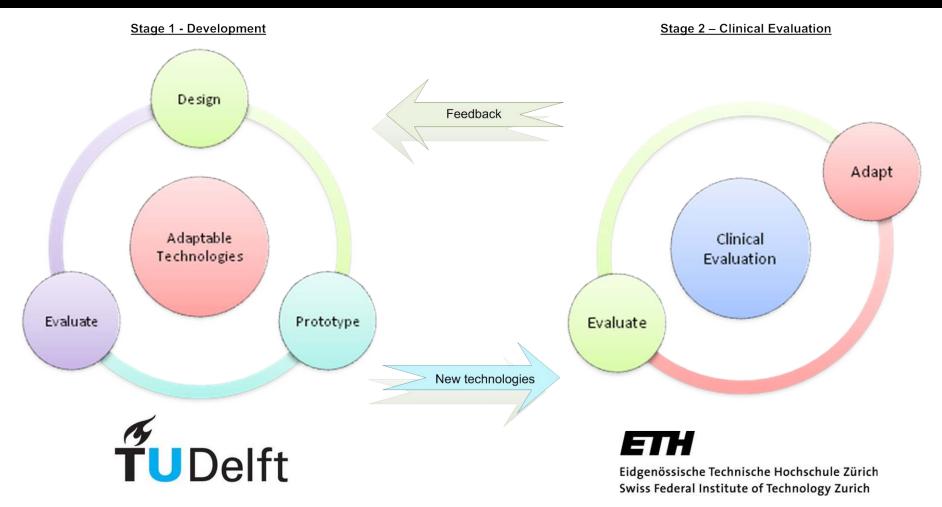
A.S.Panic - M.Sc. Media & Knowledge Engineering Specialization Man Machine Interaction - September 2010 – <u>Link to VRET Wiki</u>

In this presentation

- Problem statement and hypotheses
- Approach
- Prototype system design and implementation
- Evaluation and results
- Conclusions and suggestions

2

 Cognitive rehabilitation exercises are not designed to be motivating for the elderly population¹


 Elderly population reports usability issues with computing technologies such as input/output devices and graphical interfaces²

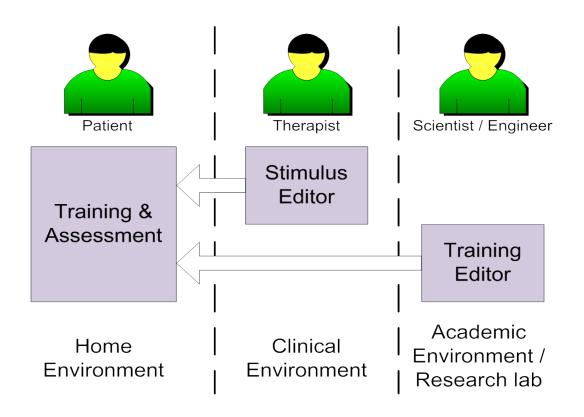
1) See e.g. Rizzo, A. S., & Kim, G. J. (2005). *A SWOT Analysis of the Field of Virtual Reality Rehabilitation and Therapy.*

2) See Fisk, A., Rogers, W., Charmes, N., Czaja, S. J., & Sharit, J. (2009). *Designing for Older Adults*.

- Two main hypotheses related to problem:
- H1 Rehabilitation exercises that are designed using principles of **affective gaming** increase the motivation to engage with the exercise in the elderly population.
- H2 Rehabilitation exercises utilizing **reality based interaction** increase the motivation to engage with the exercise in the elderly population.
- Goal: test these by development of prototype technology, and evaluation in clinical experiment

Approach

 Design and evaluate prototype system for use in subsequent (clinical) experiment


Approach

- Used the Situated Cognitive Engineering method
- Steps performed at TU Delft
 - Literature survey for WDS analysis
 - Prototype system development
 - Evaluation in pilot study
- Steps performed at ETH
 - Expert interviews for WDS analysis
 - Experiment design
 - Expert evaluation of prototype system/experiment design
 - Ethics committee approval

6

Envisioned prototype system

 Definition of system components, users and their roles

Prototype system design

- Choice of suitable cognitive task
 - Ecological validity
 - Repetitive in nature
 - Suitable for virtual reality
- Mental Rotation
 - Visuospatial skill
 - Simple task

