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Abstract 
In this paper reduction and its pragmatics are discussed in the light of the development in 
Computer Science of languages to describe processes. The design of higher-level description 
languages within Computer Science has had the aim of allowing for description of the dynamics of 
processes in the (physical) world on a higher level avoiding all (physical) details of these 
processes. The higher description levels developed have dramatically increased the complexity of 
applications that came within reach. The pragmatic attitude of a (scientific) practitioner in this area 
has become inherently anti-reductionist, but based on well-established reduction relations. The 
paper discusses how this perspective can be related to reduction in general, and to other domains 
where description of dynamics plays a main role, in particular, biological and cognitive domains. 

1  Introduction 

In the philosophical literature on reduction of scientific theories, the advantages of having a 

reduction relation between two theories for scientific practice are not always addressed 

explicitly. Often it is implicitly assumed that these advantages are based on the elimination of 

the higher-level theory.  For example, Kim (1996, p. 214-216) emphasizes ontological 

simplification and having to deal with fewer assumptions about the world. Since the lower-

level theory is retained, ontological simplification entails giving up the ontology of the 

higher-level theory. Such a reductionist perspective provokes resistance from those 

researchers and philosophers who defend an autonomous status for higher-level theories in the 

special sciences.  

In this paper we distinguish between: 

• reduction in a structural sense (i.e., a reduction relation, already established or being 

established, between two theories and their ontologies and laws) 

and 

                                                           
1 Appeared in  Philosophical Psychology Journal, vol. 15, 2002, pp. 381-409. 
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• the pragmatics related to reduction (i.e., the use of an existing or to be achieved 

reduction relation, by researchers in scientific practice).  

Our position is that an actual or envisioned structural reduction is compatible with use and 

(further) development of the base theory or the theory to be reduced, or both.  In practice, 

thus, the reduced theory is not eliminated. 

 

As a case study, we consider the historical development within Computer Science of 

languages to describe dynamics of processes. Briefly, the historical pattern is as follows (cf. 

Tanenbaum, 1976, Knuth 1981, Booch 1991, Kotonya and Sommerville 1998): In the early 

days of Computer Science, languages were used that described the dynamics of processes by 

specifying step by step the (physical) transitions, for example. For simple processes this may 

suffice. However, with a broadening of the scope of applications, these step-by-step 

descriptions became more and more complex and lacked transparency; therefore higher-level 

languages that abstract from many of the details of the actual processes became indispensable. 

Elements were introduced in the higher-level languages by which a description can be 

structured in terms of increasingly abstract functional units that cover larger parts of the 

processes (introduced historically in this order: procedures, modules, objects, components, 

agents, organisations). The result is an increase in the degree of complexity of the phenomena 

for which there are transparent descriptions.  

 

Each description in one of the high-level languages can be translated into lower-level 

descriptions, and ultimately into physical processes that also can be simulated within a 

computer. Translation is automated in a generic manner and hidden from the users of the 

higher-level languages. In performing simulations in the computer, higher-level descriptions 

are reduced to lower-level ones. The benefit for programmers is that by working at the more 

abstract level of the higher-level language, they can keep complexity within the scope of 

human capabilities;  whereas if they tried to work with the lower-level descriptions, the task 

would quickly become too complex. Thus, the strategy in the areas of Computer Science 

devoted to scientific modeling, the result is an intrinsically anti-reductionist frame of mind in 

practitioners, but grounded in explicitly defined reduction relations. 

 

The paper is structured as follows.  First, in Section 2, a brief overview is presented of the 

development of different levels of language Computer Science. Next, in Section 3 some of the 
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issues from the literature on reduction are briefly summarized and related to the process 

description languages case. In Section 4 three different contributions to the literature on 

scientific explanation and reduction are discussed: from Jackson and Pettit (1988, 1990), 

Dennett (1987), and Bickle (1998). A common aspect in these three different positions is the 

inherently anti-reductionist perspective on the pragmatics of explanation. In comparison, the 

pragmatics of the anti-reductionist perspective on process explanation within practice is 

discussed. In Section 5, different pragmatic uses of a reduction relation are discussed and 

compared. Section 6 concludes the paper. 

2  Description Levels for Dynamics 

Before turning directly to the development of process description languages developed within 

Computer Science, we consider the role played by dynamics within Cognitive Science and 

within Computer Science. 

2.1  Dynamics within Cognitive Science and within Computer Science 

Within Cognitive Science the dynamical perspective, especially Dynamical Systems Theory 

(DST) is taken as a point of departure; e.g. Kelso (1995), Port and van Gelder (1995)has 

received much attention. This approach advocates modelling the dynamics of cognitive 

phenomena using algebraic, difference and differential equations. One of the advantages of 

DST is that it is able to model the temporal aspects of cognitive events such as recognition 

time, response time, and time involved in executing motor patterns and locomotion. Many 

convincing examples have illustrated the usefulness of DST; however, they often only address 

lower-level cognitive processes such as sensory or motor processing. Some higher-level 

cognitive processes have been addressed, as in ; Busemeyer and Townsend’s (1993) model of 

decision making. A quantitative approach based on DST has been less successful in 

describing the dynamics of higher-level processes with a predominately qualitative character, 

such as reasoning, complex task performance, and certain capabilities of language processing.  

 

One can envision extending the DST repertoire with higher-level description languages that 

have been developed in Computer Science, thereby increasing their ability to model higher-

level cognitive phenomena. These modelling techniques allow high-level expression of 

temporal relations, i.e., relations between a state of a process at one point in time, and states at 
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other points in time. Some recent studies on the applicability of such techniques to the 

dynamics of higher-level cognitive phenomena have shown promising results: 

• dynamics of beliefs, desires and intentions: Jonker, Treur, and Vries, (2002); Jonker, 

Treur, and Wijngaards (2001), and  

• dynamics of human reasoning processes: Jonker and Treur (2002a).  

• dynamics of complex task performance: Brazier, Jonker, Treur, and Wijngaards 

(2000); Brazier, Treur, Wijngaards, and Willems (1999); Cornelissen, Jonker, and 

Treur (2002), see also Section 2.3 below 

 

From the perspective of reduction and its pragmatics, one can ask how descriptions of 

processes in higher-level languages relate to the processes in the physical world and their 

descriptions in physical terms, and how these relationships are exploited in practice. The way 

in which higher-level process description languages have been created and used in Computer 

Science can be informative. 

 

In Computer Science, the focus is on modelling processes (for example, business processes) 

in the world (real or being designed) and making a computer perform simulations of these 

processes. These processes need to be specified precisely. If the behaviour displayed by a 

computer does not match our expectations, an explanation of this ‘fault’ is searched for. 

Therefore, in Computer Science explanation of observed behaviour, both retrospective and 

prospective, is crucial.  

 

Processes are viewed as evolutions (often called trajectories or traces) of states over time. 

States can be states in the world, for example a state within a business process, or states 

within a computer. For example, within a computer the central processing unit (CPU) 

maintains a physical state in a storage device, based on electrical circuits. If time is taken as 

discrete, a trace can be described as a sequence S0, S1, S2, … of states. For example, within a 

computer silicon transistors within the CPU generate such sequences of successive physical 

states; they are called simulation traces or runs, the process as a whole is called computation. 
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Describing such sequences of states requires languages for:  

 

(1)  state descriptions  

(2)  descriptions relating states over time, for example transitions from one state to the 

other.  

 

At a lowest level of description one can describe states by (combinations of) bits, and 

transitions of states in a step-by-step manner by modifications of these bits.  This is extremely 

laborious, and the introduction of description languages that allow to specify, for example, 

that a number of transitions have to take place in a row, or to specify other more complex 

relationships over time within a trace, has made modeling much easier and extended its 

power.  For example, language elements have been introduced for specifying whole 

functional units (e.g., procedures, modules, objects, components).  

