TUE Technische Universiteit Eindhoven University of Technology

On the Perceived Human-likeness of Virtual Health Agents

Towards a Generalized Measurement of Anthropomorphism

Where innovation starts

TU/e Technische Universiteit Eindhoven University of Technology

- Peter Ruijten
- Teacher (researcher) in the Human-Technology Interaction group
- Dissertation about responses to human-like artificial agents, with a focus on sustainable behavior
- Main interests are
 - Anthropomorphism
 - Human-robot interaction
 - Human-agent interaction
 - Measurement

- Introduction
 - Why perceptions of virtual health agents are important
- Anthropomorphism
 - Conceptualization and operationalization
- The Rasch model
 - As a way of analyzing empirical data
- Applications
 - To test the suitability of the Rasch model
- Conclusions
 - Future use of the method for measuring people's perceptions of virtual health agents

- Intelligent virtual agents
 - Interactive characters with human-like abilities
 - Available at any time and place
 - Contribute to affordable and accessible health care
- People's perceptions are crucial
 - Often designed to resemble humans
 - This can have negative effects on their effectiveness

- Various interpretations and corresponding operationalizations
 - Person vs Agent
 - Experiences vs Expectations
 - Explicit vs Implicit Measurement
- Measurement mostly focused on *extent* to which a characteristic is attributed

Does the virtual health agent have consciousness?

- Conceptualization:
 - Unconscious process
 - Whether or not any human-like characteristic is attributed
 - 'In the eye of the beholder'
 - Triggered by both psychological and design attributes

$$\ln\left(\frac{P(x_{ni}=1)}{1-P(x_{ni}=1)}\right) = \theta_n - \delta_i$$

i = a human-like characteristic n = a person

 θ_n = a person's disposition to anthropomorphize δ_i = the difficulty to ascribe an item to an IVA

- Assumptions of the model
 - Person with a higher predisposition has a higher chance of attributing any human-like characteristic
 - All people are expected to have a higher chance of attributing an item low in humanlikeness than an item high in human-likeness
 - All items can be modeled on a single dimension: human-likeness
- These assumptions match our conceptualization and the model can thus be used for *analyzing* data

• List of items created:

- Experience pain
- Unhappy about moral dilemma
- Imaginative
- Angry
- Empathize
- Нарру
- Chose moral dilemma
- Satisfied
- Responsible
- Free will
- Understand emotions
- Ambitious
- Understand moral dilemma
- Recognize emotions
- Intention not to harm others
- Think about moral dilemma
- Self-conscious
- Jump
- Deliberate perform action

- Talk
- Solve riddles
- Recognize voices
- Understand language
- Rational
- See depth
- Anticipate on environment
- Conscious about environment
- Detect color
- Purposeful
- Calculate
- See
- Organized
- Estimate distances
- Pick up objects
- Walk
- Detect objects
- Avoid objects

- Data used from three studies
 - 1. Comparison with similar attributes
 - 2. Comparison with other measurements
 - 3. Comparison between different agents
- Coherence between studies was very high
 - Human-like characteristics ordered from low to high in perceived humanness in all studies

STUDY 1

- Haslam (2008): humanness has two distinct senses, human nature and human uniqueness
- Comparison with similar attributes
 - Difficulty & human nature (r = .60, p < .001)
 - Difficulty & human uniqueness (r = .44, p < .01)
 - Human nature & human uniqueness
 - (r = .71, p < .001)

TU/e Technische Universiteit Eindhoven University of Technology

STUDY 2

Consciousness

Experience emotions

See depth

Detect objects

TU/e Technische Universiteit Eindhoven University of Technology

STUDY 3

 When all items included

 When three misfitting items are excluded

- Perceptions of human-likeness are crucial
- Rasch model is able to map responses to humanlike agents in a reliable and valid way
- Next step: creating a list of items for use with virtual health agents
 - Maybe you have any ideas to help me with this

Thank you.

- Points for discussion
 - Is anthropomorphism relevant in the development of virtual health agents?
 - Do you agree with the conceptualization and the method of measuring anthropomorphism?
 - What items are missing to accommodate virtual health agents?
 - What should be the next step in this line of work for it to aid the IVA community?
 - Any other thoughts or comments?