
DOI 10.1007/s10115-002-0083-4
Springer-Verlag London Ltd. © 2003
Knowledge and Information Systems (2003) 5: 337–367

Compositional Verification of Knowledge-Based
Task Models and Problem-Solving Methods

Frank Cornelissen, Catholijn M. Jonker and Jan Treur
Department of Artificial Intelligence, Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands

Abstract. In this paper a compositional verification method for task models and problem-solving
methods for knowledge-based systems is introduced. Required properties of a system are formally
verified by deriving them from assumptions that themselves are properties of sub-components,
which in their turn may be derived from assumptions on sub-sub-components, and so on. The
method is based on properties that are formalized in terms of temporal semantics; both static and
dynamic properties are covered. The compositional verification method imposes structure on the
verification process. Because of the possibility of focusing at one level of abstraction (information
and process hiding), compositional verification provides transparency and limits the complexity
per level. Since verification proofs are structured in a compositional manner, they can be reused
in the event of reuse of models or modification of an existing system. The method is illustrated
for a generic model for diagnostic reasoning.

Keywords: Compositional verification; Diagnostic reasoning model; Formal compositional mod-
eling; Knowledge-based systems

1. Introduction

When designing complex knowledge-based systems, it is often hard to guarantee that the
specification of a system that has been designed actually fulfills the needs, i.e., whether
it satisfies the design requirements. Especially for critical applications, for example in
aerospace domains, there is a need to prove that the designed system will have certain
properties under certain conditions (assumptions). While developing a proof of such
properties, the assumptions that define the bounds within which the system will function
properly are generated. It often takes a lot of effort to perform – for each application –
such a verification in the form of a formal analysis of when the system will function
properly. For this reason verification is usually left out of the development process.

Received 12 October 2000
Revised 25 July 2001
Accepted 4 February 2002

338 F. Cornelissen et al.

In structured development methods for knowledge-based systems such as Com-
monKADS (Schreiber et al., 2000) and DESIRE (Brazier et al., 1999b, 2000), during
design an important role is played by generic models for tasks, i.e., problem-solving
methods, and domain-specific instantiations of such generic models. The use of generic
models has the advantage that all effort spent on such a model isreusable in all appli-
cations of the model. Therefore, verification efforts related togeneric models are much
more efficient, as they can be performed for one generic model but applied in a large
class of applications. The idea is that within the library of generic models formal anal-
ysis is included. When a generic model is applied, from the formal analysis it can be
read which assumptions on the domain knowledge have to be fulfilled in order to obtain
a proper functioning application.

In this paper, in Section 3 a structured verification method for compositionaltask
models and problem-solving methods (compositional generic models, for short) is in-
troduced, called compositional verification. Roughly speaking, therequirements of the
whole system are formally verified by deriving them from assumptions that themselves
are properties of sub-components, which in their turn may be derived from assumptions
on sub-sub-components, and so on. This process ends when primitive components are
reached: components that are not composed, but specified by means of a knowledge
base (or any other means).

The method introduced here is illustrated for a compositional generic (process)
model for diagnostic reasoning. For this generic model, requirements are formulated
(both the required static and dynamic properties), and a compositional specification is
introduced in Section 4. The compositional specification is based on a process com-
position that specifies how the main process is composed of the process hypothesis
determination and hypothesis validation, and how the sub-process hypothesis valida-
tion is composed of the process observation determination, observation execution and
hypothesis evaluation. The compositional specification itself is expressed in the mod-
eling framework of DESIRE, briefly described in Section 2. The application of the
compositional verification method to the diagnostic process model is presented in Sec-
tion 5 (top level of the composition), Section 6 (lower level), and Section 7 (primitive
components). The Appendix shows some of the details of the proofs.