 

Such languages each have their own specific semantics, which specifies howdescriptions refer 

to processes, independent of how they relate to other, e.g., lower-level, languages. For the 

languages developed, these semantics usually have been defined in a mathematically precise 

manner on the basis of mathematically defined (e.g., algebraic) structures that formalise traces 

of a process: formal semantics. Using these languages for more complex phenomena, 

transparent descriptions can be made. A number of different description levels that have been 

developed in recent history are briefly discussed; see Figure 1 for an overview of languages at 

these different description levels. 
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Figure 1.   Process Description Languages at Different Levels. 
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2.2  The Early Programming Language Levels within Computer Science 

The first two types of languages briefly discussed are machine languages and assembly 

languages on the one hand, and structured programming languages on the other hand. 

2.2.1  Machine and assembly language 

A first approach to describe states and traces makes use of state descriptions based on bits 

(binary alternatives for a state aspect, usually indicated by 0 and 1). For a computer these bits 

can be related to electrical signals within the hardware. Depending on which electrical circuits 

are causally affected by these physical bit representations, the CPU successively modifies the 

physical state into another one. Machine language can be used to describe such state 

transitions, where the states are described in binary form, usually represented by bit strings; 

for example: 10010110  00110101  11101011. For processes within a computer, the bits used by a 

CPU are of two types: the operation-codes (opcodes) and data-values. The opcodes are simply 

bits that represent an action to perform (a direct state transition) on the data values; e.g., 

opcode 01 could mean a left shift of data values in the storage, and opcode 02 could mean a 

right shift. The opcodes form a language (called the machine language) in which the CPU can 

be given commands. Programming in machine language is done by storing bits of type 

operation-code on a storage device that will cause the CPU to do the desired computations. 

An example of an execution trace at this level is as follows: 

Machine code trace in binary (bit) notation: 
 

Accumulator N Z C V flags RAM at 030B Program Counter 
00010000 0 0 0 0 00000000 0000001100000000 
00100000 0 0 0 0 00000000 0000001100000001 
00100000 0 0 0 0 00100000 0000001100000100 
01000000 0 0 0 0 00100000 0000001100000101 
10000000 0 0 0 0 00100000 0000001100000110 
10000000 0 0 0 0 00100000 0000001100000111 
10100000 0 0 0 0 00100000 0000001100001010 

 
Machine code in hexadecimal notation: 
 

Accumulator N Z C V flags RAM at 030B Program Counter 
10 0 0 0 0 00 0300 
20 0 0 0 0 00 0301 
20 0 0 0 0 20 0304 
40 0 0 0 0 20 0305 
80 0 0 0 0 20 0306 
80 0 0 0 0 20 0307 
A0 0 0 0 0 20 030A 

 

Note that in both tables, the program counter value is the value of the program counter just 

before that particular instruction is fetched. The results of that instruction can be seen on the 

next line. 
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An example in 6502 machine code is 
 

      0A 8D 0B 03 0A 0A 18 6D 0B 03 60 00 
 

The 6502 microprocessor is an 8-bit processor running at a 1 Mhz clock speed that was used in such computers 
as the Commodore 64, Atari, NES and the Apple II, but also in appliances such as televisions and alarm clocks. 
The representations in the above code are in hexadecimal notation. Hexadecimal notation is often used in 
Computer Science, as it is easier to manipulate bits with them. In this notation, 16 digit symbols are used: 0, 1 
… 9, A, B, C, D, E, F. In the regular notation, the so-called decimal notation, that most people use, these would 
correspond to the values 0, 1 … 9, 10, 11, 12, 13, 14, 15. To convert a hexadecimal (base-16) notation to the 
decimal notation (base-10), add the value of the rightmost digit to 16 times the value of the digit to the left of it, 
plus 162 times the digit to the left of that, and so on. Thus, the hexadecimal notation 030B would be 163⋅0 + 
162⋅3 + 16⋅0 + 11 = 779. The advantage of hexadecimal notation over the decimal notation is that in 
hexadecimal notation each digit symbol stands for 4 bits (4 symbols in the binary, base-2 notation). Thus, two 
hexadecimal digits stand for the value of one byte (8 bits).  
 

That the machine code example, in hexadecimal notation, is at memory location 0300 is denoted by: 
 

0300: 0A 8D 0B 03 0A 0A 18 6D 0B 03 60 00 
 

This is the bytes in memory starting at location 0300 (in hexadecimal, in decimal notation 768, in memory, 
further representations are all in hexadecimal notation). To understand what it does, take the example that the 
processor is reading the instructions at this memory location, i.e., the program counter register has the value 
0300. The accumulator register (called register A) has a value 10 (16 in decimal). The processor chip obtains 
the value of the program counter memory location from the memory chips. The program counter is then 
increased by 1, to 301. The byte 0A is read from memory, this causes the 6502 hardware to shift the bits of the 
accumulator register, such that the new content is 20. This shifting is done by actually routing the electrical 
current representing the accumulator content through wiring on the processor microchip that is slanted to the 
left, feeding a zero current to the rightmost bit. At the end of this operation, the status flags in the 6502 
processor are N=0, Z=0, C=0. The operation is finished and again the value of the program counter memory 
location, 0301, is obtained. The value 8D is read. This causes the subsequent values 0B and 03 to be read. The 
program counter is increased by 3, to 0304. The value 030B is output on the pins of the processor that connect 
to the bus2 leading to the RAM memory. The value of register A, 20 is also output on the pins together with a 
‘write’ operation signal. The memory chips detect this signal and store the value 20 at location 030B 
(overwriting the old byte 00 there). The program counter is now 0304. The value 0A is read, register A’s bits are 
shifted again. A contains 40, N=0, Z=0, C=0. The program counter advances to value 0305, where the value 0A 
is read again. The register A contains value 80, this bit value causes the status bits to be N=1, Z=0, C=0. The 
program counter is now 0306, and the value 18 is read. This causes status bit C to be forced to from the old 
value (0) to 0. The program counter is 0307, the value 6D is read. This causes the next two values to be read, 0B 
and 03. The value 030B is output on the pins of the bus to the memory chips, which respond by putting the 
value of memory location 030B on the bus. In this manner the value from memory location 030B is retrieved, 
value 20. This value is then added to register A (80), also adding status bit C (0). The result is that register A 
contains the value A0, the status flags are N=1, Z=0, C=0, V=0. The program counter is now 030A, value 60 is 
read, causing the program counter to be filled with a value from the stack, ending this example.  
 

What happened here? The machine code at address 0300 took the value in register A, 10 (16 in decimal), and 
returned A0 (160 in decimal). The code multiplied3 it by 10 (in decimal, A in hexadecimal). In another program, 
storing a value in register A, and storing the program counter on the stack, then jumping to location 0300 will 
put 10⋅A into register A and pull the program counter from the stack. So in a higher-level language this would 
be seen as a subroutine for multiplying by 10. 

 

Table 1 An example program in machine language 

  

                                                           
2 A bus is a long strip of several parallel wires that connects chips so that each can see and modify the electrical 
state of each wire. The system bus of a computer typically connects the processor with memory and all other 
devices. 
3 The 6502 microprocessor has no multiplication built in. 
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The machine language, whose commands are executed by the CPU itself4, is taken as the 

lowest programming language in Figure 1 (Tanenbaum, 1976). Table 1 displays a machine 

language example. The machine code is written for the 6502 microprocessor. Modelling or 

programming processes in machine language is a tedious task. In order to facilitate this, a 

process description language called assembly was introduced. In assembly, mnemonic 

keywords can be used to specify the operation codes, and symbolic labels can be used to refer 

to data values  Table 2 contains assembly code (a description one level higher) for the 6502 

processor. The machine code in Table 1 can be automatically generated from the assembly 

code in Table 2 using an assembler program. 