8

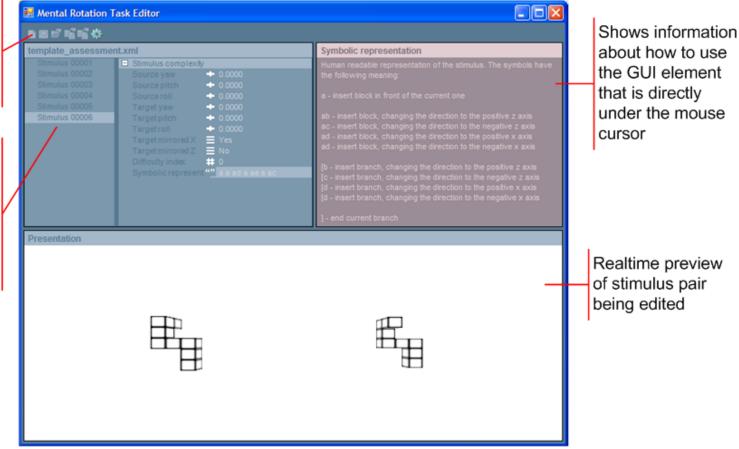
- Skill degradation caused by neurodegenerative disease (e.g. Alzheimer's, Parkinson's)
- Skill degradation caused by typical aging (e.g. dementia)

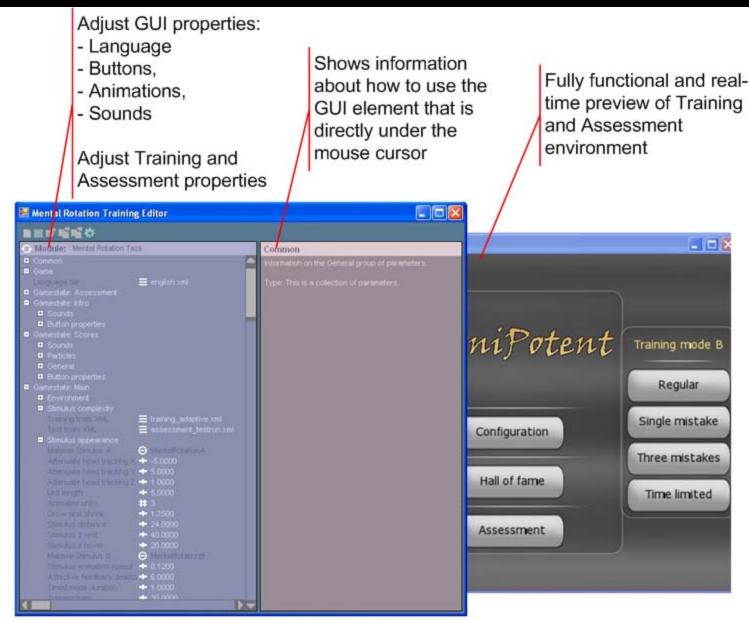
Prototype system implementation

- Applied principles of affective gaming:
 - High level design heuristics "Assist me, emote me, challenge me"
 - Simulated virtual assistant avatar provides affective feedback based on inferred emotional state of player
- Automatic generation of stimuli was explored:
 - Generate stimuli with parameterized complexity using L-System algorithm
 - Computationally determining the usability of generated stimulus proved to be non-trivial

9

Prototype System – Patient interface


Mental Rotation Task in Virtual Reality


Prototype System – therapist interface

Loading and saving of stimulus templates and profiles (used during training and assessment)

- Edit one or more stimulus pairs, or
- Inspect generated angular variations based on previously created stimulus templates

Prototype System – engineer/scientist interface

Evaluation in pilot study

• Goal of pilot study was to evaluate:

- 1. If the prototype system works in an operational environment
- 2. If the prototype system is usable by the targeted population
- 3. The two main hypotheses (refined)

Protocol of pilot study

• Participants were asked to:

- 1. Fill in questionnaire 1
- 2. Complete a training round using the prototype system in 'affective' mode
- 3. Fill in questionnaire 2
- Complete a training round using the prototype system in 'conventional computer based training' mode
- 5. Fill in questionnaire 3