2. Compositional Modeling of Knowledge-Based Systems

The generic diagnostic process model described in this paper has been modeled using
the compositional design method DESIRE for knowledge-based systems and agent
systems (DEsign and Specification of Interacting REasoning components; see Brazier
et al., 1999b). A number of compositional generic models for agents and tasks have been
developed and used for a number of applications. The architectures upon which compo-
sitional specifications are based are the result of analysis of the tasks performed. Process
compositions for a task include specifications of interaction between processes at each
process abstraction level within a task. Models specified within DESIRE are defined
according to the following compositional structure, which will be briefly discussed in
Sections 2.1–2.3:

• process composition:

– identification of processes at different abstraction levels and task delegation;
– process composition relation: information exchange and task control;

Compositional Verification of Knowledge-Based Task Models and Problem-Solving Methods 339

• knowledge composition:

– identification of information types and knowledge bases;
– knowledge composition relation between information types and knowledge bases;

• relation between process and knowledge composition.

2.1. Process Composition

Process composition identifies the relevant processes at different levels of (process)
abstraction, and describes how a process can be defined in terms of (is composed of)
lower-level processes.

2.1.1. Identification of Processes at Different Levels of Abstraction

Processes can be described at different levels of abstraction; for example, the process
of the task as a whole, processes defined by specific sub-tasks, and so on. The iden-
tified processes are modeled as components. For each process the input and output
information types are modeled. The identified levels of process abstraction are mod-
eled as abstraction/specialization relations between components: components may be
composed of other components or they may be primitive. Primitive components may be
either reasoning components (i.e., based on a knowledge base) or components capable
of performing tasks such as calculation, information retrieval, and optimization. These
levels of process abstraction provide process hiding at each level.

2.1.2. Composition of Processes

The way in which processes at one level of abstraction are composed of processes at
the adjacent lower abstraction level is called process composition. This composition of
processes is described by a specification of information links, i.e., the possibilities for
information exchange between processes (static view on the composition), and a speci-
fication of task control knowledge used to control processes and information exchange
(dynamic view on the composition). An essential element of the process composition
is the set of information links that relate information at a level of process abstraction
to the next higher level (called mediating links). The specification of these links (i.e.,
a kind of table) defines exactly which information can be exchanged from the lower to
the higher level, and which information can be exchanged from the higher to the lower
level of process abstraction.

2.2. Knowledge Composition

Knowledge composition identifies the knowledge structures at different levels of (knowl-
edge) abstraction, and describes how a knowledge structure can be defined in terms of
lower-level knowledge structures. The knowledge abstraction levels may correspond to
the process abstraction levels, but this is often not the case.

2.2.1. Identification of Knowledge Structures at Different Abstraction Levels

The two main structures used as building blocks to model knowledge are: information
types and knowledge bases. Knowledge structures can be identified and described at
different levels of abstraction. At higher levels details can be hidden. An information
type defines an ontology (lexicon, vocabulary) to describe objects or terms, their sorts,

340 F. Cornelissen et al.

and the relations or functions that can be defined on these objects. Information types
can logically be represented in order-sorted predicate logic. A knowledge base defines
a part of the knowledge that is used in one or more of the processes. Knowledge is
represented by formulae in order-sorted predicate logic, which can be normalized by a
standard transformation into rules.

2.2.2. Composition of Knowledge Structures

Information types can be composed of more specific information types, following the
principle of compositionality discussed above. Similarly, knowledge bases can be com-
posed of more specific knowledge bases. The compositional structure is based on the
different levels of knowledge abstraction distinguished, and results in information and
knowledge hiding.

2.3. Relation Between Process and Knowledge Composition

Each process in a process composition uses knowledge structures. Which knowledge
structures are used for which processes is defined by the relation between process com-
position and knowledge composition.

