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In agent-mediated applications, the system configuration can change because of the creation and
the deletion of agents. The behavior of such systems on the one hand depends on the dynamics
of the system configuration; on the other hand, behavior of such a system consists of the
information dynamics of the system. We discuss configuration and information dynamics of
agent-mediated systems and define a requirement language to express properties of those
dynamics. A prototypical scenario for an agent-mediated system is discussed and some important
requirements for this system are specified. It is shown how these properties can be verified
automatically to evaluate system behavior. © 2004 Wiley Periodicals, Inc.

1. INTRODUCTION

Requirements Engineering is a well-studied field of research within software
engineering; e.g., see Refs. 1-3. Requirements specify the required properties of a
system, which include the functions of the system, structure of the system, and
static and dynamic properties. Recently requirements engineering for distributed
and agent systems has been studied in some depth, e.g., see Refs. 4 and 5. For
agent-based systems, the dynamics or behavior of the system plays an important
role in description of the successful operation of the system.

To be able to express requirements unambiguously and to support verification
by automated tools, formal requirement specification languages for dynamics are
important. Dynamics of agent-based systems can take different forms. Depending
on the type of dynamics, different demands are imposed on the expressivity of a
requirement specification language. A simple form of requirements for dynamics
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Figure 1. The generic architecture of the agent-mediating systems.

(close to functional requirements) expresses reactive types of behavior. However,
combinations of proactive and reactive behavior can require more complicated
requirement expressions. Most types of behavior can be expressed using rather
standard forms of temporal logic.°"® Additional complications arise if the evolu-
tion of a system over time is taken into account; then, temporal logics of the more
standard types do not suffice. Examples of behavior of this type are relative
adaptive behavior (e.g., “exercise improves skill””), in which two different possible
histories have to be compared, and self-modifying behavior, e.g., the behavior of
one of the agents (e.g., initiating a creation action of an additional agent), leads to
a different system configuration.

This article addresses specifications of requirements for the self-modifying
type of dynamics. As illustrations of this type of dynamics, consider self-modifying
extensions of agent-mediating systems such as brokering systems, matchmaking
systems, and search engines. In these applications, a user interacts with the system
and receives its personal assistant (PA), which in turn interacts with available
intermediate and task-specific agents to perform the user task. The self-modifica-
tion of these systems lies in the idea that agents (PA and task-specific agents) are
created and removed from the system according to circumstances.

An abstract multiagent architecture for such self-modifying mediating sys-
tems is illustrated schematically in Figure 1. According to this architecture,
self-modifying mediating systems consist of different types of components or
agents, including a central maintenance agent (MA), an environment component,
PA agents (P-agent), and intermediate task-specific agents (I-agent). The MA is
responsible for initial interactions with users and the overall configuration of the
system. For example, a user who wants to buy a car communicates with the MA
and requires a car brokering system. With respect to the received request, the MA
specifies a car brokering system consisting of a car broker agent (which may
already exist) and a PA agent for the user (which may already exist) in such a way
that the car broker agent and PA agent can interact to respond adequately to the
request. The MA can conclude that the configuration of the system needs to be
modified. If so, then a specification of necessary changes to the system is com-
municated to the environment component to modify the system configuration. The
environment component represents all ingredients of the system except itself and
is responsible for the realization of system modifications. The environment com-
ponent is assumed to have a causal relation with the actual environment of the
agent-mediating system in the sense that if it includes the representation of a
component, then the component exists in the actual environment, and if there is a
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component in the actual environment, then it is represented in the environment
component. Moreover, the environment component is assumed to include a sub-
component, which translates modification plans, which it receives from the MA, to
an appropriate representation of system configuration. By the causal relation
between the environment component and the actual environment, the system
configuration is guaranteed to be modified appropriately. The user can now
delegate its car-buying task to its PA agent, which in turn can interact with the car
broker agent to achieve the delegated user task. The user can decide to log-off from
the broking system, in which case the PA agent and the car broker agent either can
be deleted from the system or set idle.

The MA and the environment processes form the basic components of the
system. They will be created at startup of the system and remain until the system
terminates. An essential property of such self-modifying agent-mediating systems
is the dynamic nature of their configuration: new agents are created and removed
from the system. The correct behavior of the system depends on its configuration
during its execution. For this reason, it is important to specify configuration
properties of such systems during their execution. The specification and verifica-
tion of such configuration properties is the focus of this study.

The article is organized as follows. In Section 2 and 3 state and design
languages are introduced. In Section 4 and 5 a requirement language is introduced
that can express, besides functional and informational requirements, those require-
ments that are concerned with the system configuration during its execution. In
Section 6, this requirement language is used to identify a number of requirement
types concerning the configuration of agent-mediated systems. A scenario for an
agent-mediating system will motivate these requirements. Section 7 discusses
possibilities for the verification of the requirements proposed in Section 6, and
Section 8 concludes the study.

2. SYSTEM SEMANTICS

The aim of this study is to specify and verify configuration properties of
self-modifying agent systems. This requires that the behavior of a system is
formally understood in general, before specializing to self-modifying systems. In
this section, first attention is given to state languages, i.e., languages with which
different states of systems can be expressed. In the second part of this section, the
semantics of systems are defined in terms of information states of the system.