 

Below the assembly code to multiply the accumulator register on a 6502 processor by 10 is presented: 
 
MULT10  ASL         ;multiply by 2 
        STA TEMP    ;temp store in TEMP 
        ASL         ;again multiply by 2 (*4) 
        ASL         ;again multiply by 2 (*8) 
        CLC 
        ADC TEMP    ;as result, A = x*8 + x*2 
        RTS 
 
TEMP    .byte 0 
 

In this assembly code, MULT10 is the entrance to a subroutine that multiplies register A by 10, 
returning the value in register A. Since the 6502 has no multiplication built in, it has to use addition 
and bitshifts. An intermediate value is stored in the location TEMP, which is identified in the code as a 
1-byte segment of memory with the value 0. The text after ; signs is commentary annotation. 

 

Table 2 An example program in assembly language 

2.2.2  Structured programming languages 

Assembly and machine languages are closely tuned to the brand and type of CPU that is used 

in a computer, and are still very tedious to use to model processes. On the other hand, 

descriptions of algorithms have been developed on a conceptual level that do not refer to any 

computer (hardware) structure. Such languages have their own semantics, i.e., their own 

independent way of describing processes (in what is called an algorithmic manner), 

independent of any computer type. It turned out to be possible to define higher-level process 

description languages, the so-called structured programming languages that (1) allow one to 

describe processes, and (2) can be related in a systematic manner to (lower-level) languages; 

cf. Knuth (1981). The example in Table 3, taken from Kernighan and Ritchie (1978, pp. 108-

110), is written in the structured language C. It does sorting (an array of names for example) 

                                                           
4 Nowadays, often CPUs do not directly execute their own machine language, but are made for compatibility and 
efficiency reasons out of one or more smaller, simpler cpus. These smaller cpus sometimes run a fixed program 
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by the quicksort algorithm. The program from Table 3 will work on a variety of processors. 

The code contains several functions, subroutines, to divide the work into portions.  

 

States 

At this programming language level, instead of states based on bits as in machine language, 

the states of a process description (or program) are defined in a more abstract mathematical 

manner by values that are assigned to the variables used in the process description. Moreover, 

variables can be indexed (arrays). An example of a state is: 

 
v[2] : “Athens” 
v[3] : “Paris” 
v[4] : “Amsterdam” 
v[5] : “London” 
i : 3 
j : 4 
temp : “Paris” 

 

Variables are indicated by letters or words freely chosen by the programmer as names. Such a 

language, on the one hand, provides independent descriptions of states that can be related to 

states in the world, independent of a computer type, at a conceptually higher level. On the 

other hand, well-defined relationships between such higher-level states and states defined at 

the level of bits are assumed, but these relationships are kept hidden. 
 

Relations between states: transitions and grouping 

Within a program the lines with an = sign in it denote assignment steps, changing the 

program’ s state by assigning a new value to the variable as indicated. Even though many lines 

are assignments, a lot of assignments are hidden by the language. For example, a function 

call, such as swap(v, left, last), entails the assignment of values to the arguments. Most of 

the actions are thus based on assignments. An example of a trace at this level in which 

Amsterdam and Paris are swapped is: 

 
============== 
v[2] : “Athens” 
v[3] : “Paris” 
v[4] : “Amsterdam” 
v[5] : “London” 
i : 3 
j : 4 
temp : “” 
============== 
v[2] : “Athens” 
v[3] : “Paris” 
v[4] : “Amsterdam” 
v[5] : “London” 
i : 3 
j : 4 
temp : “Paris” 

                                                                                                                                                                                     
in their machine language – called microcode – that will make the collection of smaller CPUs simulate the 
behaviour of the original machine language. 
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============== 
v[2] : “Athens” 
v[3] : “Amsterdam” 
v[4] : “Amsterdam” 
v[5] : “London” 
i : 3 
j : 4 
temp : “Paris” 
============== 
v[2] : “Athens” 
v[3] : “Amsterdam” 
v[4] : “Paris” 
v[5] : “London” 
i : 3 
j : 4 
temp : “Paris” 

 

As an example, for a description of this process in the structured language C, see Figure 1. 

For example, the for-loop (i.e., for i = 1 to 100 do … ) defines in one expression a sequence of 

successive steps, each of which involves a further series of steps, which finally are related to 

transitions of the program’ s state; see Table 3. This is an example of a higher-level concept in 

the language, referring to a more complex process as a whole. Such concepts entail a more 

sophisticated and structured higher-level relationship over time in the trace of program states 

than direct transitions.  

 

Below, an example of a program in C, a structured programming language, to sort using the quicksort 
algorithm. 
 
/* qsort:  sort v[left]...v[right] into increasing order */ 
void qsort(char *v[], int left, int right) 
{ 
  int i, last; 
 void swap(char *v[], int i, int j); 
 
 if(left >= right) /* do nothing if array contains */ 
  return;  /* fewer than two elements */ 
 swap(v, left, (left+right)/2); 
 last = left; 
 for(i = left+1; i <= right; i++) 
  if(strcmp(v[i], v[left]) < 0) 
   swap(v, ++last, i); 
 swap(v, left, last); 
 qsort(v, left, last-1); 
 qsort(v, last+1, right); 
} 
 
/* swap:  interchange v[i] and v[j] */ 
void swap(char *v[], int i, int j) 
{ 
 char *temp; 
 
 temp = v[i]; 
 v[i] = v[j]; 
 v[j] = temp; 
} 

 
 

Table 3 An example program in a structured programming language 
 

Descriptions in a structured language such as the language C can be (many-to-many) mapped 

onto descriptions in assembly language, which can be quite complex in general. Programs 
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called compilers translate from a structured language to machine language (sometimes by 

intermediate translation to assembly, then invoking an assembler). Descriptions in these 

structured languages can be far removed from the actual machine language translation. Such a 

translation is not unique: different compilers that can be used (for example, a Sun cc compiler 

or a GNU gcc compiler) map the same structured language description onto different lower-

level descriptions. 

2.3  Higher-level Design and Requirement Specification Languages 

Still higher-level languages to describe dynamics have been created, see Figure 1. These 

languages typically are not procedurally oriented (as are most lower-level languages) around 

assignment actions and sequences of assignment actions, but instead have a much more 

abstract view on the states or on the order of state transitions. An example of a language at 

this level for a specific type of application is the query language  SQL, which operates on the 

domain of databases. This language allows for declarative expression of queries for a 

database, abstracting from the way in which the actual check of the query within a given 

database environment is performed. Another example is Prolog, a language in which logical 

implications can be expressed, and when given a query, the answer to the query can be 

determined by inferencing. The precise inference procedure used is not specified within the 

language itself, but contributed by an implementation environment.  

 

Usually the higher-level languages are interpreted by a lower-level program or compiled by a 

lower-level program. Being interpreted means that during execution another program, written 

in a lower-level language, reads and executes expressions in the language. Two types of 

higher-level languages will be discussed in a bit more detail: design languages and 

requirements languages. 

2.3.1  Design Languages 

In design languages, the dynamics of a process is specified without specifying a number of 

the more technical details needed to obtain the behaviour of a process; e.g., Booch, (1991). 

Component-based design languages are currently considered important; e.g., Brown (1996). 

By Brazier, Jonker and Treur (2002), a simple system modelling a diagnostic task, is 

described, an example of using descriptions in the component-based design language 

DESIRE; see Table 4a. Diagnostic reasoning processes aim at the identification of the cause 

of a disturbed situation (a fault). In most of these situations not all relevant observational facts 
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are known in advance. The process of acquisition of additional (observation) information is an 

essential part of most diagnostic processes. Therefore, dynamics play an important role in 

diagnosis. In general, diagnostic reasoning consists of a number of sub-processes (performed 

by specific components of the task) such as the determination of hypothesis, the choice of 

applicable tests, the performance of tests and the interpretation of the test results. Strategic 

information such as the suitability of a test, likeliness of a hypothesis being true and the cost 

and effect of a test play an important role. 