The semantics of the modeling language are based on temporal logic (Brazier
et al., 1999b). Design is supported by graphical tools within the DESIRE software
environment. Translation to an operational system is straightforward; the software en-
vironment includes implementation generators with which formal specifications can be
translated into executable code. DESIRE has been successfully applied to design both
single-agent and multi-agent knowledge-based systems. Over the years, DESIRE has
been used to design prototype knowledge-based systems for a wide variety of applica-
tions, often in projects paid for by industry. For example, knowledge-based systems for
diagnosis of chemical (Nylon production) processes (Brazier et al., 2000), biochemical
process control for penicillin production (Jonker and Treur, 1999), ecological monitor-
ing (Beusekom et al., 1998), and design of sets of measures for environmental policy
making (Brazier et al., 1996). Moreover, prototype multi-agent applications have been
developed using DESIRE for, among others, distributed work flow scheduling for a
call center (Brazier et al., 1999b), negotiation for load balancing of electricity use
(Brazier et al., 1998), multi-attribute negotiation in electronic commerce (Jonker and
Treur, 2001), and information brokering (Jonker and Vollebregt, 2000). All of these
applications have been designed in a compositional manner using DESIRE. However,
only a few of them have been verified. The subsequent section describes a method to
support such compositional verification.

3. Compositional Verification

The purpose of verification is to prove that, under a certain set of assumptions, a system
will adhere to a certain set of properties, for example the design requirements. In our
approach, this is done by a mathematical proof (i.e., a proof in the form mathematicians
are accustomed to do) that the specification of the system together with the assumptions
implies the properties that it needs to fulfill.

Compositional Verification of Knowledge-Based Task Models and Problem-Solving Methods 341

required properties

of top level component

/ | \
assumptions =

properties of next lower level components

/ | \ / | \ / | \
.

(and so on)

.

/ | \ / | \ / | \ / | \ / | \
properties of primitive components

Fig. 1. Hierarchical relations between properties in compositional verification.

3.1. The Compositional Verification Method

A compositional system can be viewed at different levels of abstraction. Viewed from
the top level, denoted by L0, the complete system is one component D, with inter-
faces, whereas internal information and processes are hidden (information and pro-
cess hiding). At the next lower level of abstraction, the top-level component D can
be viewed as a composition of sub-components, information links, and task control.
The compositional verification method takes into account this compositional struc-
ture. The primitive reasoning components can be verified using more traditional ver-
ification methods such as described in Treur and Willems (1994) and Leemans et al.
(2002). Verification of a composed component is done using properties of the sub-
components it embeds and the task control knowledge. This introduces a form of
compositionality in the verification process: the proof that a certain component ad-
heres to a set of properties depends on the (assumed) properties of its sub-components.
The assumptions under which the component functions properly are the properties to
be proven for its sub-components. This implies that properties at different levels of
abstraction are involved in the verification process. These properties have hierarchi-
cal logical relations in the sense that at each level a property is logically implied by
(a conjunction of) the lower-level properties that relate to it in the hierarchy
(see Fig. 1).

Often these properties are not given at the start of the verification process. Actually,
the process of verification has two main aims:

• to find the properties;
• to prove the higher-level properties from lower-level properties.

The verification proofs that connect one abstraction level with the other are compo-
sitional in the following manner: any proof relating level i to level i+1 can be combined
with any proof relating level i − 1 to level i, as long as the same properties at level i
are involved. This means, for example, that the whole compositional structure beneath
level i can be replaced by a completely different design as long as the same properties
at level i are achieved. After such a modification the proof from level i to level i − 1

342 F. Cornelissen et al.

can be reused; only the proof from level i + 1 to level i has to be adapted. In this sense
the method supports reuse of verification. The compositional verification method can
be formulated in more detail as follows:

A. Verifying one abstraction level against the other
For each abstraction level the following top-down procedure is followed:

1. Determine which properties are of interest (for the higher level).
2. Determine assumptions (at the lower level) that guarantee these properties.
3. Prove the properties on the basis of these assumptions.

B. Verifying a primitive component
For primitive knowledge-based components – with relatively small knowledge bases –
a number of techniques exist in the literature (see, for example, Treur and Willems,
1994; Leemans et al., 2002). For primitive non-knowledge-based components, such as
databases, or neural networks, or optimization algorithms, verification techniques can
be used that are especially tuned for that type of component.

C. The overall verification process
To verify the complete system:

1. Determine the properties are that are desired for the whole system.
2. Apply the above procedure A iteratively until primitive components are reached. In

the iteration the desired properties of abstraction level Li are either:

• those determined in step A1, if i = 0; or
• the assumptions made for the higher level Li−1, if i > 0.