2.1. State Languages

In general, a state of a system can be considered as a valuation of the language
elements (i.e., an assignment of truth values) that are used within or between
components of the system. Within agent systems the interaction with the external
world (EW) and other agents plays a central role. Agents reason what communi-
cations, actions, and observations should be performed based on information
obtained through observation and communication. Agents further determine how
to interpret observation results and information received through communication.
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In general, these aspects can be represented by statements expressed in an order-
sorted predicate language. The sorts of this language relevant for the mentioned
aspects are the following:

ACTION
INFORMATION_ELEMENT
SIGN

AGENT

The objects belonging to the different sorts change from system to system. The
relevant predicates belonging to the language are the following:

to_be_performed: ACTION
to_be_observed: INFORMATION_ELEMENT
observation_result: INFORMATION_ELEMENT X SIGN

communication_from_to: INFORMATION_ELEMENT X AGENT X AGENT

Using this language, it is possible to represent statements like communi-
cated_by(request(personal-assistant), pos, user(“Johnson’)). In this expression, the
application-specific parts are terms of sort INFORMATION_ELEMENT and
AGENT. This expression can be generated in the mediating system example if the
user identified as user(‘“Johnson”) initiates a request for a PA. Another example
expression particular to the example system is the representation of the decision to
add a PA component called pers_ass: to_be_performed(add(exists_comp-
(pers_ass))). Of course, for other applications, the content of the actions, informa-
tion elements, and agents are appropriate for those applications.

2.2. Information States

An understanding of system behavior can be obtained by describing the
semantics of the system; see, e.g., Ref. 9. The semantics can be studied from a
static and a dynamic perspective. The static semantics of a system specification can
be described by the information states of the system. In principle, an information
state 1 of a (part of a) system S (e.g., the overall system or an input or output
interface of an agent) is an assignment of truth values {true, false, unknown} to the
set of ground atoms describing the information within S. The language elements
used to form the ground atoms can be based on the state language of the system as
addressed in the previous section. Information states reflect the structure of the
system. Before a formal definition can be given, first, the structure of the system
has to be understood.

A compositional system, seen as a composed component, consists of a number
of components. A primitive component is a component that is not composed of
other components. The behavior of a compositional system is determined by the
specification of the composition relation and control specified over the compo-
nents. The composition relation refers to the possibilities of information transfer
between components. The control refers to activation sequences of component
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activations and information transfer occasions, and, therefore, to the run-time
dynamics of the system.

A component receives information as input and by its own processing gen-
erates information in its output interface. At each moment, the information state of
a component is defined by the information it has explicitly available in its
interfaces (i.e., the input and output interfaces) and the information it has explicitly
available internally at that moment.

An information state of a system is defined inductively as follows.

DEFINITION.  Information State: For any component C, input(C) denotes the input
interface of C, output(C) denotes the output interface of C, and sc(C) denotes the
set of subcomponents of C. For any D that is either a component or an interface
of a component, AT(D) denotes the set of ground atoms of the language used to
describe the information in D. Let TV be the set of truth values {false, unknown,
true}.

1. An information state of an interface D is a mapping I: AT(D) — TV. IS(D) denotes the
set of all information states of interface D.

2. An information state of a primitive component C is a tuple (I_input, I_output), where
Iinput is an information state of input(C) and I_output is an information state of
output(C); IS(C) denotes the set of all information states of C.

3. For component C, an interface information state is a pair ([_input, I_output), where
Linput is an information state of input(C), and I_output is an information state of
output(C). IntIS(C) denotes the set of all interface information states of C.

4. The set of all information states of a composed component C, is the set IS(C) =
IntIS(C) X I e e, IS(D). So that one information state of C is a tuple (I_int, I), where
I_int is an interface information state of C, and I € Il IS(D) is a tuple consisting
of information states of the different subcomponents of C.

5. The set of all possible information states of a system S is denoted by IS(S).

For example, consider a system S consisting of two components C1 and C2.
Assume that AT(Input(C1)) = AT(output(C1)) = {pl, p2}, AT(input(C2)) =
{p2}, and AT(output(C2)) = {p3}. Consider the following information states:

1. I1 € IS(input(C1)) is the information state of the input of C1 that is defined by
I1(pl) = true, I1(P2) = unknown.

2. 12 € IS(output(C1)) is the information state of the output of C1 that is defined by
I2(P1) = true, I12(p2) = false.

3. I3 € IS(input(C2)) is the information state of the input of C2 that is defined by
13(p2) = false.

4. I4 € IS(output(C2)) is the information state of the output of C2 that is defined by
14(p3) = true.

Then {{&, &), ((I1, I12), (I3, I4))) is an information state of S.

The foregoing definitions form a standard application of logic to represent
formally reality, in this case the state of a software system or component (Figure
2). Note that the languages needed to describe the information in two (interfaces
of) components can be different, but they may overlap. More details and a more
extensive definition of compositional information states can be found in Ref. 9.
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Figure 2. Information state.

The dynamic aspects of the semantics are based on evolutions of composi-
tional information states over time (Figure 3). A trace vy of S is a sequence of
information states (I"),cn in IS(S). Given a trace y of S, the information state of
the input interface of an agent A at time point ¢ is denoted by stateg(y, ¢, input(A)).
Analogously, stateg(vy, t, output(A)), denotes the information state of the output
interface of agent A at time point ¢ within system S. More details on formal
semantics of system specifications can be found in Refs. 9 and 10.

3. DESCRIBING DESIGNS

In the previous section, the static and dynamic semantics of systems in general
has been discussed. A number of agent-specific language elements have been
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Figure 3. Traces of information states.
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Table I. Important sorts in DL.

Sort Description

SP Sort for system parts; part names identify specific system components in the hierarchical
system structure, interfaces of those components, and connections between components

SPomp Sort for system components

SPrim Sort for primitive system components

SP; erface Sort for component interfaces (i.e., input or output)

SPinput Sort for component input interfaces

SPouiput Sort for component output interfaces

SCON Sort for connections between system components

SSIG Sort for signatures used by components

SKB Sort for knowledge bases of primitive system components

defined, but otherwise no application-specific language elements were presented.
The systems central to this work are self-modifying agent systems. Before speci-
fications can be given for such systems, an expressive and generic language needs
to be introduced that allows the representation of system configurations. The
language introduced here for that purpose is called design language (DL).

