /RPC2/ HTTP/1.1
Content-Length: 164
Content-Type: text/xml
User-Agent: Java1.3.0
Host: mercedes:8081
Accept: text/html, image/gif, [...]
Connection: keep-alive

<?xml version="1.0" encoding=
"ISO-8859-1"?>

<methodCall>
<methodName>act.IsPrime</methodName>
<params>
<param>
<value><int>82</int></value>

</param>
</params>

</methodCall>

3 Object Oriented Metrics

In this section we compare the complexity of the java.net-
based and XML-RPC-based communications code. Note that
we only consider the networking code developed by the appli-
cation designer in this section since the non-communications
code is the same regardless of communication subsystem.
Also, we do not consider the underlying complexity of the
XML-RPC implementation itself, since that is not of concern
to the application programmer3. This section is divided of the

2Note that the XML has been reformatted for presentation in this paper.
The line breaks are not present in the code that is transmitted across the net-
work.

3However, the complexity of the underlying code will impact the perfor-
mance of the XML-RPC-based system and therefore of interest to the appli-
cation programmer. This is discussed in more detail in

�
4.

into two parts. The first subsection presents a brief side-by-
side comparison of one of the stubs in the communications
subsystem to give the reader a feel for the code. The second
subsection uses object-oriented metrics to quantify the com-
plexity of the code for each communications subsystem.

3.1 Qualitative Comparison
In this subsection we examine the client-side stubs for both
the java.net and XML-RPC based implementations. Figure 2
shows the java.net-based stub for the LogTransform()
method and figure 3 shows the XML-RPC version of the same
stub. The first thing we note is that the java.net code repre-
sents more work for the application designer than the XML-
RPC code because the programmer has to implement all the
details of the transactions. In the java.net code we explic-
itly open and close the TCP connection (via alternate meth-
ods that we also must implement). In addition, as discussed
in

�
2 we implement our own application protocol, sending

the identification number for the remote method we want ex-
ecuted followed by the parameters for the method. While
we slightly generalized the parameter passing for lists of
double-precision numbers by using the two generic methods
WriteDoubleVector() and ReadDoubleVector()
the code cannot be made arbitrarily reusable since each re-
mote method will have its own set of arguments and will re-
turn its own set of results. In addition, note that if we wanted
to pass a vector of integers we would have to add new meth-
ods to the java.net code to accomplish this task (leading to
more complexity).

On the other hand, the XML-RPC code is short and easy to
understand, even without studying XML-RPC. All parame-
ters are inserted into a vector that is then passed to the XML-
RPC system with the name of the remote method to be in-
voked (“act.LogTransform” in the case shown). The results
are passed back in a table that provides easy access for the de-
veloper. The client and server must agree on a naming scheme
for the remote method and the results. However, this is true
no matter what type of system is used for communication.

Also note that in both versions of the networking code
presented we have shown a stub for LogTransform()
method. However, unlike systems like Sun RPC we are not
required to have a stub for the remote methods in XML-RPC.
In Sun RPC the program calls a stub rather than the desired
method. However, in XML-RPC (and our hand-rolled ver-
sion) the programmer can use the primitives to directly call a
remote method without writing a stub (or having a tool write
a stub).

3.2 Quantitative Comparison
We now focus on using coding metrics to assess the two ver-
sions of the communications code. The first metric we use
to compare our java.net and XML-RPC code is the number
of lines of code required to implement the required function-
ality. The number of lines of code required is a first-order
examination of the complexity of the code and of how diffi-
cult to maintain that code may be. In this paper, we report the
number of lines of code containing actual program statements
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    public Vector LogTransform (Vector nums)
    {
        Vector newnums = null;

        try 
        {
            open_conn ();
            out.writeShort (PerfActions.LogTrans);
            out.writeInt (nums.size ());
            NMisc.WriteDoubleVector (out,nums);
            out.flush ();
            newnums = NMisc.ReadDoubleVector (in,nums.size ());
            close_conn ();
        }
        catch (Exception e)
        {
            System.err.println ("LogTransform: " + e.toString());
        }
        return (newnums);
    }

Figure 2: The java.net-based version of the client stub for the LogTransform() method.

    public Vector LogTransform (Vector nums)
    {
        Vector params = new Vector ();
        Vector ln_nums = null;
        Hashtable result;

        params.addElement (nums);
        try
        {
            result = (Hashtable)server.execute ("act.LogTransform", params);
            ln_nums = (Vector)result.get ("logtrans");
        } 
        catch (Exception e) 
        {
            System.err.println ("LogTransform: " + e.toString());
        }
        return (ln_nums);
    }

Figure 3: The XML-RPC-based version of the client stub for the LogTransform() method.

