A Framework for Qualitative Multi-Criteria Preferences: Extended Abstract*

Wietske Visser Reyhan Aydoğan Koen V. Hindriks Catholijn M. Jonker

Interactive Intelligence Group, Delft University of Technology, The Netherlands
{Wietske.Visser, R.Aydogan, K.V.Hindriks, C.M.Jonker}@tudelft.nl

Introduction A key challenge in the representation of qualitative, multi-criteria preferences is to find a compact and expressive representation. Various frameworks have been introduced, each of which with its own distinguishing features. In this paper we introduce a new representation framework called qualitative preference systems (QPS), which combines priority, cardinality and conditional preferences. Moreover, the framework incorporates knowledge that serves two purposes: to impose (hard) constraints, but also to define new (abstract) concepts.

QPSs are based on the lexicographic rule studied in [1]. This rule is a fundamental part of the framework presented as it offers a principled tool for combining basic preferences. We believe this ability to combine preferences is essential for any practical approach to representing qualitative preferences. It is needed in particular for constructing multi-criteria preferences. It is not sufficient, however, since more expressivity is needed and useful in practice. Therefore, QPSs in addition provide a tool for representing knowledge, for abstraction, for counting, and provide a layered structure for representing preference orderings. QPSs are able to represent various strategies for defining preference orderings, and are able to handle conditional preferences. Logical Preference Description language (LPD; [3]) can be embedded into the QPS framework and that there is an order preserving embedding of CP-nets [2] in the QPS framework. These embeddings provide a representation that is just as succinct as the LPD expressions and CP-nets.

Qualitative Preference Systems The main aim of a QPS is to determine preferences between outcomes in a purely qualitative way. An outcome is an assignment of values to a set of relevant variables. Every variable has its own domain of possible values. Constraints on the assignments of values to variables are expressed in a knowledge base. Outcomes are defined as variable assignments that respect the constraints in the knowledge base. The preferences between outcomes are based on multiple criteria. Every criterion can be seen as a reason for preference, or as a preference from one particular perspective. We distinguish between simple criteria that are based on a single variable and compound criteria that combine multiple criteria in order to determine an overall preference. There are two kinds of compound criteria: lexicographic criteria and cardinality criteria.

Definition 1. (Qualitative preference system) A qualitative preference system (QPS) is a tuple (\Var, \Dom, K, C). \Var is a finite set of variables. Every variable $X \in \Var$ has a domain $\Dom(X)$ of possible values. K (a knowledge base) is a set of constraints on the assignments of values to the variables in \Var. A constraint is an equation of the form $X = \Expr$ where $X \in \Var$ is a variable and \Expr is an algebraic expression that maps to $\Dom(X)$. An outcome α is an assignment of a value $x \in \Dom(X)$ to every variable $X \in \Var$, such that no constraints in K are violated. α_X denotes the value of variable X in outcome α. C is a finite rooted tree of criteria, where leaf nodes are simple criteria and other nodes are compound criteria. Child nodes of a compound criterion are called its subcriteria. Weak preference between outcomes by a criterion c is denoted by the relation \succeq_c. \succ_c denotes the strict subrelation, \approx_c the indifference subrelation.

Simple criteria A simple criterion specifies a preference ordering on the values of a single variable. Its preference between outcomes is based solely on the value of this variable in the considered outcomes.

*This is an abstract of [4]. More information about the ideas in this abstract and references to relevant literature can be found there.
Definition 2. (Simple criterion) A simple criterion c is a tuple (X_c, \succeq_c), where $X_c \in \text{Var}$ is a variable, and \succeq_c is a preference relation on the possible values of X_c. c is a preorder on Dom(X_c). \triangleright_c is the strict subrelation, and \succeq_c is the indifference subrelation. We call c a Boolean simple criterion if X_c is Boolean and $\triangleright_c \perp \perp$. A simple criterion $c = (X_c, \succeq_c)$ weakly prefers an outcome α over an outcome β, denoted $\alpha \succeq_c \beta$, iff $\alpha \succeq_c \beta \wedge \beta$. The preference by a lexicographic criterion is equivalent to the priority operator as defined by [1]. It generalizes the familiar rule used for alphabetic ordering of words, such that the priority can be any partial order and the combined preference relations can be any preorder.

Definition 3. (Lexicographic criterion) A lexicographic criterion c is a tuple (C_c, \triangleright_c), where C_c is a nonempty set of criteria (the subcriteria of c) and \triangleright_c, a priority relation among subcriteria, is a strict partial order (a transitive and asymmetric relation) on C_c. A lexicographic criterion $c = (C_c, \triangleright_c)$ weakly prefers an outcome α over an outcome β, denoted $\alpha \triangleright_c \beta$, iff $\forall s \in C_c (\alpha \triangleright_s \beta \vee \exists s' \in C_c (\alpha \triangleright s' \wedge s' \triangleright_c s))$.

Proposition 1. Let $c = (C_c, \triangleright_c)$ be a lexicographic criterion. If for all subcriteria $s \in C_c$, \triangleright_s is a preorder, then the relation \triangleright_c is also a preorder.

Cardinality criteria Like a lexicographic criterion, a cardinality criterion combines multiple criteria into one preference ordering. Unlike a lexicographic criterion, priority between subcriteria is not a strict partial order, but all subcriteria have the same priority. A cardinality criterion weakly prefers an outcome α over an outcome β if it has at least as many subcriteria that strictly prefer α over β as criteria that do not weakly prefer α over β.

Definition 4. (Cardinality criterion) A cardinality criterion c is a tuple (C_c) where C_c is a nonempty set of criteria (the subcriteria of c). A cardinality criterion $c = (C_c)$ weakly prefers an outcome α over an outcome β, denoted $\alpha \geq c \beta$, iff $|\{s \in C_c | \alpha \triangleright s \beta\}| \geq |\{s \in C_c | \alpha \not\triangleright s \beta\}|$.

Proposition 2. Let $c = (C_c)$ be a cardinality criterion such that for all $s \in C_c$, s is a Boolean simple criterion. Then $\geq c$ is a preorder.

[1] showed that the only operator to combine any arbitrary preference relations that satisfies the desired properties IBUT (independence of irrelevant alternatives, based on preferences only, unanimity with abstentions, and preservation of transitivity) is the priority operator, which assumes that priority is a partial order. We observe here that if only Boolean preference relations (such as those resulting from Boolean simple criteria) are combined, the cardinality-based rule, in which all combined relations have equal priority, also satisfies the properties IBUT. Requiring antisymmetry in this case would unnecessarily restrict the expressivity.

Acknowledgements This research is supported by the Dutch Technology Foundation STW, applied science division of NWO and the Technology Program of the Ministry of Economic Affairs. It is part of the Pocket Negotiator project with grant number VICI-project 08075. It is also partially supported by the New Governance Models for Next Generation Infrastructures project with NGI grant number 04.17.

References