A characteristic of the systems studied in this article is that they have some
form of compositional architecture. The reader should note that the proposed
object-level language could be reformulated easily for different types of systems.
A method for the design of compositional multiagent systems is the design method
DESIRE,; cf. Ref. 11. The language DL introduced here has been developed for the
representation of compositional system designs. These systems consist of a number
of components that interact with each other through certain types of connections.
Components may or may not be composed of other components. Components that
are not composed are called primitive components. These components are defined
in terms of ingredients such as input and output interfaces, control loop, signatures,
embedded components (for nonprimitive components), and knowledge bases (for
primitive components). The configuration properties that are to be formalized
concern these ingredients and their structural relations. Although an exhaustive list
of all ingredients that may be used in these types of systems is beyond the scope
of this study, the most important ingredients are introduced.

The design language DL is an order-sorted language that expresses the
configuration of multiagent systems. The sorts in DL identify the ingredients in
such systems. Although an exhaustive enumeration of all sorts is out of the scope
of this study, some important sorts are mentioned in Table I.

These sorts are partially ordered: SP,;,,, < SP.omp < SP, SPy 00 < SPijerface <
SP, SPiput < SPineraces SCON < SP. For example, SP,;,, < SP states that primitive
components are system parts. For all sorts S a set of constants (i.e., {c|c is a constant
of sort S}) and a set of variables (i.e., { x: S|x is a variable of sort S}) are assumed. Also,
a set of n-ary functions (i.e., { /|f* is an n-ary function for any n}) is assumed. For
example, input: SP — SP is a function that maps components to their input parts. Given
the foregoing ingredients, the terms of the DL can be defined as follows:

1. If ¢ is a constant of sort S, then ¢ is a term of sort S.
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Table II. Examples of predicates in DL.

Predicate Description

exists_comp: SP Component exists

sub: SP X SP Subcomponent relation between system components
connected_to: SP X SP X SCON Components connected by connection
has_input_sign: SP X SSIG Component uses input signature

has_private_sign: SP X SSIG Component uses private signature

has_knowBase: SPprim X SKB Primitive component has knowledge base

2. If x: S is a variable of sort S, then x: S is a term of sort S.
3. Iff2 S, X --- X S, — §isan-ary function and ¢; is aterm of sort S, (i = 1, ...,
n), then f(¢,, ..., t,) is a term of sort S.

These terms refer to ingredients of the system, which can be related to each
other according to certain relations. These relations are denoted by sorted predicate
symbols. Some important predicates are mentioned in Table II.

Based on these sorted predicates, the formulas of the DL can be defined as
follows:

1. If p: §; X --- X S, is a n-ary predicate and ¢, (i = 1, ..., n) is a term of sort S,,
then P(¢,, ..., t,) is a formula of DL.
2. If E, and E, are formulas of DL, then E, A E, and —F, are formulas of DL.

Let sigy be a signature of language . The formula connected_to(agentp,,
agent;,, from_to;) A has_input_Signature(agentp,, sigs) is a design formula
expressing that the personal assistant agentp, is connected to the intermediate
agent agent;, by connection from_to; and the agent agent,, uses input signa-
ture sigy.

4. REASONING ABOUT SYSTEM CONFIGURATIONS

Within the scope of the example self-modifying agent-mediating system, DL
expressions are used by the MA and the environment component to represent
system configurations. The configuration of the system can be modified by exe-
cution of modification actions or plans that add/remove some system ingredients
to/from the system. The MA and the environment component use these modifica-
tion plans to modify the system configuration. Therefore, the language DL is
extended to allow agents to determine design modification plans and their execu-
tions. In addition to the expressions of these configuration languages, agents need
to represent knowledge about the domain of mediation. Therefore, a language,
called domain language (%), is assumed to express the knowledge about the
domain of mediation. Finally, the components in the agent-mediating system
communicate expressions from DL and 3 to exchange data about the domain of
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Table III. Sorts of CAL.

Sort Description

S S € sort(DL) U sort(X)

DEAT Sort for atomic formulas from DL

DEFOR Sort for formulas from DL

DEFOR* Sort for positive DL formulas (atomic formulas or conjunction of
positive formulas)

SFOR Sort for formulas from 3,

INFORMATION_ELEMENT Sort for formulas from 3 or DL

ACTION Sort for actions

SIGN Sort for truth values

AGENT Sort for agent names

mediation, the system configuration, and modification plans. The language, called
communication action language (CAL), is used to communicate these expressions.
The language CAL has terms that denote the expressions of DL and 3, and uses the
same predicates for communication, observation, and action determination as those
that were introduced in Section 2.

The language CAL has been developed to enable the expression of plans to
modify system configurations. These plans are addition or deletion commands that
add/delete an ingredient to/from a system. To express these plans, terms are needed
that denote system ingredients. Therefore, CAL terms will be generated for all DL
terms and formulas. For this purpose, all DL sorts have been imported into CAL
and the sort DEFOR has been introduced for terms that denote DL formulas.
Moreover, two new subsorts, DEAT and DEFOR ", respectively, have been intro-
duced for terms that denote DL atomic and positive formulas. A DL-positive
formula is one in which the negation symbol does not occur.

Furthermore, statements about the domain expressed in X also need to be
available as terms in CAL. Let sort(L), func(L), and pred(L) be the sets of sorts,
functions, and predicates from some language L, respectively. The sorts in CAL
are presented in Table IIL

Note that the following subsort relations hold: DEAT < DEFOR™ < DE-
FOR < INFORMATION_ELEMENT and XFOR < INFORMATION_ELE-
MENT. For all sorts a set of constants and a set of variables are assumed. The final
step to generate CAL terms for all DL expressions (DL terms and formulas) is to
introduce for each DL function and predicate a CAL function. Therefore, the
following CAL functions are introduced:

1. For L being either DL or 3 and all n-ary function f € func(L) and all sorts S, S, ...,
S, € sort(L), where f: §; X --- X §, — §, the functionf: §; X --- X §, > Sis
an imported function in CAL (function f from L corresponds with function f in CAL).