 

 

 

diagnostic reasoning system task control

hypothesis 
determination

hypothesis 
validation

hypotheses

assessments

diagnosis

 

 

 

hypothesis validation task control

hypothesis 
evaluation

observation 
determination

to be observed

observation 
results

focus hyp to HE

focus hyp  
to OD

eval info
focus hyp 

to HE

observation 
execution

 

 

 

 

Table 4a  An Example Component-Based Design Description in Graphical Form   
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The overall behaviour of this component-based system can be explained from the behaviours 

of its components, and the way in which they are composed; cf. Cummins (1975)’ s notion of 

componential analysis. The first picture shows the component structure at the top level, the 

second picture the component structure within the component Hypothesis Validation. The 

component Hypothesis Determination generates hypotheses that are validated by the 

component Hypothesis Validation.  A component-based design description of this overall 

process can be seen in the first figure. The arrows indicate information exchange. They 

connect the output of one component (small box at the right hand side of a box) to the input of 

another component (small box at the left hand side of a box). The second figure shows how 

the component Hypothesis Validation is composed of the components Observation 

Determination, Observation Execution, and Hypothesis Evaluation. Descriptions in a design 

language as the example above are a communication device for humans--produced by system 

designers, and handed over to programmers to be implemented.  

 

For design languages often automated implementation generators exist, translating a design 

description into a descriptions in a lower-level language, for example a description in the 

structured language C.  Traces for a component-based design as depicted in Figure 4a are high 

level sequences of states that can be represented by linguistic-like structures (in this case in a 

relational language), for example of the form depicted in Table 4b. In this trace each transition 

is a step from the outcome of one component to an outcome of another (next active) 

component. Compared to the small steps in the form of the transitions to which machine code 

refers, these transitions are huge steps. One specifies the relations between the states in such a 

trace on the basis of component-based pictures as in Table 4a, until the components are 

reached that are not composed: primitive components. These components can have high level 

specifications based on knowledge bases defining the logical relations between their input and 

output. 

time Component:  Atom 

1 OE:  observation_result(car_starts, neg) 

2 HD:  assumed(battery_empty, pos) 

3 OD:  predicted(lights_work), neg) 

4 OE:  to_be_observed(lights_work) 

5 OE:  observation_result(light_works, pos) 

6 HE:  rejected(battery_empty, pos) 

7 HD:  assumed(battery_empty, neg) 

   

Table 4b High level trace 
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2.3.2  Requirement Languages 

Requirements languages are used, for example, in determining what requirements a system 

for a customer should fulfill (see, e.g., Kotonya and Sommerville, 1998). They are often put in 

natural language, but requirement languages can also be formal. As an example, consider how 

only the input of a function, and the output related to the input can be specified, such as ‘the 

output has the elements of the input in a sorted order’ , or ‘for input a, the output x satisfies the 

equation x7  + x2 - ax + 5 = 0’ .  Requirements can be specified for a system as a whole, but 

also for components within a system. An example of a specification in a requirement language 

of the example diagnostic system discussed in Section 2.2.1 is shown in Table 5.  

 

Below, an example of a requirements specification for a diagnostic system in TTL, a behavioural 
requirement specification language. 
 
R1     If the system has terminated, then there is at least one hypothesis that has been evaluated and 

not rejected. 

R2     As long as there are hypotheses that have not been rejected and all hypotheses that have been 

generated have been rejected, the system will keep generating new hypotheses. 

R4     Every hypothesis that is generated will be validated which provides an indication of being 

rejected or confirmed. 

R5     For each hypothesis that is generated, all implied relevant predictions about the observable part 

of the world state are generated. 

R6     For each prediction that regards the observable part of the world state, the appropriate 

observation is made.  

R7     Each hypothesis for which there is a prediction that does not match the corresponding 

observation result, is rejected. 

 
 

Table 5 Description in a Requirement Specification Language 

 

These requirements express dynamic properties of high level traces and the states of the same 

type as depicted in Table 4b. Note that in such a requirement states within a trace at arbitrary 

time points can be related, which allows for specification of dynamic properties completely 

different from step-like properties, i.e., such expressions define at a high level of description 

which system states in a trace have to be related over time. Automated translation of these 

higher-level descriptions to lower levels is possible in specific cases, for example if a 

commitment is made to a specific type of design. 
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2.4  Multiple Realisation Relations between Descriptions at Different Levels 

In summary, languages have been developed to describe processes within the world or within 

a computer at different levels. Each of these languages has its own way of referring to process 

instances or traces in the world, which allows empirical validation of a description. Moreover, 

this relationship between descriptions and actual process instances is formalised in the 

semantics of such a language. This picture shows that the different language levels have an 

independent and autonomous status; they do not depend on each other. Yet, relationships 

between descriptions in the different languages exist.  

 

When translating a higher-level description into a lower-level description, different 

translations can be made that have exactly the same effect. Therefore every description level 

is multiply realizable in lower levels. An example: when a high level description of a sorting 

operation, which only specifies how the output should relate to the input, is translated, this 

translation could take the form of any of the known sorting algorithms, many of which would 

be represented by a completely different execution pattern by the hardware, but the result is 

the same. Descriptions of processes are also multiply supervenient in the sense that one 

description at some level can be related to multiple descriptions at higher levels; cf. Gasper 

(1992), p. 668. For example, the same behaviour of specific hardware, could have been 

specified in different manners in a structured programming language, for example, by a Pascal 

program or by a C program description, with the same results.  

 

If a choice for a particular implementation environment is made, descriptions in higher-level 

languages can be translated into lower-level ones in an automatic manner. For example by 

using a compiler or assembler the lower-level code can be automatically obtained, thus 

choosing one of the possible realisation relations. 

 

To a certain extent, sometimes an automatic translation upwards to a high level description for 

the lower-level code is possible using special programs such as disassemblers and 

decompilers (these are typically used in the reverse engineering of competitors’  software). 

The upward translation is of much less quality, in general, as it cannot reproduce the symbolic 

labellings, when these where not used by the lower level: the decompiling software is not that 

intelligent in the sense that it can recognize the more abstract patterns.  
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3  Addressing Multiple Realizability 

Both in Computer Science and Cognitive Science multiple realisation occurs. What role do 

reduction relations between higher-level descriptions and a lower-level descriptions play in 

such cases?  

3.1  The Classical Perspective 

Nagel’ s classical definition of reduction of a theory T2 (the theory to be reduced) to a theory 

T1 (the base theory or reducing theory) is as follows: 

a)  A bridge principle or bridge law is a definitional or empirical principle or law connecting 

an expression of T2 to an expression of T1. A bridge principle is biconditional if it has the 

form a ↔ b where a is an expression of T2 and b an expression of T1. 

b)  A theory T2 is Nagel-reducible to T1 if and only if all laws of T2 are logically derivable 

from the laws of T1 augmented with appropriate bridge principles connecting the expressions 

of T2 with expressions of T1.��

 

The key concept here is the existence of bridge principles. In practice, these bridge principles 

have to be biconditional to permit the possibility of deriving nontrivial T2-laws from T1 laws, 

thereby satisfying b).  

 

How are these concepts related to process description languages developed within Computer 

Science? Suppose two descriptions are given, a higher-level description and a lower-level 

description. For the theory to be reduced, T2, the higher-level description is taken; for the base 

theory T1 the lower-level description. Bridge principles relate expressions that are part of the 

higher-level description to expressions in the lower-level description. At first sight it may 

seem that such principles indeed exist. They are well-defined in a mathematically precise 

manner and even automated in compilers that translate any description in terms of the higher-

level language to a description in terms of the lower-level language. However, as discussed in 

Section 2.4, one higher-level description can be translated into many lower-level descriptions: 

each description in one of the language levels depicted in Figure 1 is multiply realizable in the 

lower levels.  