Program java.net XML-RPC

Client 110 93
Server 136 76

Generic 39 0
Total 285 169

Table 1: Lines of code in each communication subsystem (exclud-
ing blank lines and lines containing only comments).

(i.e., not counting blank lines and lines that contain nothing
but comments).

Table 1 shows the lines of code required to implement the two
forms of communication. As show in the table, the java.net
code is a factor of nearly 1.7 larger in total lines of code
when compared to XML-RPC. Most of the savings realized
by XML-RPC comes from the server code and the lack of re-
quiring the generic routines used in the java.net version of the
code.

Next, table 2 takes a deeper look into the complexity and
manageability of the code. This table shows the number of
classes, methods and data members required to implement
each version of the communication subsystem. As with the
above discussion of the number of lines of code, in all metrics
presented in table 2 XML-RPC appears to be less complex

Program java.net XML-RPC

Client 1, 8, 5 1, 6, 2
Server 1, 7, 6 1, 6, 2

Generic 1, 3, 1 0, 0, 0
Total 3, 17, 12 2, 11, 4

Table 2: Number of classes, methods and data members needed to
each communication subsystem.

than the java.net code. At a minimum the client and server
class must each have five methods (according to the interface
they implement). Of these, four methods act as stubs for the
four operations outlined in

�
2. Further, the client is required

to implement a method that returns a string identifying the
type of networking being used (for logging purposes) and the
server is required to implement a Start() method that is
used to begin a transaction (but, is different from the con-
structor which is used to setup the parameters of the trans-
action, but not any particular transaction). Given these re-
quirements XML-RPC uses one method more than the mini-
mum in both the client and the server (the constructor in both
cases). Meanwhile, the java.net implementation requires sev-
eral additional methods (e.g., open a TCP connection). Also,
as noted above, the java.net code requires 3 generic methods
used by both the client and server code and statically defined
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Program java.net XML-RPC
Client 76 42
Server 77 33

Generic 15 0
Total 168 75

Mean/Class 56.0 37.5
Mean/Method 9.5 7.0

Table 3: Cyclomatic Complexity of both versions of the networking
code.

Program java.net XML-RPC

Client 13 8
Server 13 8

Generic 6 0
Total 32 16

Table 4: Amount of coupling between the networking code and
outside classes.

in a non-instantiated generic class. The XML-RPC code has
no such dependency. Finally, note that the number of data
members used by the java.net code is three times higher than
those kept by the XML-RPC code. This is caused by the
need for the java.net code to handle all the networking ob-
jects, while XML-RPC abstracts these details from the pro-
grammer.

In summary, table 2 shows that the java.net code is more com-
plex code that will be more difficult to implement, test and
maintain when compared to the XML-RPC implementation
– which nicely abstracts the networking code away from the
application developer.

We next we use the Cyclomatic Complexity (CC) [9] to gauge
the complexity and amount of testing required for the meth-
ods in each implementation of the communication subsystem.
Given a method flow graph, the Cyclomatic Complexity is de-
fined as: ���������
	��

������� (1)

where
	

is the number of edges in the graph, � is the number
of nodes in the graph and � is the number of connected com-
ponents found in the graph. We calculate CC for each method
in our code.

Table 3 shows the CC for the java.net and XML-RPC versions
of the code. As shown, the java.net-based code has higher to-
tal complexity (by more than a factor of 2). But, this is largely
because the java.net implementation has more methods than
the XML-RPC version of the code as indicated by the mean
CC per method – 9.5 for the java.net code versus 7.0 for the
XML-RPC code. So, on a per-method basis the java.net code
involves a more complicated flow graph than the XML-RPC
code (more conditionals, more loops and more reliance on
other methods). Using XML-RPC abstracts the details of the
conditionals, loops, etc. from the developer.