2. For L being either DL or ¥ and all n-ary predicates p € pred(L) and all sorts S, .. .,
S, € sort(L) where p: S; X --- X §,, predicate p is reformulated as a function p:
S, X --- X §, — DEAT and imported in CAL (predicate name p from L corresponds
to function name p in CAL).
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Also, for each logical connective that connects DL formulas, a CAL function
has been introduced as follows:

A: DEFOR" X DEFOR* — DEFOR™
A: DEFOR X DEFOR — DEFOR
=: DEFOR — DEFOR

Similarly, the logical connectives that operate on %, formulas are imported as
CAL functions. The functions in CAL, which correspond with DL or 2 functions
or predicates, are marked (by being underlined) in order to distinguish them from
their corresponding functions or predicates from DL and X. Whenever there is no
confusion, these underlying marks are left out. With the foregoing introductions,
all terms of DL and 3 are available in CAL, and all formulas of DL and 3, are
available as terms in CAL.

In addition to these functions, two specific plan-related functions have been
introduced in CAL that are used in to express plans for modification of system
configuration. These two plan-related functions are defined as follows:

add: DEFOR" — ACTION
delete: DEAT — ACTION

Note that the add function is not defined on negative DL formulas because
they do not specify a unique system configuration. Similarly, the delete function
has been defined only for atomic design expressions to avoid confusion in the
semantics of the action. If the delete action would have been defined for nonatomic
expressions, then what would, e.g., “delete(a A b)” mean? Would the deletion of
“a” be enough, or that of “b”?

For all sorts a set of constants and a set of variables are assumed. Given these
constants, variables, and functions, CAL terms are defined in the usual way. The
plans (CAL terms of sort ACTION) are limited to adding and deleting a positively
(resp. atomically) stated system configuration. The add function maps a positive
DL formula to a plan, which when executed will result in a larger system
configuration. The positive DL formula, which is the argument of the add function,
specifies the system ingredients that should be added to the system.

As an example of CAL terms, consider the following expression:

add(connected_to(agentp,, agent;,, from_to;)
A has_input_signature(agentp,, sigs))

This expression denotes a plan to create a system consisting of agent,, and agent,; 5
that are connected by connection from_to; and, moreover, agentp, uses the input
signature sigs. The function add should be interpreted as adding all system
elements that occur in the design formula but not yet included in the system in the
given relation.

The language CAL has the following predicates:
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to_be_performed: ACTION
to_be_observed: INFORMATION_ELEMENT
observation_result: INFORMATION_ELEMENT X SIGN

communication_from_to: INFORMATION_ELEMENT X AGENT X AGENT

Based on the defined terms of the predicates, the formulas of CAL can be
defined as follows:

1. If p: §; X --- X §, is a n-ary predicate and ¢, is aterm of sort S; (i = 1, ..., n),
then p(¢,, ..., t,) is an atomic formula of the communication action language CAL.

2. All atomic CAL formulas are CAL formulas.

3. If E, E, and E, are CAL formulas, then —E and E, A E, are CAL formulas.

As an example of a CAL formula, consider the following expression:
to_be_performed(add(connected_to(agentp,, agent;,, from_tos)
A has_input_signature(agentp,, sigs)))

is a design communication formula, which states that the add-action should be
performed.

5. REQUIREMENT LANGUAGE

In this section, a requirement language is introduced to specify and verify
requirements for self-modifying agent systems. Some examples are presented that
are based on the example mediating system. This requirement language depends
and builds on the language CAL used by the agents to represent and communicate
information about either the domain of mediation or the system configuration.

Based on the language CAL, we define the temporal configuration require-
ments language (TCRL) to specify and verify the dynamic (information and
configuration) behavior of agent-mediating systems. In general, requirements can
be distinguished into two types: information requirements and configuration re-
quirements. Information requirements formulate properties related to the domain
knowledge and configuration properties formulate properties related to the system
configuration. It is important to note that the introduction of the environment
component in the example agent-mediating system and its causal relation with the
actual environment make it possible to consider configuration properties as a
specific type of information properties. In fact, the causal relation makes it possible
to derive configuration properties of the system from its representation in the
environment component.

Expressions of the languages DL and CAL are used by the components in the
agent-mediating systems, while the expressions of the requirement language are
used by an external observer to specify the (information and configuration)
properties of the system behavior. In that sense, TCRL is a metalanguage with
respect to DL and CAL.
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Table IV. Sorts of TCRL.

Sort Description

S S € sort(CAL)

FOR Sort for formulas from CAL
My Sort for restricted states

M Sort for complete states

T Sort for time

r Sort for trace

The requirement language TCRL is defined to express properties or require-
ments of agent-mediated systems concerning either their configuration behavior or
their information behavior. Configuration behavior addresses questions such as
“what will be the system configuration if the MA communicates a CAL expression
to the environment component?” Information behavior addresses questions such as
“what will be the system information state if a component sends an expression to
another component?”

Thus, TCRL has been designed to allow the formulation of expressions
concerning the configuration and information behavior of a system through time.
For this reason, TCRL contains terms that denote system states, system traces, and
time. System states and traces are introduced in Section 2. In light of the require-
ments that need to be formulated, a system state addresses both the information
content of the system and the structural configuration state of the system. More-
over, TCRL contains predicates to represent relations between those terms. Thus,
TCRL expressions can be used to specify properties of the configuration and
information behavior of a system through time.

For any order-sorted predicate language L, sorts, functions, and predicates
from L are denoted by sort(L), func(L), and pred(L), respectively. The sorts in
TCRL are mentioned in Table IV.