Collected data

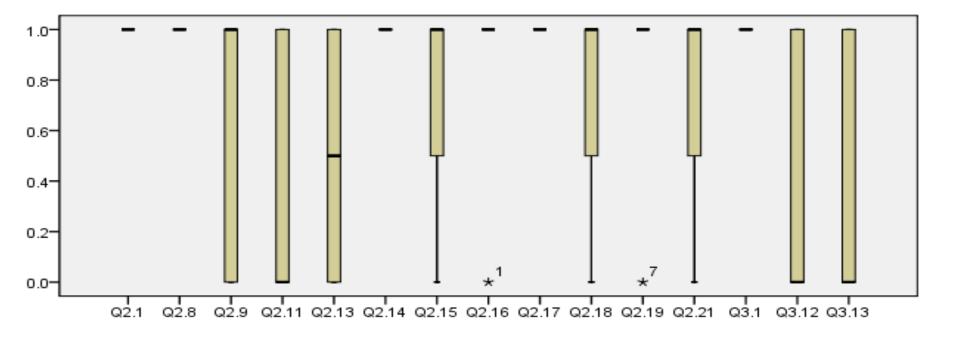
- Questionnaire 1:
 - Participant background, games and computer use
 - Categorical responses
- Questionnaire 2:
 - Experience during affective gaming based training
 - Responses on 4 point Likert scale, 5th point for 'no answer'
- Questionnaire 3:
 - Experience during conventional computer based assessment
 - Responses on 4 point Likert scale, 5th point for 'no answer'

Pilot study participants

- 9 participants (5f/4m) recruited through friends and family:
 - Screened according to ecologically valid selection criteria:
 - Age between 55 and 80
 - Able bodied, capable of independent living
 - Ability to stand in front of a TV to play a computer game
 - ...
 - Selection criteria equal to those for experiment at ETH

Evaluated hypothesis (H1, refined)

- H1 Rehabilitation exercises that are designed using principles of affective gaming increase the motivation to engage with the exercise in the elderly population.
- H1.1 Incorporating high scores as a game design element contributes to increasing motivation and willingness to engage.
- H1.2 Incorporating achievement medals as a game design element contributes to increasing motivation and willingness to engage.
- H1.3 Incorporating adaptive difficulty as a game design element contributes to increasing motivation and willingness to engage.
- H1.4 Incorporating different game modes as a game design element contributes to increasing motivation and willingness to engage.
- H1.5 Incorporating virtual characters providing affective feedback as a game design element contributes to increasing motivation and willingness to engage.


Evaluated hypothesis (H2, refined)

- H2 Rehabilitation exercises utilizing reality based interaction increase the motivation to engage with the exercise in the elderly population.
- H2.1 Rehabilitation exercises utilizing (head) tracking increase the motivation to engage with the exercise in the elderly population.
- H2.2 Rehabilitation exercises utilizing gesture based interaction increase the motivation to engage with the exercise in the elderly population.

Interpreting data

- To allow significance testing, responses were recoded to dichotomous scale
- Significance testing using binomial test :

Results

Hypoth.	Question(s)	Sig.
H1	Q2.1-Enjoyed playing the game	.004
	Q3.12-Increased motivation to play computer games	1.000
	Q3.13-Enjoyed first game more than second	.508
H1.1	Q2.9-Motivated by score	.508
	Q2.14-Wants to play to increase score	.004
H1.2	Q2.15-Wants to play to win medals	.289
H1.3	Q2.8-Noticed adaptive game difficulty	.008
	Q2.16-Wants adaptive game difficulty	.039
H1.4	Q2.21-Interested in multiple game modes	.289
H1.5	Q2.11-Motivated by encouragement	1.000
	Q2.17-Wants encouragement	.004

Results

Hypoth.	Question(s)	Sig.
H2.1	Q2.13-Motivated by head-tracking	1.000
	Q2.19-Wants 3-D gaming	.070
H2.2	Q2.18-Wants movement-based gaming	.289

Conclusions of pilot study

- After calibration, prototype system works in an operational environment (simulated living room and clinical environment)
- After minor adjustments, prototype system was usable by targeted population
- Support for H1 using affective gaming principles increases patient motivation...
- Some support for H2 using reality based interaction mechanisms increases patient motivation...
- ... however, more data points needed to get conclusive answers.

Recommendations

- For experimental study at ETH:
 - Two separate installations for the training rounds
 - Modify questionnaires, replace verbal Likert scale categories with numeric ones
 - Design stimuli in cooperation with therapist
 - Match duration of experimental protocol with attention span of targeted population
- For future work:
 - Evaluate therapist interface
 - Create 3d and animated virtual assistant avatar
 - Improve and validate 'emotion knowledge base' used by virtual assistant to infer players' emotional states

Conclusions of project

- Limitations:
 - Only healthy participants have been tested
 - Prototype system needs setup and calibration by engineer
- Scientific contributions:
 - Generic, reusable Requirements Baseline and use case scenarios,
 - Computer based assessment environment, including content editor allowing precise control over presented stimuli
 - Affective gaming based training environment, including experiment design, can be used to investigate motivational variables