Finally, we examine the coupling required between our com-
munication subsystem and outside classes. Table 4 shows the
number of outside classes that each of our networking im-

plementations access. As shown, the total number of classes
that the java.net-based implementation communicates with is
higher than that of the XML-RPC version of the code by a
factor of 2. This indicates that the java.net code is more de-
pendent on other portions of the system and therefore may
be more difficult to maintain due to changes in the outside
classes.

4 Network Performance

4.1 Methodology
We performed two sets of experiments to assess the network
performance of the java.net and XML-RPC based communi-
cation systems. The first set of experiments involves a local
10 Mbps Ethernet network with only a simple hub between
the client and server. The second set of measurements are
from transactions over the Internet between NASA’s Glenn
Research Center (GRC) and Ohio University (OU). The path
between the client and server encompassed roughly 15 router
hops at the time of our experiments (although, as shown in
[13] routes can change arbitrarily and so our measure of the
hop-count may not be accurate for the entire test period). The
hosts used in the local network tests were Pentium III 400
Mhz FreeBSD 4.4 machines. In the Internet tests, a Pentium
III 400 Mhz FreeBSD 4.4 machine at NASA GRC was used
as the client, while the server at OU was a dual-processor Sun
Enterprise 250 running Solaris 8.

We invoke all four methods using both the java.net and XML-
RPC based communication framework at roughly 30 second
intervals (the exact interval is determined using a Poisson
process with a mean of 30 seconds). The testing program
wrapped around the communication systems takes times-
tamps before and after the transaction to measure the length of
the remote method call from the application’s vantage point.
In addition, we captured all packets transmitted by the clients
using tcpdump4. The packet traces show the length of time
each network transaction takes (e.g., without accounting for
the time needed for pre- or post-processing as the application-
level measurement includes). We also use the packet traces to
determine the number of data bytes sent by each version of
the networking code. Tcpdump indicated that no packet filter
drops occurred during our experiments.

4.2 Local Network Tests
The distributions of the transaction times for both the java.net-
based and XML-RPC-based implementations for the tests
over the local network are shown in figure 4. From the figure
we observe that the performance does not vary much between
runs. This is expected due to relatively static condition of the
local network. In addition, we see that the java.net implemen-
tation of the networking code always outperforms the XML-
RPC code. With the exception of calling the IsPrime()
method, the java.net transactions takes roughly an order of
magnitude less time than the XML-RPC transactions.

For the smallest transaction, IsPrime(), the XML-RPC
transactions take roughly 70 ms. While this is slightly more

4http://www-nrg.ee.lbl.gov or http://www.tcpdump.org
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Figure 4: Distribution of the transaction times for the local network experiments.

than than the time required by the java.net version of the code
(which takes roughly 60 ms) the difference is likely not sig-
nificant in systems involving human interaction. For instance,
when conducting a single small transaction a user will not
perceive the difference between the two versions of the code.
However, if many small transactions are performed back-to-
back (e.g., by an automated system) the increased amount
of time required by the XML-RPC version of the code may
add up to an interval that is perceptible and meaningful to
the user. Furthermore, the extra time required for the XML-
RPC transactions may hinder the performance of automated
systems that utilize numerous RPC calls in completing their
task.

We now turn our attention to explaining the discrepancy in
performance between the java.net and XML-RPC communi-
cation systems. Table 5 shows the number of unique bytes
transmitted for each transaction5. With the exception of the
IsPrime()method call the results show that the XML-RPC
version of the program sends roughly six times more data than

5The java.net version transfers numbers as binary data and therefore the
transaction is always the same size. However, XML-RPC transmits a tex-
tual representation of the data and therefore the size of the transaction can
vary from run to run (e.g., one run might send “3.1” while the next sends
“541.78234”, yielding a difference of six bytes between the two numbers.
Therefore, the XML-RPC results presented represent the median size of the
all the runs and therefore are denoted as approximate in the table.

the java.net version, which explains some of the overall dis-
parity between the two communication systems.

A large disparity (a factor of roughly 50 to over 300) in trans-
action size between the two IsPrime() versions is shown
in table 5. However, the difference between the median trans-
action times is only about 10 ms because both transactions
are small enough to fit in a single packet. So, even though
the XML-RPC transaction is larger none of TCP’s congestion
control algorithms [2] come into play in either case.