3. Verify the primitive components according to B.

Notes:

• The results of verification are (1) properties and assumptions at the different abstrac-
tion levels, and (2) logical relations between the properties of different abstraction
levels.

• Both static and dynamic properties and connections between them are covered.
• Both the determination of the properties and assumptions and the proofs of the logical

relations are made by hand (in the style of mathematicians’ work).
• Reuse of verification results is supported: refining an existed verified compositional

model by further decomposition leads to a verification of the refined system in which
the verification structure of the original system can be reused.

• Process and information hiding limits the complexity of verification per abstraction
level.

• A requirement to apply the compositional verification method described above is the
availability of an explicit specification of how the system description at an abstraction
level Li is composed from the descriptions at the lower abstraction level Li+1; the
compositional modeling framework DESIRE is an instance of a modeling framework
that fulfills this requirement.

• In principle, a similar, bottom-up procedure, can be formulated as well.
• For any set of assumptions obtained in A, if it is required that it does not contain

superfluous elements, for each assumption in the set an example may be constructed
in which the assumption does not hold, whereas the other assumptions in the set hold
and one or more of the properties fail. If for one of the assumptions no example is
possible, then try to eliminate it.

Compositional Verification of Knowledge-Based Task Models and Problem-Solving Methods 343

3.2. Language and Semantics used by the Compositional Verification
Method

In principle, verification is always relative to semantics of the system descriptions that
are verified, and uses a specific language to express properties. For the compositional
verification method put forward in this paper, these semantics are based on composi-
tional information states and time steps in which transitions from one state to the other
occur. In this sub-section a brief overview of these assumed semantics and the language
used to express (behavioral) properties is given.

To obtain a formalization of behavioral properties different variants of temporal
logic can be used, depending on the type of properties to be expressed. For example,
linear or branching time temporal logic is appropriate to specify various agent (system)
behavioral properties. Examples of the use of specification languages based on such
variants of temporal logic are described, for example, in Fisher and Wooldridge (1997)
and in Manna and Pnueli (1995). However, to specify adaptive properties of task models
or problem-solving methods such as ‘exercise improves skill’ as well, a comparison be-
tween different histories has to be explicitly expressed. This requires a form of temporal
logic language which is more expressive than those allowing to refer at each time point
only to one history. An example of such a more expressive formal language in which
different histories can be compared is the temporal trace language introduced in Jonker
and Treur (1998); its language and semantics are defined as follows.

An information state I of a system or system component D (e.g., the overall system,
or an input or output interface of a component) is an assignment of truth values {true, false,
unknown} to the set of ground atoms describing the information within D. An information
state I for a component D is structured according to the compositional structure of D,
i.e., within I the input and output states of D (i.e., three-valued truth assigments to the
ground atoms based on the input and output information types) can be distinguished, the
input and output states of sub-components, task control information state, etc.; see also
Brazier et al. (1999b). The set of all possible information states of D is denoted by IS(D).
A trace γ of D is a sequence (over the natural numbers) of information states (It)t∈N in
IS(D). Given a trace γ of D, the information state of the input interface of a component
C at time point t is denoted by

stateD(γ , t, input(C))
where stateD and input are function symbols. Analogously,

stateD(γ , t, output(C))
denotes the information state of the output interface of component C at time point t
within system (component) D. The task control information state of component C′ at
time point t of the component C is denoted by stateC (γ , t, tc(C′)), where C′ is either C or a
sub-component of C.

The information states can be related to statements via the formally defined satis-
faction relation |=, comparable to the Holds predicate in situation calculus. Differences
from situation calculus approach are, however, that we

1. use an infix notation for the |= predicate instead of a prefix notation;
2. refer to a trace and time point instead of a single state; and
3. can focus on part of the system.

Based on these statements, behavioral properties can be formulated in a formal
manner in a sorted first-order predicate logic with sorts T for time points, Traces for
traces and F for state formulae, using quantifiers over time and the usual first-order
logical connectives such as ¬, ∧, ∨, ⇒, ∀, ∃. A simple example of such a statement is
the following (other, less trivial examples of can be found in Sections 5 and 6 below).