 

This situation is quite similar to the situation in Cognitive Science, where it has also been 

argued that multiple realizability occurs so that there is not one unique set of bridge 
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principles. Kim (1996, Ch. 9) outlines three alternatives approaches for coping with a multiple 

realizability in Cognitive Science: 

• Reduction using a set of bridge principles based on disjunctions of the lower-level 

properties specified in the different realisations 

• Supervenience 

• Local reduction, based on multiple sets of context-specific bridge principles 

Each of these options will be briefly discussed. 

3.2  Bridge Principles based on Disjunctions 

The first option posits a set of bridge principles of the form 

 

M  ↔  Pd 

N ↔  Qd 

… . 

where  

Pd is a disjunction   P1 ∨ P2 ∨ ... 

Qd is a disjunction   Q1 ∨ Q2 ∨ ... 

  … . 

where, P1, P2, ... are the different realisers (indicated by expressions in T1-ontology) of higher-

level property M (in T2-ontology). The problem is that there may be an indeterminate 

(possibly infinite) number of ‘wildly heterogeneous’  possible realizers . One cannot, using the 

vocabulary of the lower level, specify the set of disjunctive realizers.  A similar problem 

arises with respect to process description languages in Computer Science since there to there 

is an endless variation of lower-level programs that do essentially doing the same, viewed 

from a higher-level perspective. 

3.3  Supervenience 

Kim (1996, 1998) proposed that the principle of superveneince provided a nonreductionist 

way to cope with multiple realisation from a physicalist perspective.  He explains 

supervenience as follows:  

 

Mental properties supervene over physical properties in that for every mental property 

M that occurs at some point in time t, there exists some physical property P that also 

occurs at t, such that always if P occurs at some point in time t', also M occurs at t'. 
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This seems to cover the situation for process description languages from Computer Science at 

different levels well. However, a disadvantage of this abstract notion of supervenience is that 

it does not give specify how higher-level descriptions relate to lower-level descriptions. To 

overcome this disadvantage Kim introduces the notion of local or context-specific reduction. 

3.4  Local or Context-Specific Reduction 

In a context-specific reduction (Kim, 1996, pp. 233-236) the aim is not to find one set of 

bridge principles, but to accept multiple sets of context-specific bridge principles. In this case 

at each instance of time, each higher-level description can be related to a lower-level 

description based on an appropriately chosen context-specific set of bridge principles. The 

contexts are chosen in such a manner that all situations in which a specific type of realisation 

occurs are grouped together, and are jointly described by one set of bridge principles. Thus, 

within the formulation of supervenience given above, the set of all P (the variable of the 

existential quantifier) that satisfy the clause ‘that also occurs at t, such that always if P occurs 

at some point in time t', also M occurs at t' ’  is partitioned into subsets each of which defines a 

context. In Cognitive Science such a grouping could be based on species, i.e., groups of 

organisms with (more or less) the same architecture, although objections may be put forward 

against this granularity of grouping; it might well be the case that certain mental properties 

have different realisations over organisms of the same species, or even different realisations 

within one organism over time. 

 

In the context of an organism or system with structure or architecture description S, 

biconditional bridge principles can be stated in a conditional manner as follows; cf. Kim 

(1996), p. 233: 

 

S  → (M ↔ P) 

 

This means that for all systems with structure S the bridge principle M ↔ P applies. For 

systems with another structure, other bridge principles apply. This also generates a disjunctive 

form, but logically different from the one above; namely instead of  

a set of disjunctive bridge principles (as discussed in Section 3.2) 

this time in the form of  

a disjunction of sets of (non-disjunctive) bridge principles: 
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(case of S1) 
[ M ↔ P1  
  N ↔ Q1 
  … . ] 

(case of S2) 
∨   
[ M ↔ P2  
  N ↔ Q2  
  … . ] 

(case of S3)  
∨ 
[ M ↔ P3  
  N ↔ Q3  
  … . ] 

… .. 
∨ 
[…  
 
      ] 

 

For the case of process description languages within Computer Science, an implementation 

environment (including a compiler) of the person’ s choice can play this role architecture S, 

and its context-specific set of bridge principles. A different choice of implementation 

environment will come up with a different set of bridge principles and, hence, with a different 

lower-level description for the same higher-level description. To be more precise, in the case 

of process description languages from Computer Science the role of S above is played by the 

specification of the compiler that is used to relate high level descriptions to low level 

descriptions; such a compiler is the core of an implementation environment. Indeed, 

committing oneself to one specific compiler can be described as the situation where only one 

set of bridge principles is used. Putting aside the difference in interpretation that in one case 

bridge principles are involved that may be considered definitional and in the other case as 

empirical correlation laws, (Kim, 1996, p. 213), the situation for process description 

languages within Computer Science is, in a structural sense, similar to the situation that one 

psychological theory of pain T2 can be related to different realisations in the form of 

physiological theories T1 in different species (or even within different animals within one 

species), as put forward by Kim (1996), Ch. 9, pp. 233-236. A choice for a particular 

implementation environment for a high level program can be compared to the choice of a 

particular species for developing a higher-level cognitive theory. 

4   Explanation and Levels of Description 

In this section we discuss why explanations at different levels are useful for practice, from the 

angle of the pragmatics of explanation. First the perspective developed by Jackson and Pettit 

(1988, 1990) is discussed (their ‘program explanation’  as opposed to causal explanation). 

They argue that a program explanation is more useful because it has a wider scope of 

applicability (in possible worlds) than a causal explanation at the physical level (in the actual 
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world). Subsequently, Dennett (1987)’ s view on the use of intentional stance versus physical 

stance explanations is addressed. Dennett emphasizes that intentional stance explanations are 

tractable in cases where physical stance are not. Next, Bickle (1998)’ s perspective on 

folkpsychological explanations versus neurobiological explanations is discussed. He 

emphasizes the value it can have to keep and improve the higher-level theory as a basis for 

explanation, in addition to a neurobiological theory. Finally, the use of explanations in 

Computer Science is discussed and compared. 

 

Like us, Jackson and Pettit (1988, 1990) exploit a metaphor from Computer Science is 

exploited. They develop a notion of higher-level explanation, meant to be suitable for special 

sciences such as Biology, Cognitive Science and Social Sciences: program explanation. 

According to this type of explanation, ‘G occurred because F occurred’  for higher-level 

properties F and G, can be an adequate explanation in the following way: F ensures 

(‘programs for’ ) some lower-level property P, which causes G. Or: F ensures (‘programs for’ ) 

some lower-level property P, which causes a lower-level property Q for which G is a higher-

level description. For example, the question ‘Why was the vase breaking ?’  can be answered 

by: ‘Because it was fragile’ . Here the higher-level property of being fragile ensures or 

programs for the lower-level property of having a specific molecular structure. They explain 

the name ‘program explanation’  as follows: 

 

‘The property-instance does not figure in the productive process leading to the event but it more or less 

ensures that a property-instance which is required for that process does figure. A useful metaphor for 

describing the role of the property is to say that its realization programs for the appearance of the 

productive property and, under a certain description, for the event produced. The analogy is with a 

computer program which ensures that certain things will happen – things satisfying certain descriptions – 

though all the work of producing those things goes on at a lower, mechanical level’  (Jackson and Pettit, 

1990), p. 114 

 

They discuss the value of such a higher-level explanation, using the example of explaining 

radiation from the decay of atoms, as follows: 

 

‘According to (Lewis, 1988), to explain something is to provide information on its causal history . . . A 

program explanation provides a different sort of information . . . A program account tells us what the 

history might have been. It gives modal information about the history, telling us for example that in any 

relevantly similar situation, as in the original situation itself, the fact that some atoms are decaying means 
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that there will be a property realized - that involving the decay of such and such particular atoms - which 

is sufficient in the circumstances to produce radiation. In the actual world it was this, that and the other 

atom which decayed and led to radiation, but in possible worlds where their place is taken by other atoms, 

the radiation still occurs. ’  (Jackson and Pettit, 1990), p. 117. 