Next, we examine the overhead incurred by the two versions
of the code that happens before or after the transaction is sent
across the network. Table 6 shows the median transaction
time for the XML-RPC code measured by the application, as
well as the median difference between the transaction time
measured by the application process and the length of the TCP
connection measured from the packet traces. From this table
we make several observations:

� There is little pre- or post-processing overhead involved
in the IsPrime() method call.

� The Average() and GetRandNums() methods take
roughly the same amount of time to execute when mea-
sured by the application. This is expected as roughly the
same amount of data is exchanged in both cases – just in
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Transaction Request Size (bytes) Response Size (bytes)
IsPrime – java.net 6 1
IsPrime – XML-RPC � 339 � 332
Average – java.net 400,006 8
Average – XML-RPC � 2,513,756 � 334
GenRandNums – java.net 6 400,000
GenRandNums – XML-RPC � 346 � 2,513,812
LogTransform – java.net 400,006 400,000
LogTransform – XML-RPC � 2,459,521 � 2,466,477

Table 5: Transaction sizes in bytes. The numbers designated as approximate represent the median number of bytes transferred. Exact
numbers of bytes are given where the number of bytes does not vary across transfers.

Method Transaction Time Delta
Time (sec) (sec)

IsPrime () 0.069 0.003
Average () 46.787 16.559

GetRandNums () 47.242 0.065
LogTransform () 95.303 16.706

Table 6: Comparison of median time required for XML-RPC Log-
Transform() transaction and the difference between
the total elapsed time of the transaction and the time re-
quired by the underlying TCP connection.

different directions.
� We observe a difference of over 16.5 seconds be-

tween the total transaction time and the network trans-
fer time in the Average() and LogTransform()
calls. In these two calls the client encodes a vector of
50,000 numbers before starting the TCP connection and
pushing the data over the network.

� We note little difference (roughly 65 ms) between
the total transaction length and the duration of the
TCP connection for the GetRandNums() method
call. As noted above, the total transaction time for
the GetRandNums() call is similar to that of the
Average() call. However, the GetRandNums()
function cannot encode data before the start of the TCP
connection because the server creates the vector of data
based on input from the client.

From the above table we can sketch a back-of-the-envelope
analysis to measure the difference between the java.net
and XML-RPC versions in terms of network usage for the
LogTransform() method. We know that encoding a
vector of 50,000 values takes roughly 16.5 seconds from
the above table. So, approximately 33 seconds of the
LogTransform() transaction are spent encoding data to
be transmitted. If we assume that parsing the incoming XML
and adding the values to the vector takes the same amount of
time as encoding the data for transit we need another 33 sec-
onds for decoding for the LogTransform() routine. So, of
the roughly 95 seconds that the transaction takes (on median)
66 seconds are spent encoding/decoding the data. We also
know (from table 5) that the XML-RPC code sends roughly
6.15 times as much data as the java.net code. So, if we sim-

ply multiply the transaction time experienced by the java.net
by 6.15 we expect an XML-RPC transaction time of just over
24 seconds. Combining the expected transfer time ( � 24 sec-
onds) with the encoding/decoding time ( � 66 seconds) we get
an expected transaction time of 90 seconds. Even if this anal-
ysis is a bit off we believe that the XML-RPC processing and
the added bytes that XML-RPC sends across the network ex-
plain the majority of the performance difference between the
two communication systems.

4.3 Internet Tests
We now describe measurements taken on the Internet path be-
tween NASA GRC and Ohio University. We tested both the
java.net and XML-RPC communication subsystems over the
path as described above (see

�
4.1). Preliminary measure-

ments illustrated a performance problem across the Internet
caused by FreeBSD’s default TCP advertised window size,
which in some cases was too small to fully utilize the avail-
able bandwidth6. Therefore, for our Internet tests we added a
variant of the hand-rolled java.net code, denoted “java.net+”
that increases the socket buffer sizes (and, therefore, TCP’s
advertised window).

TCP throughput,
�

, is ultimately limited based on the size of
the advertised window, � , and the round-trip time, � ��� , of
the network path, as follows [14]:

��� �
� ��� (2)

Throughput can be further limited by TCP’s congestion win-
dow [10, 2] which is based on the measured load on the net-
work. When a TCP connection fills the entire advertised win-
dow with data the sender may be able to achieve higher per-
formance if the advertised window were increased. In the
java.net+ variant in our measurements the advertised window
is increased from the default (32 KB) to 60 KB.