344 F. Cornelissen et al.

Consider the following informally expressed property for the dynamics of a task as a
whole:

Each query of component C transferred to component D must be
followed by an answer of component D after a certain time.

In a structured, semi-formal manner, this property can be reformulated (and detailed)
as follows:

if at some point in time
component C outputs: a query for D,

then at a later point in time
component D outputs: an answer for C

Using the formal language introduced above, the following temporal formalization
is made of this example property:

∀ γ ∈ Traces(S), t , q
[state(γ , t, output(A)) |= query_for_from(q, D, C)
⇒ ∃ a, t1 > t state(γ , t1, output(B)) |= answer_for_from(a, q, C, D)]

Here the statement

state(γ , t, output(A)) |= query_for_from(q, D, C)

means that within trace γ at time point t a statement query_for_from(q, D, C) occurs in the
output interface of component C, i.e., has truth value true in the output state of C.

To connect neighboring levels of abstraction in a verification proof for a DESIRE
specification, the following elements can be used:

• the assumptions of the sub-components specified within component D;
• the interactions between the sub-components of D and/or the interfaces of D;
• the input/output information states of the sub-components of D;
• the task control information states of the sub-components of D;
• the information states of component D;
• the task control information states of component D.

4. A Generic Diagnostic Process Model

The generic diagnostic process model described in this section is based on the generic
model for diagnostic reasoning processes analysed in Treur (1993). Diagnostic reason-
ing processes aim at the analysis of the cause of a disturbed situation. In most of these
situations not all relevant observational facts are known in advance. The process of ac-
quisition of additional (observation) information is an essential part of most diagnostic
processes (Treur, 1993). Therefore, dynamics play an important role in diagnosis. In
general, diagnostic reasoning consists of a number of sub-processes such as the deter-
mination of hypothesis, the choice of applicable tests, the performance of tests and the
interpretation of the test results. Strategic information such as the suitability of a test,
likeliness of a hypothesis being true and the cost and effect of a test play an important
role. Variants of this model have been applied in different domains of application, for
example, for soil sanitation and diagnosis of Nylon production processes in the chem-
ical industry; see Brazier et al. (2000) for more details of the development of these
applications.

Compositional Verification of Knowledge-Based Task Models and Problem-Solving Methods 345

Fig. 2. Processes at different abstraction levels in the diagnostic process model.

In this section the generic process model of diagnosis to be verified is described. In
Sections 4.1–4.3 below the processes at the different levels of process abstraction are
given, and each process component is described, together with the interaction between
the components.

4.1. Process Composition

The processes at different abstraction levels are given in Fig. 2.The process of Hypothesis
Determination generates hypotheses that are validated by the process of Hypothesis
Validation.

The two processes are described in the subsequent sections. In this section HYPS
stands for the set of all (possible) hypotheses and OBS for the set of all (possible)
observations.

4.2. Hypothesis Determination

The process of Hypothesis Determination suggests hypotheses to be validated. This is
done using information on which hypotheses have been rejected so far. The input and
output interfaces are defined by

input atoms rejected(h), confirmed(h): h ∈ HYPS
output atoms focus(h): h ∈ HYPS

Whenever a hypothesis has been rejected or confirmed, it should not be suggested as
a focus. The selection of hypotheses for the focus could, for example, be based on the
frequency at which the hypotheses occur. This component should select one or more
hypotheses whenever not all hypotheses have been rejected. This process is specified as
a primitive component in the example.

346 F. Cornelissen et al.

4.3. Hypothesis Validation

The main process of Hypothesis Validation is to determine whether the hypotheses of
a given focus set are valid. In addition, it keeps track of hypotheses that have already
been validated. The interface and internal atoms for Hypothesis Validation are:

input atoms focus(h): h ∈ HYPS
internal atoms observed(o): o ∈ OBS
output atoms rejected(h), confirmed(h): h ∈ HYPS

The input is obtained from Hypothesis Determination. The process of Hypothesis Val-
idation is composed of three primitive processes. Each of these is described shortly
below.