The sort FOR is for TCRL terms that denote CAL formulas; M, and M . are
sorts for terms that denote, respectively, a part of the system state and a complete
system state; T is the sort for terms that denote time points; and, finally, I' is the
sort for terms that denote system traces. Note that the order of sorts preserves under
the import relation between languages. For example, the following orders exist
among the imported sorts in TCRL: SP,,, < SP, SP; citace < SPcomps SPinpuc <
SPeraces SPoutput < SPinterface- Furthermore, DEFOR < FOR and ZFOR < FOR.

For all sorts, a set of constants and a set of variables are assumed. For all n-ary

functions f € func(CAL) and all sorts S, S, ..., S, € sort(CAL), where f:
S, X --- X §, — 8, the function f: §; X --- X §, — S is an imported function
in TCRL. Also, for all n-ary predicate p € pred(CAL) and all sorts S,, ..., S, €

sort(CAL), where p: §; X --- X §,, predicate p is reformulated as a function p:
S, X --+ X S, — FOR and imported in TCRL. Finally, logical connectives that
operate on CAL formulas are imported as functions, e.g.,

At FOR X FOR — FOR
—: FOR — FOR
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Table V. Predicates of TCRL.

Predicate Description

<:TXT Time-ordering relation

holds_info_r: M, X FOR X SIGN Formula holds a truth value indicated by sign in a
state

holds_info_c: M X FOR X SP; . tace X SIGN Formula holds a truth value indicated by
sign in an interface state of a component

holds_struct_r: M, X DEFOR X SIGN Design formula holds a truth value indicated by
sign in a state

holds_struct_c: M~ X DEFOR X SP X SIGN Design formula holds a truth value indicated by

sign in a state of a component

Some specific functions for the trace requirement language TCRL are as follows:

input: SP — SP

comp input
OWPW-' SPcomp - SPoutput
state_r: T’ X T X SP,ierface — Mg

state_c: ' X T — M,

Given the functions as defined here, the terms of TCRL are defined in the
usual way. To specify the behavior of the system through time, predicates are
introduced that express the validity of formulas regarding either the information
state of the system (FOR) or the state of configuration of the system (DEFOR)
at particular time points. These predicates are hold_info_r, hold_struct_r,
hold_info-c, and hold_struct_c. The difference between these predicates is that the
“_c” predicates express the validity of a formula with respect to a complete state
whereas the “_r” predicates express the validity of a formula with respect to a
partial state. This distinction is useful because one and the same formula from FOR
can be used by different components and thus have different truth values in those
different components. The “_info_” predicates refer to the validity of a formula
with respect to information states; “_struct_" predicates refer to structural states of
the system (system configuration). These predicates are mentioned in Table V.

Formulas of TCRL are defined in the usual way:

1. Iftp: §; X --- X §, is a n-ary predicate and ¢, is a term of sort S; (i = 1, ..., n),
then p(t,, ..., t,) is an expression of the requirement language TCRL.

2. If E, and E, are TCRL expressions and x: S is a variable of sort S, then E, A E,, E,
> E,, =E,, Yx: S E,, dx: S E, are formulas of TCRL.

Let 6 be a design formula of sort DEFOR, agent,,, is the MA, let SYS denote
the whole multiagent system, and then the following TCRL formula states that in
all system traces and at any time point if the output of the MA is a communication
formula expressing a creation action (i.e., to_be_performed(add(d))); then, some
time later the system is modified according to the creation action:
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TCRL

CAL

N

DL z

Figure 4. Import relation between languages.

V v: T, 3 #: T[holds_info_c(state_c(y: T, t: T), to_be_performed(add(5)),
output(agenty,), true) >
J¢"T[:T>:TA
holds_struct_c(state_c(y: I', ¢': T), 8, SYS, true))]

In the following, quantified expressions such as “3 ¢t": T, t": T>t: T A ---"
are abbreviated to “3 ¢': T > . T ---".

Note that there is an ordering relation between defined languages (DL, CAL,
2., and TCRL) according to which one language imports terms and formulas from
another language. This import ordering relation is illustrated in Figure 4.

6. REQUIREMENTS FOR AN EXAMPLE SCENARIO

In this section, we use the requirement language TCRL to express a number
of requirements that specify relevant properties concerning both configuration as
well as information behavior of agent-mediated systems. To motivate these re-
quirements, we introduce a scenario where the system configuration is modified.

6.1. Example Scenario

Consider a scenario for a system consisting of three components called User
Agent (UA), MA, and EW. At a certain time point, the UA may need a PA agent
and communicates an appropriate request to the MA. The MA generates an action
(to be executed in the environment) to create a PA agent for the UA. After the PA
agent is created (now the system consists of four components), the UA can
communicate with its PA agent and require certain information to be provided by
the PA agent. This scenario can be described as the following sequence of pairs
indicating the system configuration and the system information states, respectively:

1. System structure consists of UA, MA, and EW; UA (internally) identifies the need for
a PA.

2. System structure consists of UA, MA, and EW; UA generates a service request on its
output for PA.
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Table VI. State transition operations.

Operation In scenario Explication
Communication initiation 1—2 UA: need for PA
6—>17 UA: specific info need
8§ —>9 PA: fitting answer
Communication event 2—3 UA to MA: requests a PA
7—>8 UA to PA: specific info request
9—10 PA to UA: fitting answer
Action initiation 3—>4 MA decides to create PA
(World) interaction event 4 — 5 MA to EW: add(PA)
Action execution 5—6 EW executes add(PA)

3. System structure consists of UA, MA, and EW; MA has the user service request for PA
on its input.
4. System structure consists of UA, MA, and EW; MA generates to_be_performed
(add(PA)) on its output.
5. System structure consists of UA, MA, and EW; EW has to_be_performed(add(PA)) on
its input.
6. System structure consists of UA, MA, EW, and PA; EW has E (the effect of add(PA))
on its output; UA (internally) identifies which specific information is needed.
7. System structure consists of UA, MA, EW, and PA; UA generates information request
on its output.
8. System structure consists of UA, MA, EW, and PA; PA has the information request on
its input; PA (internally) identifies a fitting answer.
9. System structure consists of UA, MA, EW, and PA; PA has an answer to the
information request on its output.
10. System structure consists of UA, MA, EW, and PA; UA has the answer on its input.