Figure 5 shows the distributions of transaction times for the
four method calls across the Internet path. When compared to
the local network tests, the Internet measurements show more
variability, as expected. Again the plot shows that (with the
exception of the IsPrime() method) the XML-RPC trans-
actions take roughly an order of magnitude longer than the
java.net (and java.net+) transactions. Given the analysis of the

6Note that [1] shows that this situation is not rare on the Internet.
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Figure 5: Distribution of the transaction times for the Internet experiments.

transaction sizes and the processing overhead presented in the
last subsection these results are not surprising. In addition, we
see that using larger TCP window sizes increases the perfor-
mance over the stock TCP configuration. This shows that a
programmer who knows how to tune the sockets7 can induce
better performance, which is a downside of using something
like XML-RPC that hides these details from the programmer.

Finally, we note that the performance of the small
IsPrime() transaction is generally invariant of the un-
derlying communications scheme used. Since this transac-
tion involves only one-segment in each direction for both the
java.net and XML-RPC code the performance is dominated
by the latency between NASA GRC and Ohio University.

5 Compression

As discussed in the last section, one of the largest perfor-
mance problems with XML-RPC lies with the number of
bytes transmitted into the network. Therefore, we now briefly
analyze the usefulness of abbreviations and compression in
mitigating this performance barrier. For our analysis we took
one of our XML-RPC LogTransform() transactions and
extracted the data bytes (excluding protocol headers) from the

7There are additional socket changes that could be made besides adjusting
the advertised window size based on the application at hand (e.g., disabling
the Nagle algorithm [12]).

packet trace. While we are only analyzing a single transac-
tion we note that the request/response size in this transaction
is less than 0.04% different from the median transaction sizes
reported in table 5 in

�
4.2.

Table 7 shows the sizes of the XML-RPC request and re-
sponse for the chosen transaction, as well as the sizes of
the java.net requests and responses for comparison. The
first compression technique we use is to simply gzip the re-
quest/response. This reduces the size of the request/response
to less than a quarter of the size of the original XML-RPC
transaction. However, the transaction size of the gzipped ver-
sion is still on the order of 25% larger than the java.net trans-
action. On the Pentium III FreeBSD machines we ran our
tests on the gzip operation took a little over 1 second, with
the de-compression taking just under 0.25 seconds. There-
fore, we believe that using gzip to compress the transactions
would be a net win for large transactions. For comparison we
gzipped the java.net transaction byte streams. The gain for the
java.net-based transaction is not as substantial as for the text-
based XML-RPC-based transactions, only yielding a savings
of roughly 6% over the uncompressed version.

Our results show benefits to using gzip for XML-RPC trans-
actions. However, there are also disadvantages, such as ob-
scuring the payload such that debugging XML-RPC is more
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Technique Request Size (bytes) Response Size (bytes)
XML-RPC 2,459,472 2,466,521

java.net 400,006 400,000
GZipped XML-RPC 527,105 495,890

GZipped java.net 376,967 375,040
Abbreviate 1,559,465 1,566,506

Abbreviate/Combine 1,309,472 1,316,521
New XML Tag 1,159,472 1,166,521

New XML Tag/Gzip 478,021 451,236

Table 7: Impact of compression on the LogTransform() transaction size.

difficult and added reliance by XML-RPC on another library.
So, we next look at three techniques that can be completely
implemented in XML-RPC.

First, as shown in
�

2.2 XML-RPC is verbose with respect to
the parameters being passed to a method. In the case of an
vector of double precision numbers every number is transmit-
ted as a string of the form:

<value><double>NN.NN</double></value>

One possible extension to XML-RPC is to use abbreviations.
As shown in table 7, abbreviating “value” with “v” and “dou-
ble” with “d” results in transmitting over 900,000 fewer bytes
(or roughly 36% of the transfer size) in each direction when
compared to using the current scheme.

The next row of the table shows the size of the transactions if
XML-RPC were to abbreviate and combine the “value” and
“double” tags to be transmitted like:

<vd>NN.NN</vd>

When compared to abbreviations alone this reduces the
amount of transmitted data by roughly 200,000 bytes. When
compared to standard XML-RPC using this technique reduces
the transfer size by more than 1.1 MB.