 

Jackson and Pettit emphasize that such a form of higher-level explanation, based on some 

theory T2 has advantages over causal explanation, based on a basic theory T1, in the sense that 

other information is provided, which implies increased genericity: it not only applies to the 

actual world, but also to other possible worlds.  

 
As opposed to explanations from a direct physical perspective (the physical stance), Denett, 

(1987, 1991) advocates use of the intentional stance. He points to different description levels 

with ontologies for emerging patterns in the simulation environment Life to explain the 

advantage of explanations using such higher-level descriptions; cf. Dennett (1987), pp. 37-39; 

Dennett (1991), pp. 37-42. In addition, he uses different description levels in a computer 

system (actually of a chess computer), embedded (and hence visualised) in the two-

dimensional Life environment as a metaphor to explain the advantage of intentional stance 

explanations for mental phenomena over physical stance explanations:  

 

‘The scale of compression when one adopts the intentional stance toward the two-dimensional chess-

playing computer galaxy is stupendous: it is the difference between figuring out in your head what white's 

most likely (best) move is versus calculating the state of a few trillion pixels through a few hundred 

thousand generations. But the scale of savings is really no greater in the Life world than in our own. 

Predicting that someone will duck if you throw a brick at him is easy from the folk-psychological stance; 

it is and will always be intractable if you have to trace the protons from brick to eyeball, the 

neurotransmitters from optic nerve to motor nerver, and so forth. ’  (Dennett, 1991), p. 42 

 

Dennett puts the emphasis on tractability. To explain more complex phenomena in our real 

world, higher-level explanations are tractable, whereas lower-level explanations are not. 

 

Bickle (1998, pp. 199-211) discusses an approach to reduction, called revisionary reduction. 

Three conditions are put forward that separate this account from retentive and replacement 

reduction (pp. 200-201): 
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1. Explanations generated by TR approximate the actual events causing the observable 

phenomena 

2. Key explanatory concepts of TR fragment into several distinct concepts of TB, and 

often each of the latter appropriate candidates for cross-theoretic “identification” lie at 

appropriate limits or within particular domains of application of TB. 

3. Revisionary cases of reduction display mutual evolutionary feedback between TR and 

TB, where developments within each theory serve to mutually constrain and promote 

fruitful development within the other, but especially within TR. 

 

In a more detailed manner, Bickle (1998, pp. 205-208), illustrates this account for the higher-

level (e.g., folk psychological) and lower-level (e.g., neurobiological) explanation in the 

context of Hawkin and Kandel's (1984a,b) case: 

 

‘Of course, the functional profiles assigned to cognitive states on Hawkin and Kandel's neurobiological 

account are much more fine-grained and detailed, for that account recognizes distinctions and connections 

that folk psychology either lumps together or leaves extremely vague . . . Here again, however, we can 

expect that injection of some neurobiological details back into folk psychology would fruitfully enrich the 

latter, and thus allow development of a more fine-grained folk-psychological account that better matches 

the detailed functional profiles that neurobiology assigns to its representational states. There is no 

principled reason against such enrichment.’   (Bickle, 1998), p. 207-208 

 
Here Bickle proposes that by relating a folk psychological explanation to a neurobiological 

account, a decision can be made to enrich the former by introducing some new intermediary 

states, based on the more detailed path provided by the latter. He proposes to use a reduction 

relation in scientific practice not to actually reduce the theory T2 to a theory T1 so as to 

eliminate T2, but to extend or improve the theory T2 on the basis of theory T1. Therefore, 

abandoning explanation on the basis of T2 and replacing such explanation by explanation on 

the basis of T1 is not at issue; on the contrary, the explanatory value of T2 is strengthened by 

the process of co-evolution of T2 and T1. 

4.4  Explanation and Levels of Description in Computer Science 

Working with process descriptions within Computer Science, two perspectives occur: the 

perspective on a process to be designed, before it came into existence, and the perspective in 

retrospect, after the process has been described. Accordingly, two sorts of explanation are 

performed: explanation in advance and explanation in retrospect. For an explanation in 
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advance (i.e., a prediction), the abstract view on the behaviour of the process aimed for (i.e., 

intended by the modeller or programmer) is specified in some higher-level language. By using 

an implementation environment based on an automated compiler, machine language for the 

hardware to simulate this behaviour is generated. So, if you were to ask for an explanation 

why a particular computer system will display a particular behaviour, the answer would be in 

one of the higher levels of description in Figure 1. It can be said that the computer will do 

something because some electrical current passed some electrical circuitry, or, it can be said 

that the computer will do something, because in some description language a particular 

expression had been given. In this sense, the descriptions in the different languages are an 

explanation of why the computer subsequently will perform a particular behaviour. However, 

for the programmer the higher-level explanation is feasible and useful, whereas the lower-

level explanation usually is not. 

 

Providing an explanation in retrospect is typically observed during simulation (or execution) 

of a process description (program) on a computer, for example in the context of the search for 

bugs. A bug is an error in a process description, resulting in a deviation from the behaviour 

that the modeller (or programmer) aimed for. A bug will thus display behaviour that deviates 

from the expectations of the modeller. This behaviour, however, is still in accordance with the 

description of the behaviour in the language that the modeller used, and all subsequent lower 

languages that it had been translated into. The modeller will want an explanation of why the 

computer system shows this unexpected behaviour. The modeller needs to know why the bug 

happened, so as to fix all possible occurrences of the bug. In principle, several types of 

explanations are possible for a bug. 

 

The lowest level explanation is that the wrong electrical currents went through the circuitry. 

The electrons inside the hardware went the wrong way. In order to fix this, the modeller 

would need to change the circuitry. However, this would only stop the bug from happening on 

that machine. Using the same not corrected higher-level description will result in similar 

deviating behaviour in all other cases that the higher-level process description is used. Next, 

an explanation can be given in machine code, for example that a certain machine register 

contained the wrong value. Fixing the machine code would fix the particular occurrence of the 

bug, but only for that particular type of cpu. The bug could still manifest on other types of 

CPU.  
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The deviating behaviour can also be explained in the higher-level language that the modeller 

used to specify the behaviour. There, a certain expression can be deemed responsible: 

execution of the program results in the deviating behaviour, because the expression is not 

adequate. This is the type of explanation the modeller wants, since (1) it is much easier to 

understand for the human at this level what is wrong, and (2) by correcting this higher-level 

description, the behaviours for all (automatically generated) realizations of the description are 

corrected.  

 

In Computer Science, the explanation at a higher description level is considered more 

valuable. Not only will it allow for fixing the problem, but also more abstract languages 

typically specify more of the behaviour per expression used. As such, in high level 

descriptions a larger subset of behaviour is specified. When a bug occurs, the most abstract 

description is the most useful, as it covers the exact set of occurrences that could happen in 

any implementation environment.  

 

One minor comment can be made here. A modeller assumes that the implementation 

environments she or he uses are adequate. In other words, the context-specific bridge 

principles are assumed correct. An observed deviation in behaviour is not attributed to this 

environment and these bridge principles, but rather to the higher-level program; in 99.9 % of 

the cases this is an adequate strategy. In exceptional cases, however, it is possible that a bug is 

present in the compiler software, especially when features are used that were not extensively 

tested or verified earlier. A modeller may consider this possibility if a bug is displayed 

whereas the higher-level process description seems adequate. For the sake of the argument we 

exclude this situation. 

 

In conclusion, the different Computer Science process description languages can be 

considered useful for explaining the behaviour of processes in the world or in computer 

systems. They are used to explain what a process is intended to do, and they are used to 

explain what a process has done. Different levels of description in these process description 

languages occur. A description at one level is multiply realizable in several possible lower-

level descriptions. Depending on a specific implementation environment chosen, a description 

at a higher level can be translated into a specific description at a lower level in an automatic 

manner. Each level of description can be used to explain a particular behaviour. In practice, 

explanations are considered more valuable when expressed in terms of a higher level of 
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description. Due to the fact that reductions to lower levels can be completely automated, the 

programmer need not have any knowledge of the lower levels.  