Given the foregoing sequence of system states, the following types of state
transition operations can be distinguished: communication initiation, communica-
tion event, action initiation, (world) interaction event, and action execution. In
Table VI the state transition operations within the example scenario are explicated.

6.2. Relevant Properties

In this section, the requirement language TCRL is used to specify some
important properties of the system in the scenario mentioned previously. These
properties are distinguished into three classes called global, basic, and semantic
properties. The global properties concern the behavior of the system as a whole;
the basic properties concern the behavior of the system parts; and the semantic
properties are the assumed generic properties for the type of system.

6.2.1. Global Properties

Two important global properties for the example mentioned previously are
specified by the following requirements.
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GRI (UA-EW Impact). If at time point ¢ the agent UA generates a service
request Q to MA on its output, and there exists a design description E such that E
would realize Q, then a time point ' > ¢ exists such that EW has such an E on
its output.

V y: T, t: T, Q: SLTERM

[ holds_info_r(state_r(y: ', t: T, output(UA)),

communication_from_to(Q: SLTERM, UA, MA), true)

A J E: DEFOR structure_realizes_service(E: DEFOR, Q: SLTERM)
=

d¢:T >t T3 E: DEFOR

structure_realizes_service(E: DEFOR,

Q: SLTERM)

A holds_info_r(state_r(vy: T', t': T, output(EW)), E: DEFOR, true)

]

Note that SLTERM is an assumed sort that refers to the service language
terms by which the user denotes the kind of service (s)he is interested in. Examples
that illustrate SLTERM expressions are “request(personal-assistant)” and “request
(car-brokering-system).”

GR2 (Creation Successfulness). If at time point ¢ the agent UA generates a
service request Q (e.g., for having a PA) to MA on its output, and R is the behavior
required for service request Q, then a time point ¢ > ¢ exists such that the system
configuration contains the necessary structure (e.g., pers_ass) and the system
shows behavior R.

V vy: T, t: T, Q: SLTERM
[ holds_info_r(state_r(y: I', t: T, output(UA) ),
communication_from_to(Q: SLTERM, UA, MA), true)
A J E: DEFOR, d1: T, d2: T
[ structure_realizes_service(E: DEFOR, Q: SLTERM) A
SBI1Rx(E: DEFOR, dl1: T, d2: T) ]
=
d¢:T>1tT,E: DEFOR, dl: T, d2: T
[ structure_realizes_service(E': DEFOR, Q: SLTERM)
A holds_info_r(state_r(vy: T', t': T, output(EW)), E’': DEFOR, true)
A SB14(E': DEFOR, d1: T, d2: T)
AY tl: T, 2:T,t3: T, t4: T
[ 2: T —1t1: T=dl1:T
AL T=3:T<=t2:T—d2: T
At T —13:T=d2: T
> R(y: T, 13: T, t4: T, pers_ass) | ]
1
The term SB1, is a scheme of properties that relate a structure £: DEFOR to
behavior R. The occurrence of R makes it a scheme. The terms SB1; and R
occurring in this property are defined and explained in Section 6.2.9.
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6.2.2. Basic Properties

The basic properties are divided in three subclasses called agent properties,
world properties, and transfer properties. These properties are defined as follows.

6.2.3. Agent Properties

An agent property refers to the behavior of a specific agent. An important
agent property for the example mentioned previously is specified by the following
requirement.

ARI (MA Action Initiation Successfulness). If at time point ¢ the agent MA
has a service request Q (e.g., a request for a PA) on its input, and there exists an
E which is a system configuration that can satisfy the service request Q, then a time
point ' > ¢ exists such that MA for such an E has to_be_performed(add(E)) on
its output.

V y: T, t: T, Q: SLTERM,
[ holds_info_r(state_r(y: I', t: T, input(MA)),
communication_from_to(Q: SLTERM, UA, MA), true)
A 1 E: DEFOR structure_realizes_service(E: DEFOR, Q: SLTERM)
A — d E': DEFOR
[ holds_info_r(state_r(y: I', t: T, input(MA)),
observation_result(E’': DEFOR, pos), true)
A structure_realizes_service(E': DEFOR, Q: SLTERM) |
=
d¢: T >+t T JE: DEFOR
[structure_realizes_service (E: DEFOR, Q: SLTERM)
A holds_info_r(state_r(y: T', t': T, output(MA)),
to_be_performed(add(E: DEFOR)), true)
A V E": DEFOR
[ structure_realizes_service(E”": DEFOR, Q: SLTERM)
A holds_info_r(state_r(y: T', t': T, output(MA)),
to_be_performed(add(E": DEFOR)), true) ]
A equal(E: DEFOR, E”: DEFOR) ]

6.2.4. World Properties

The required properties of the behavior of the environment component are
specified as follows.

ERI (EW Action Execution Successfulness). If at time point ¢ the world
component EW has to_be_performed(«) on its input, and B is the effect of
performing «, then a time point t' > ¢ exists such that EW has 8 on its output.
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V y: T', t: T, a: ACTION, B: DEFOR,
[ holds_info_r(state_r(-y: I', t: T, input(EW) ),
to_be_performed(a: ACTION), true)
=
d¢:T>T
[ holds_info_r(state_r(y: I', ¢': T, output(EW) ), B: DEFOR, true)
A is_effect_of(B: DEFOR, a: ACTION) ]|
]

where the predicate is_effect_of(3, «) is defined as follows:

YV x: DEFOR™ is_effect_of(x, add(x))
YV x: DEAT is_effect_of(—x, delete(x))

6.2.5. Transfer Properties

The transfer properties specify that information transfer between agents takes
place in a proper manner. Two important transfer properties are specified by the
following requirements.