4.3.1. Observation Determination

To validate a hypothesis, observations have to be performed. These observations are
selected by the sub-process Observation Determination. The knowledge required for this
selection might include cost of doing observations, reliability, and so on. The information
required by this process consists of the hypotheses that are in focus and observations
that have already been performed. The interface of this process is

input atoms focus(h), observed(o): h ∈ HYPS, o ∈ OBS
output atoms to_be_observed(o): o ∈ OBS

4.3.2. Observation Execution

The Observations are made in the sub-process Observation Execution. The information
this process requires consists of the observations it needs to perform. The output consists
of the results of those observations. The interface of this component is as follows:

input atoms target(o): o ∈ OBS
output atoms o: o ∈ OBS

Note that these atoms o are at the object level, whereas the atoms such as to_be_observed(o)
are at a meta-level (in which case o is a term, naming the atom o; for convenience
we use the same notation). By the information link to_be_observed from Observation
Determination to Observation Execution, the meta-atom to_be_observed(o) is linked to the
meta-atom target(o).

4.3.3. Hypothesis Evaluation

Given observation results, the process of Hypothesis Evaluation derives conclusions
about which hypotheses are true. This process has the same level as Observation Exe-
cution since it uses the observations made there to derive truth values of hypotheses in
focus by means of anti-causal knowledge. The interface of this process is

input atoms o: o ∈ OBS
output atoms h: h ∈ HYPS

4.4. Information Links

In Fig. 3 the interaction within the whole system S is shown. The link hypotheses transfers
the hypotheses determined in Hypothesis Determination to Hypothesis Validation. The

Compositional Verification of Knowledge-Based Task Models and Problem-Solving Methods 347

diagnostic reasoning system task control

hypothesis
determination

hypothesis
validation

hypotheses

assessments

diagnosis

Fig. 3. Process composition: top level.

hypothesis validation task control

hypothesis
evaluation

observation
determination

to be observed

observation
results

focus hyp to HE

focus hyp
to OD

eval info
focus hyp

to HE

observation
execution

Fig. 4. Process composition: Hypothesis Validation.

link assessments transfers the results from the evaluation in Hypothesis Evaluation to
Hypothesis Determination so this component knows which hypotheses are rejected.
The last link, diagnosis, transfers the diagnosis determined by the system to the output
interface of the main component; this mediating link relates the top level to the lower
level of process abstraction. Within the component Hypothesis Validation, the mediating
links focus hyp to HE and eval info play a comparable role: they relate the level of Hypothesis
Validation to the lower level of process abstraction.

5. Verification of the System at the Top Level

First the manner in which time points are attached to the reasoning process is discussed.

348 F. Cornelissen et al.

5.1. Time Points

For the verification of this system we need to introduce time points to reason about the
dynamics of this system, as explained in Section 3. For the component S time points are
defined as follows:

• Time point 1 corresponds to the termination time of the first activation of component
Hypothesis Validation.

• Time point t + 1 is after the subsequent activations of Hypothesis Determination and
Hypothesis Validation have been finished.

For the component Hypothesis Validition the time points are defined as follows:

• Time point 0 corresponds to no activation of the component.

• Time point t + 1 is after Hypothesis Evaluation has been active, or Hypothesis Vali-
dation terminates.

5.2. Properties for the Top Level of the System

First, it is determined which properties the system as a whole should satisfy. Considering
that the system S is a diagnostic reasoning system, it is expected that S produces output
of the form confirmed(h) and/or rejected(h) for some hypotheses h. A first requirement is
that output generated by the system in terms of assessments of hypotheses is correct,
i.e., if the system derives that a hypothesis has been confirmed, it is true in the world
situation, and if the system derives that it is rejected, it is false in the world situation.
Let the current world state be denoted by EW. The following property relates the output
of the system to the world state.