Next we introduce a new (abbreviated) tag with an argument
instead of using begin and end tags to get encoding like:

<v d=NN.NN>

This new tag saves 3 bytes per double-precision number trans-
mitted when compared to the abbreviate and combine tech-
nique. Further, the new-style tag represents less than 20%
of the overhead imposed by the current XML-RPC technique
(6 bytes as opposed to 32 bytes).

As a last step we examine the efficacy of gzipping transac-
tions that use the new-style tag introduced above. As the ta-
ble shows, using the new tag with gzip reduces the transaction
sizes by roughly 9% over using gzip on the standard encod-
ing. However, the resulting transaction is still larger than the
java.net encoding.

Since all the abbreviations and tag combinations introduced
above are new (i.e., not understood by XML-RPC) they can
be added without breaking any of the current functionality.
That is, the current tags used by XML-RPC do not need to

be replaced, just augmented to support any of the techniques
outlined in this section. A method for the client to ask the
server if the new technique is supported would have to be
added to XML-RPC. One migration path may be to query
the server only for large transactions that would benefit from
sending significantly smaller transactions. For instance, pay-
ing the additional RTT cost to query the server for its sup-
ported techniques would not seem to be worth it when exe-
cuting the IsPrime()method, but may well allow a perfor-
mance improvement for a method like LogTransform()
when working on a large list of numbers.

Also, note that the size of transactions impacts the end host’s
RAM usage. As shown in the last section, requests are en-
coded before being transferred over the network. There-
fore, these transactions require a user-space memory “staging
area”. In addition, since XML-RPC connections last longer
than hand-rolled java.net-based transactions kernel memory
for TCP’s retransmission buffer is also required for a longer
amount of time (potentially impacting other network applica-
tions).

Finally, we note that TCP/IP header compression [11, 5] can
also be employed at various links across a network path to re-
duce the number of bytes that must be transmitted. However,
since TCP/IP headers generally represent a small fraction of
the bytes transmitted in the course of a long transfer (3-8%)
compressing only the headers leads to only modest decreases
in transfer time. Also note that the W3C’s Web Services Ini-
tiative8 is also investigating ways to compress “on the wire”
XML.

6 Conclusions and Future Work

The following are the major conclusions from our study of
remote method invocation using the java.net package and the
XML-RPC system:

� The java.net implementation is roughly 50% more com-
plex to code and maintain when compared the the XML-
RPC code across a variety of coding metrics.

� The time required for small transactions is roughly the
same regardless of underlying communication system
across both the local network and the Internet.

8http://www.w3c.org/2002/ws/
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� The java.net code performs up to an order of magnitude
better than the XML-RPC code when transfering a sig-
nificant amount of data. The performance problems of
XML-RPC are largely caused by (

�
) the increased size

of XML-RPC transactions (an increase of over a factor
of 6 when compared to the java.net code), and (

���
) the

overhead of encoding and decoding XML.
� We show several compression and abbreviation schemes

to reduce the size of XML-RPC transactions. Even with
the compression/abbreviation strategies the hand-rolled
java.net transactions are always smaller than XML-RPC
transactions. However, using some form of compression
within XML-RPC will likely have a positive impact on
performance.

� Tweaking socket options can yield positive performance
gains. We show performance improvement by increasing
the socket buffer sizes in our Internet tests (but, note that
tweaking the advertised window size had no effect on the
tests across the local network).

In addition, we have identified a number areas for future work
in this area:

� The encoding/decoding of transactions is a barrier to
good performance in the Java version of XML-RPC. Fu-
ture work should quantify this further, keeping the fol-
lowing questions in mind: Is this purely a Java Virtual
Machine issue? Does the encoding/decoding perform
differently in other languages? Are there more efficient
techniques to encode/decode that will aid XML-RPC
transaction times?

� The XML-RPC system could be extended to give the
programmer optional access to the underlying sockets.
In doing this, XML-RPC would allow savvy program-
mers to tweak socket options to obtain better perfor-
mance for their particular application.

Finally, this paper only scratches the surface of evaluating
RPC mechanisms in general (and XML-RPC in particular).
Analyzing additional RPC systems from a number of different
vantage points (network performance, coding complexity, en-
coding/decoding algorithm complexity) is useful and should
be undertaken more often as we attempt to write and refine
complex systems.
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