TRI (Transfer UA-MA). If at time point ¢ the agent UA generates a request for
MA on its output, then a time point ¢’ > ¢ exists such that MA has this request on
its input

Vy: T, ¢t T, o: FOR
[ holds_info_r(state_r(y: ', t: T, output(UA)),
communication_from_to(¢: FOR, UA, MA), true)
=
3¢ T>nT
holds_info_r(state_r(vy: T', t': T, input(MA)),
communication_from_to(¢: FOR, UA, MA), true)
1
Note that the property TR1 also could be specified using a variables over SP
instead of the specific references to output(UA) and input(MA). The TR1 property
then can be instantiated for every information transfer between components by
instantiating the proper interfaces of those components for the variables over SP.

TR2 (Transfer MA-EW). If at time point ¢ the agent MA generates to_be_per-
formed(a) for EW on its output (Note that « is of type ACTION such that it is
either add(E) or delete(E)), then a time point ' > ¢ exists such that EW has
to_be_performed(a) on its input.

Vy: T, t: T, a: ACTION
[ holds_info_r(state_r(y: I', t: T, output(MA)),
to_be_performed(a: ACTION), true)

>
¢ T>nT
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holds_info_r(state_r(ry: T', t': T, input(EW)),
to_be_performed(a: ACTION), true)
]

6.2.6. Semantic and Coherence Properties

The semantic properties specify the assumed generic properties of the system.
The following semantic properties are distinguished.

6.2.7. Semantic Properties

This property guarantees that if a system description holds in (the informa-
tional state of) the environment, then the actual system configuration (its structural
state) is indeed described by that description.

RAI. If at time point ¢ in trace y the world component EW has description E
on its output, then at time point ¢ in trace 7y the system has structure E (i.e., the
system description E is true).

V vy: T', t: T, E: DEFOR
[ holds_info_r(state_r(y: I', #: T, output(EW)), E: DEFOR, true)
=

holds_struct_c(state_c(vy: I', ¢: T), E: DEFOR, true) ]

6.2.8. Coherence Property

The coherence properties specify a relation between the informational and
structural states of the actual system at any point in time. Two important properties
that guarantee the coherency of the system are as follows:

CAl. At any time ¢ in any trace <y if a formula has a truth value in the
informational state for a specific system part, then this system part actually is part
of the system structure (in the structural state).

Vy: T, T, C: SP, ¢: FOR, E: DEFOR, tv: TV
[ holds_info_r(state_r(y: I', t: T, interface(C: SP) ), ¢: FOR, tv: TV)
=
3 3: SSIG
[ holds_struct_r(state_r(-y: I', #: T, SYS), exists_comp(C: SP), true)
A holds_struct_r(state_r(y: I', t: T, SYS),
has_interface_signature(3: SSIG, C: SP), true)
A holds_struct_r(state_r(y: I', t: T, SYS),
is_formula_of(¢: FOR, 2: SSIG), true) ]



296 DASTANI, JONKER, AND TREUR

CA2. At any time ¢ in any trace v if the system has a certain structure (in its
structural state), then the formulas that can be evaluated in this system structure
have truth values (in the system’s informational state).

V v: T, . T, C: SP, ¢: FOR, E: DEFOR, X: SSIG
[ [ holds_struct_r(state_r(y: I', #: T, SYS), exists_comp(C: SP), true)
A holds_struct_r(state_r(y: I', t: T, SYS),
has_interface_signature(3: SSIG, C: SP), true)
A holds_struct_r(state_r(vy: I', t: T, SYS),
is_formula_of(¢: FOR, X: SSIG), true) ]
=
d tv: TV
holds_info_r(state_r(-y: T', t: T, interface(C: SP) ), ¢: FOR, tv: TV)
]

6.2.9. Structure-Behavior Properties

In this section (required), behavior is related to structure properties and
service requests. In this section R(y: I', ¢t1: T, t2: T, C: SP) stands for a scheme
of behavioral requirements that can be instantiated by a specific requirement. As an
example, pers_ass_req(ry: I', t1: T, ¢2: T, C: SP) denotes the requirement that if
a component C receives a request on its input, then the component C produces an
answer within a reasonable time for that request on its output. In the formalization
of this requirement INFO is a sort for the content of requests and answers:

V A: INFO

[ holds_info_r(state_r(-y: I', t1: T, input(C: SP) ), request(A: INFO), true)

=

3t T, 4 B: INFO

| t1: T=t:T=<1t1:T+ 2: T
A holds_info_r(state_r(y: T', t: T, output(C: SP) ),
answer_for(B: INFO), true) ]

1

By defining such abbreviations for the requirements of interest for the system
in question, a powerful scheme of structure-behavior properties can be formulated:
SB1, and SB2,.

Let SB1,; (E: DEFOR, d1: T, d2: T) denote the following scheme of
structure-behavior properties: If between time points #1 and ¢2 the system has
structure E: DEFOR, then R is true between 1 and 12 — d2 for all periods of
sufficient length (d1 minimum):

Voy:T,Vet1:T,2: T, t3: T, t4: T

[ 2:T—1¢t1:T=dl:T

AV te [tl: T, 12: T
holds_struct_c(state_c(vy: I', ¢: T), E: DEFOR, true)
Atl: T=st3: T<1t2:T—d2: T
Atd: T —13: T=d2: T
]
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=
R(y: T, £3: T, t4: T, pers_ass)

]

In the next structure-behavior scheme of properties SB2, the link is made
between a service request Q, the behavior R that satisfies O, and the possible
structures E: DEFOR that can realize R. Scheme SB2, denotes the following
scheme of structure-behavior properties:

V Q: SLTERM
[ intended_servicex(Q: SLTERM)
>
3 E: DEFOR, d1: T, d2: T
[ SB14(E: DEFOR, d1: T, d2: T)
A structure_realizes_service(E: DEFOR, Q: SLTERM) ]
]

This scheme expresses that for all service requests Q, if by expressing Q the user
intends to obtain the service specified by R, then a system configuration E exists
such that the structure E can be used to realize the requested service Q, and that
(SB1,) the intended service R will indeed be delivered under the condition that the
system satisfies configuration E during an appripriate time.