Assessment correctness of S. The system S is called assessment correct if:

(∀ γ ∈ Traces(S) ∀ t ∀ h
stateS (γ , t, output(S)) |= confirmed(h) ⇒ EW |= h) ∧
(∀ γ ∈ Traces(S) ∀ t ∀ h
stateS (γ , t, output(S)) |= rejected(h) ⇒ EW |= ¬ h)

Next, the system is required to be effective in generating assessments, i.e., in qualifying
every hypothesis either as confirmed or as rejected: during the process it should derive
at least some positive assessment output (of the form confirmed(h)), except in the case that
all hypotheses are false; then the system should derive that all hypotheses are rejected
(assessment output of the form rejected(h)):

Assessment effectiveness of S. The system S is called assessment effective if:

(∃ h EW |= h ⇒
∀ γ ∈ Traces(S) ∃ t ∃ h′ stateS (γ , t, output(S)) |= confirmed(h′)) ∧
(∀ h EW |= ¬ h ⇒
∀ γ ∈ Traces(S) ∃ t ∀ h stateS (γ , t, output(S)) |= rejected(h))

It is undesirable (for a static world situation) that the system changes its mind during the
process. Therefore the requirement is chosen that once an assessment has been derived,
this is never revised:

Compositional Verification of Knowledge-Based Task Models and Problem-Solving Methods 349

Assessment conservativity of S. The system S is called assessment conservative if:

(a) ∀ γ ∈ Traces(S) ∀ t ∀ h
[stateS (γ , t, output(S)) |= confirmed(h) ⇒ stateS (γ , t+1, output(S)) |= confirmed(h)]

(b) ∀ γ ∈ Traces(S) ∀ t ∀ h
[stateS (γ , t, output(S)) |= rejected(h) ⇒ stateS (γ , t+1, output(S)) |= rejected(h)]

The following property defines when the component Hypothesis Determination is
efficient in providing a focus. Here, and in the sequel, the abbreviation assessed(h) is used
for confirmed(h) ∨ rejected(h).

Focus efficiency of S. The component hypothesis determination is called focus efficient if:
∀ γ ∈ Traces(HD) ∀ t ∀ h
[stateHD(γ , t, input(HD)) |= assessed(h) ⇒
stateHD(γ , t, output(HD)) �|= focus(h)]

The following property expresses a monitor on the system’s progression.

System shows progression. If a trace γ ∈ Traces(S) and a time point t are given, system
S shows progression from time point t to time point t + 1 if

∃ h [stateS (γ , t, output(S)) �|= assessed(h) ∧
stateS (γ , t+1, output(S)) |= assessed(h)]

Transfer successfulness. A system property which is often used is transfer success-
fulness: if a system component C transfers information to another component D, then
component D will receive at its input the output of component C. In particular this prop-
erty is needed for the three information links at the top level, namely hypotheses, diagnosis
and assessments.

Transfer successfulness from HD to HV:
∀ γ ∈ Traces(S) ∀ h, t
stateS (γ , t, output(HD)) |= focus(h) ⇒
stateS (γ , t + 1, input(HV)) |= focus(h)

Transfer successfulness from HV to S:
∀ γ ∈ Traces(S) ∀ h, t
stateS (γ , t, output(HV)) |= confirmed(h) ⇒
stateS (γ , t + 1, output(S)) |= confirmed(h)
∀ γ ∈ Traces(S) ∀ h, t
stateS (γ , t, output(HV)) |= rejected(h) ⇒
stateS (γ , t + 1, output(S)) |= rejected(h)

Transfer successfulness from HV to HD:
∀ γ ∈ Traces(S) ∀ h, t
stateS (γ , t, output(HV)) |= confirmed(h) ⇒
stateS (γ , t + 1, input(HD)) |= confirmed(h)
∀ γ ∈ Traces(S) ∀ h, t
stateS (γ , t, output(HV)) |= rejected(h) ⇒
stateS (γ , t + 1, input(HD)) |= rejected(h)

Transfer groundedness. Transfer successfulness only guarantees that a component
receives what is output by another component. Sometimes it is also needed the other