 

To increase the scope of applicability, the strategy in the scientific area of Computer Science 

has been to increase the distance between the relevant complex physical processes and the 

conceptual explanations of them. The success of this strategy was only possible because of the 

development of high-level modelling languages and supporting software environments 

(relating the high level languages to the lower-level ones in a hidden manner) that enabled 

practitioners to work on a high level of description without the need of technical expertise of 

the lower-level languages: these details are hidden from them by the software environments 

used. 

5  Pragmatic Strategies 

If reduction relations between theories have been established, still choices can be made on 

how to exploit these relationships in scientific practice. A number of possible choices are the 

following. 

(1) One possible choice is to actually reduce theory T2 to theory T1, with elimination of 

theory T2, including its ontology and its laws. For example, scientific texts will only 

include terms of T1, not of T2. 

(2) Another possible choice is to identify theory T2’ s ontology with expressions of theory T1, 

without actually eliminating theory T2, but still using its ontology and its laws, knowing 

that they are identical to certain expressions of T1. In this case, scientific texts can include 

terms of both of T1 and T2 and their relationships, where the terms of T2 are considered 

synonymous to expressions of T1. The availability of a reduction relation can be 

considered as additional knowledge that provides a better foundation and embedding for 

T2, thus increasing the value of T2. Therefore motivation to use T2 and its relation to T1 

has increased.  

(3) A third choice may be that, if it has been established that T2 has a solid foundation in 

terms of T1, in scientific practice more emphasis is put on – whenever applicable -  using 

T2 instead of T1; in a sense this choice in a certain domain of scientific practice can be 

considered as eliminating or ignoring or abstracting away T1. Scientific texts on certain 

topics will only include terms of T2 , not of T1. 
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Kim (1996) puts a number of advantages of reduction relations between a theory T2 and a 

theory T1. These and some other advantages will be discussed in the context of these choices 

on how to exploit reduction relations; see also Table 7, where choices (1) and (2) are 

compared. 

5.1  Ontological Simplification 

Kim (1996, pp. 214-216), proposes ontological simplification as an advantage in the case 

where theory T2 is actually reduced to theory T1: choice (1) above. Having two theories T1 

and T2 with their own ontologies indeed means having to learn and being aware of more terms 

than if only the terms of T1 are sufficient, because the terms of T2 are replaced by those of T1. 

For example, in a case of full reduction between two theories with an approximately equal 

number of basic terms, the savings is a factor 2. However, in a case of context-specific 

reduction, say with 10 different theories T1
(i) with number of basic terms approximately equal 

to the number of terms as T2, the advantage can be estimated as 11/10, i.e. a factor of 1.1. So 

in this case, numerically the advantage cannot be made very clear. Other non-numerical 

arguments might be put forward not directly related to numbers of basic ontological terms; 

however the above estimations make clear that the value of the advantage of ontological 

simplification is not so self-evident as may seem at first sight. It is clear that ontological 

simplification does not take place when both T2 and T1 are kept in use, as in choice (2) above. 

In choice (3), however, ontological simplification may take place in the sense that in scientific 

practice T1’ s ontology is used less extensively. In this case the numerical advantage for 10 

theories T1
(i) is approximately 11/1, a quite drastic simplification. As discussed in Section 4.4, 

this actually has happened in Computer Science, where developers no longer need to know 

the ontologies and knowledge underlying all the different platforms and implementation 

environments developed in the past (and often still in use). Instead they can work with a much 

more restricted high level ontology. 

5.2  Less Assumptions on the World 

A second advantage of reduction Kim (1996, pp. 214-216),   puts forward is that the number 

of assumptions about the world is lower. By reducing T2-laws to statements that can be 

derived from T1-laws, logical dependencies are identified. This can be considered a 

substantial advantage, since if some assumptions are logically implied by other assumptions, 

it is good to know about these relationships. This is independent on the number of 

assumptions being lower in a numerical sense (the same numerical considerations as before 
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apply). This advantage arises both if T2 is actually reduced to T1 in the sense of being 

eliminated (choice (1)), and if T2  is not actually reduced (choices (2) or (3)). 

5.3  Insight in Underlying Mechanisms 

A third advantage of reduction of a theory T2 to a theory T1 Kim (1996, pp. 214-216) 

advances  is that reduction gives more insight in underlying lower-level mechanisms. As an 

example, the discovery of the structure of DNA and of how segments on DNA play a causal 

role in the inheritance of properties, gave an extended insight in how things work in the 

world. The biological notion of a gene, which could be defined in a functional manner within 

biology, now could be related to a realisation in the form of chemical structures and 

mechanisms. It is a question whether this advantage is only an advantage of actually reducing 

one (biological) theory into another (chemical) theory, or that the advantage is that as yet 

unknown relationships will be found between two theories that both had and will have their 

independent value (choice (2)), or that this insight is the basis for a decision to take choice 

(3): using more exclusively T2 with increased confidence. This is the question whether 

advantages of reduction are introduced by actually eliminating one of the theories, or by 

obtaining additional knowledge about relationships between two theories which both will 

remain to have their - maybe even increased - value. It seems that the advantage of insight in 

underlying mechanisms can count in all four choices as considered. The example put forward 

by Bickle in Section 4.3 above, suggests how by going back and forth between a 

folkpsychological T2 and a neurobiological theory T1, the theory T2 can be improved. Within 

Computer Science this can be compared with a process of improving the effectivity and 

efficiency of a higher-level description by going back and forth to lower levels. 

5.4  Increased Empirical Test Possibilities 

A fourth advantage of reduction is that reduction provides new empirical possibilities. 

Knowing, for example, that a specific type of perceptual processing relates to activation 

within a certain brain area makes it possible for brain imaging to test theories about perceptual 

processes. This advantage counts if T2 is not actually reduced to T1, since the empirical 

possibilities for T2 are increased, not for T1. In a case of actual reduction (choice (1)), this 

advantage does not count, as T1’ s empirical possibilities remain the same. For choice (2) this 

may count as a substantial advantage, but not for choice (3), as in that case T1 is more or less 

‘abstracted away’ , which throws out (with the bathwater) the additional empirical possibilities 

that T1 could provide. 
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5.5  Transparency 

Another contribution of reduction to scientific practice is increased human understanding due 

to the tractability, or transparency of theories. Scientific practitioners often consider this quite 

important. On this criterion, choice (1) usually has the disadvantage that more complex 

descriptions are involved in an explanation. As a higher-level theory often is more transparent 

and understandable than a lower-level one, elimination of T2 and its basic ontology typically 

decreases transparency. The danger is not seeing the forest anymore because of the trees. 

Dennett’ s explanation of why you dive when I throw a brick (discussed in Section 4.2 above) 

makes this vivid. Choices (2) and (3) have the advantage that transparency is kept, or even 

increased if a shift to T2 is made, thereby leaving behind T1, as in choice (3). 

 

 Why actually reduce higher-level descriptions 
to lower-level descriptions: choice (1) 

Why use higher-level descriptions in addition 
to lower-level descriptions: choice (2) 

ontology Ontological simplification: less terms to 
describe phenomena in the world. 

Adding additional ontologies to improve 
understanding; simplification if restricting to 
higher-level ontologies. 

Knowledge of how higher-level terms relate to 
lower-level terms is valuable in addition. 

assumptions Less assumptions on the world. Assumptions about the world made more 
understandable. 

Relations between assumptions on different 
levels of description are identified. 

insight  More insight in underlying lower-level 
mechanisms for higher-level phenomena. 

More insight from a conceptually higher level 
perspective. 