7. SYSTEM EVALUATION

Development of a system is only then complete when the system behavior is
verified against the required properties. In Section 3, certain properties for the
proposed scenario system have been introduced. Verifying such properties may be
quite complex. This section shows that such complexity can be reduced by
introducing appropriate intermediate properties. By means of the intermediate
properties the global properties can be proved more easily and more efficiently by
using proof patterns. The intermediate properties can be derived from basic
properties.

7.1. Intermediate Properties

In this article, intermediate properties are chosen so that they specify the
output/output relations between different system components. The reason for
formulating them in that format is the ease with which they can be used in proof
patterns. Two important intermediate properties are as follows.

IR1 (UA-MA Interaction). If at time point ¢ the agent UA generates a service
request Q for MA on its output, and there exists an E which is a structure with
which Q can be realized, then, if necessary to service the request, a time point ¢’
> t exists such that MA for such an E has to_be_performed(add(E)) on its output.

Vy: T, T, Q: SLTERM
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[ holds_info_r(state_r(y: I', £: T, output(UA) ),
communication_from_to(Q: SLTERM, UA, MA), true)
A J E: DEFOR structure_realizes_service(E: DEFOR, Q: SLTERM)
A = 3 E': DEFOR
[ holds_info_r(state_r(y: ', t: T, output(EW)),
observation_result(E’: DEFOR, pos), true)
A structure_realizes_service(E': DEFOR, Q: SLTERM) ]
=
d+¢': T >t T, E: DEFOR structure_realizes_service
(E: DEFOR, Q: SLTERM) A
[ holds_info_r(state_r(y: I', ¢t': T, output(MA)),
to_be_performed(add(E: DEFOR)), true)
A VYV E": DEFOR
[ structure_realizes_service(E”: DEFOR, Q: SLTERM)
A holds_info_r(state_r(vy: T', t': T, output(MA) ),
to_be_performed(add(E": DEFOR) ), true)
=
equal(E: DEFOR, E”: DEFOR)
]
]
]

IR2 (MA-EW Interaction). If at time point + MA has an action (e.g.,
to_be_performed(add(E)) or to_be_performed(delete(£))) on its output, then a
time point ¢ > ¢ exists such that the output of EW reflects the effect of the action
(e.g., E is, respectively, is not on its output).

V y: T', t: T, a: ACTION, B: DEFOR
[ holds_info_r(state_r(y: I', #: T, output(MA) ),
to_be_performed(a: ACTION), true)
A is_effect_of(B: DEFOR, a: ACTION)
=
¢ T>nT
holds_info_r(state_r(vy: I', ¢': T, output(EW) ), B: DEFOR, true)

7.2. The Use of Proof Patterns

The following logical relationships hold between the different properties.

1. Intermediate properties are implied by transfer properties and agent or world proper-
ties:
TR1 & AR1 = IR1
TR2 & ER1 = IR2
2. Intermediate properties can be chained to indirect interaction properties expressing
indirect impact of one component on another one:
IR1 & IR2 = GRI
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3. Indirect intermediate properties imply the global properties, assuming representation
and coherence properties and structure-behavior relationships:
GR1 & RA1 & CAl & SB2 = GR2

7.3. Checking Properties

Given a trace or set of traces, all of the aforementioned properties can be checked
automatically. To this end, a software environment has been developed in Prolog. If,
e.g., the property GR2 is checked, the outcome can be one of the following:

1. Indeed GR2 satisfied

2. GR?2 is dissatisfied; in this case, given the logical relationships defined by the proof
patterns, at least some of the basic properties also are dissatisfied; which one(s) also
can be found by running the checking software for all of the basic properties; the
outcome of this check points to where the problem originates.

For more details of this model-checking environment and its use in diagnosis, see
Ref. 12.

8. DISCUSSION

The requirements specification language introduced in this study can be used
in a number of ways. First, it allows for specification of requirements on the system
structure over time. Most other requirement languages (e.g., Refs. 7, 13 and 14)
only allow for specification of informational system states, for a given, fixed
system structure. In our language it is possible to refer to both the structural state
of the system and the informational state of it.

A second use is that a broad class of behavioral properties can be specified of the
system or of specific parts of the system, e.g., agents. Not only can, e.g., reactiveness
and proactiveness properties be specified, but also properties expressing adaptive
behavior, such as “exercise improves skill,” which are relative to (comparing two
alternatives for) the history can be expressed in this language (in standard forms of
temporal logic different alternative histories can not be compared).

A third and more sophisticated use is to specify requirements on the
dynamics of the process of modification of the system structure over time, e.g.,
as initiated and performed by the system (e.g., one of its agents) itself. Here,
requirements on, e.g., agent behavior and the dynamics of the system structure
and their relationships can be specified. For example, it can be expressed
whether a system modification initiation by one of the agents occurs and
whether it is successful.

Requirements can be specified at different levels of aggregation. For example,
a requirement for the overall system can be refined into requirements of different
parts of the system, i.e., requirements on specific agents and on specific interactions
between agents, which, together, logically imply the global requirement. For more
details of refinement in the context of compositional verification of multiagent
systems, see Ref. 10.
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For all different types of requirements discussed and for a given set of traces,
the requirements can be verified automatically. By specifying the refinement of a
requirement for the overall system, it is possible to perform a diagnosis of
malfunctioning of the system. If the overall requirement fails on a given trace, then,
subsequently, all refined requirements for the parts of the system can be verified
against that trace; the cause of the malfunctioning can be attributed to the part(s)
of the system for which the refined requirement(s) fail(s) (see Ref. 12).
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