By going back and forth between higher-level 
and lower-level descriptions, a lower-level 
theory T1 can have impact on progress in the 
development of the higher-level theory T2  

validity Empirical test possibilities at the lower level. Possibilities for verification and validation at 
different levels: on the lower level, and on a 
higher level of description. 

transparency ---- Analysis and design of more complex systems 
possible. 

genericity Context and scope of application narrowed 
down to the context of the local reduction. 

Wider scope of application; in computer 
system terms: less implementation-
environment dependent. 

 

Table 7 Comparison in Brief between two Different Choices in Pragmatics 

5.6  Genericity 

Jackson and Pettit (1988, 1990), as discussed in Section 4.1, raise the issue of genericity. A 

higher-level explanation applies to more application contexts than a lower-level explanation. 

This was also emphasized in the context of process description languages from Computer 
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Science in Section 4.4. If choice (1) is made, this entails a choice for lower-level explanations 

with a more limited scope of application. For choices (2) and (3), also higher-level 

explanations remain or even become more extensively available. 

 

6  Conclusion 

In this paper we have discussed scientific strategies related to reduction and its pragmatics. In 

this conclusion we summarise the lessons that can be learned from our case study of the 

development of process description languages within Computer Science.  

6.1   Why Reduction Can Reinforce a Higher Level Theory 

The design of higher-level description languages enabled programmers or modelers to 

describe processes in the world on a high level and thus avoid addressing physical details 

directly. This meant that more complex applications could be covered. Although the 

pragmatic strategy of a practitioner is anti-reductionist, well-established context-specific 

reduction relations, automated and hidden in specific implementation (software) 

environments, assure that a solid relation with a physical reality is maintained.  

 

This situation has some similarities to the perspective of local (species-specific) reduction 

within Cognitive Science, as put forward, for example, by Kim. The case study is also 

compared to other positions on explanation that emphasize the advantages of taking some 

distance to physical reality, such as Jackson and Pettit (’ s program explanation, Dennett’ s 

intentional stance explanation and folk-psychological explanation in the context of ‘new wave 

reduction’  as put forward by Bickle. Some aspects of the discussion on reduction can be 

clarified by distinguishing between (1) the availablity of reduction relations (possibly local) 

between two scientific theories, and (2) the actual use of these reduction relations by 

researchers in scientific practice. In some part of the literature, by leaving this distinction 

implicit, the suggestion may be created that the availability of a reduction relation, in the 

pragmatic sense, is used to actually reduce and eliminate the higher-level theory. Indeed, the 

main arguments put forward aiming at protection of the automous status of the higher-level 

theory criticizes the existence of systematic reduction relations. Such an argument strongly 

suggests the silent assumption that if such systematic reduction relations exist, in a pragmatic 

the higher-level theory is to be given up. In contrast, the position put forward here is that, to 

protect the higher-level theory the availability of a reduction relation is not bad at all; it can go 

hand in hand with an antireductionist pragmatic strategy reinforcing the higher-level theory 
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by giving more status to and putting more emphasis on the higher-level theory instead of less. 

The case of the development of process description languages within Computer Science 

supports this claim. 

 

The process description language case studies from Computer Science reveal that much 

progress can be made by, (1) starting from an already given base theory, creating a not yet 

existing higher-level theory and (context-specific) reduction relations between this new theory 

and the base theory, and (2) concentrate the emphasis in further scientific development on this 

new higher-level theory instead of the existing base theory. This is a pragmatic strategy 

opposite to that of reducing and eliminating a higher-level theory. This strategy may have 

value in other domains as well.  

 

In Section 2.1 we argued that the dynamics of higher cognitive processes such as complex 

task performance and reasoning demand higher-level description languages. In another 

discipline, biology a similar situation occurs. The attempt to understand the behaviour of a 

cell such as E. coli, and the dynamics of its intracellular processes in terms of the underlying 

biochemistry leads to hundreds of differential equations with parameters for which reliable 

estimations are rarely known. Given that two coupled differential equations already can show 

complex behaviour, even if all parameters were known, this type of description may be 

intractable and add no understanding. Even taking into account that in this case the 

biochemistry is by and large known, this situation may be considered similar to explaining 

from the physical stance why a man dives when a brick is thrown, and Dennett’ s analysis (see 

Section 4.2) may apply here accordingly. 

 

Higher-level descriptions may be more adequate for scientific practice than the lower-level 

biochemistry descriptions. One approach recognizes that some conglomerates of biochemical 

processes act as functional units such as “metabolic pathway”, “catabolism”, “transcriptome” 

and “regulon”. Some of these concepts have been or are being defined formally (Kahn & 

Westerhoff, 1991; Rohwer et al., 1996; Schilling et al., 2000). Viewed from a more high-

level, functional perspective, the cell effectively makes decisions regarding its internal 

dynamics and externally observable behaviour, given its environmental circumstances, and 

implements these decisions into appropriate actions. This behaviour, viewed from this high-

level perspective is less complex than the hundreds of differential equations. This suggests 

that considering a cell from the perspective of an agent sensing the environment, integrating 
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that information within its internal state, and then choosing behavioural patterns of action, 

may provide the basis of an alternative modelling approach; cf. Jonker and Treur (2002b). 

Some first steps from such a high-level perspective show promising results: cf. Jonker, Snoep, 

Treur, Westerhoff, and Wijngaards (2002). 

6.2  Interlevel Relations and Multiple Realizability 

Within Computer Science a pluralist landscape of (often competing) platforms has been 

developed, i.e., different processors and operating systems such as the PC with Windows, 

Macintosh with Mac OS, and Sun with UNIX or Solaris. The higher-level languages play a 

unifying role over these various platforms; their descriptions are multi-realisable within the 

different platforms. To deal with multiple realisability three options have been evaluated.  

 

The first option, making use of heterogeneous disjunctions to define (global) bridge principles 

is not appropriate for the case of process description languages within Computer Science, 

since such a disjunction is not expressible in a lower-level language in an adequate manner.  

 

The second option, supervenience, does apply, but is rather abstract; it does not given detailed 

information on how the interlevel relations constrain the descriptions at the two levels.  

 

As a refinement of supervenience, the third option is to consider context-specific local 

reduction relations. This option seems appropriate to describe the case of process description 

languages within Computer Science. For example, each platform (i.e., different processors 

and operating systems such as PC with Windows, Macintosh with Mac OS, and Sun with 

UNIX or Solaris) and implementation environment defines a context in which a practitioner 

can work, just as a biologist can choose a model species to work with. In this way interlevel 

relations can play an important role, even given the multi-realisability that occurs also in 

Computer Science. 

6.3  The Empirical Status of Reduction Relations 

If the development of Computer Science is viewed as a singular process that takes place in 

isolation from the rest of the world, it may seem that the (interlevel) reduction relations 

between descriptions at different levels are purely definitional: they define the higher-level 

concepts in terms of (a multitude of) lower-level concepts. However, this is not the case for 

the following reasons. There is and there has been an intimate relationship between the 
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development of process description languages within Computer Science and applications in 

society. Today Computer Science as a science probably has by far the largest number of 

professionals working in society, and computer scientists have much interaction with these 

professionals. The higher-level languages often have been developed in order to obtain 

adequate means to describe processes that take place in the real world, for example work 

flows in factories. A descripion of processes within a specific application context has its own 

independent validation against this practice, independent of whatever lower-level concepts 

can be used to realise an automated form of such processes. This semantic relationship 

between a description and a process to which this description refers, can be formalised 

mathematically by defining the formal semantics of such a description, independent of any 

relation to lower-level languages. 

 

This reference to actual processes provides empirical content to a higher-level description. In 

a similar manner (or, for the lowest level, by relating it to a computer’ s processor), lower-

level descriptions can be assigned empirical content. A reduction relation between a higher-

level and a lower-level description then can be considered an empirical relationship that can 

be empirically tested. 
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