350 F. Cornelissen et al.

way around: that it guaranteed that a component does not receive information that was
not output by another component. The property transfer groundedness is formulated for
the three information links at the top level in the following manner:

Transfer groundedness from HD to HV:
∀ γ ∈ Traces(S) ∀ h, t
stateS (γ , t + 1, input(HV)) |= focus(h) ⇒
stateS (γ , t, output(HD)) |= focus(h)

Transfer groundedness from HV to S:
∀ γ ∈ Traces(S) ∀ h, t
stateS (γ , t + 1, output(S)) |= confirmed(h) ⇒
stateS (γ , t, output(HV)) |= confirmed(h)
∀ γ ∈ Traces(S) ∀ h, t
stateS (γ , t + 1, output(S)) |= rejected(h) ⇒
stateS (γ , t, output(HV)) |= rejected(h)

Transfer groundedness from HV to HD:
∀ γ ∈ Traces(S) ∀ h, t
stateS (γ , t + 1, input(HD)) |= confirmed(h) ⇒
stateS (γ , t, output(HV)) |= confirmed(h)
∀ γ ∈ Traces(S) ∀ h, t
stateS (γ , t + 1, input(HD)) |= rejected(h) ⇒
stateS (γ , t, output(HV)) |= rejected(h)

The above transfer successfulness and groundedness properties are assumptions for
the whole system; they are assumed and used in the proofs of a number of properties.

5.3. Assumptions Needed to Prove the Properties of the Top Level

The required properties of the system have been proven from assumed properties of the
components at one level lower, see Fig. 5. During this proof process these assumptions
have been discovered.

5.3.1. Assumptions on Hypothesis Validation

Some assumptions are quite straightforward. For example, assessment correctness sim-
ply inherits upward from Hypothesis Validation:

Assessment correctness of HV. The component hypothesis validation is called assessment
correct if:

(a) (∀ γ ∈ Traces(S) ∀ t ∀ h
stateS (γ , t, output(HV)) |= confirmed(h) ⇒ EW |= h)

(b) (∀ γ ∈ Traces(S) ∀ t ∀ h
stateS (γ , t, output(HV)) |= rejected(h) ⇒ EW |= ¬ h)

Similarly, for assessment conservation:

Assessment conservativity of HV. The component hypothesis validation is called
assessment conservative if:

Compositional Verification of Knowledge-Based Task Models and Problem-Solving Methods 351

(a) ∀ γ ∈ Traces(S) ∀ t ∀ h
[stateS (γ , t, output(HV)) |= rejected(h) ⇒
stateS (γ , t + 1, output(HV)) |= rejected(h)]

(b) ∀ γ ∈ Traces(S) ∀ t ∀ h
[stateS (γ , t, output(HV)) |= confirmed(h) ⇒
stateS (γ , t + 1, output(HV)) |= confirmed(h)]

For effectiveness, the relationship is not one-to-one as in the case of correctness and
conservativity. However, also in this case, at least one (among others) of the required
assumptions on Hypothesis Validation is that it is effective in generating assessments,
as long as focus hypotheses are provided to it.

Assessment effectiveness of HV. The component hypothesis validation is called assessment
effective if:

(∀ γ ∈ Traces(HV) ∀ t
[∃ h stateHV (γ , t, input(HV)) |= focus(h)] ⇒
[∃ h′ stateHV (γ , t, input(HV)) |= focus(h′) ∧
stateHV (γ , t, output(HV)) |= assessed(h′)])

The following property will be used in the proofs.

Component HV shows progression. If a trace γ ∈ Traces(S) and a time point t are given,
component hypothesis validation shows progression from time point t to time point t′ if

∃ h [stateS (γ , t, output(HV)) �|= assessed(h) ∧
stateS (γ , t′, output(HV)) |= assessed(h)]

Transfer successfulness and groundedness properties within HV. Similar to the
transfer successfulness and groundedness properties at the level of the whole system,
also within the component HV properties are needed that guarantee proper information
transfer between the different sub-components. These properties can be specified in a
form as shown in Section 5.2. For example, proper transfer of to-be-observed information
generated by OD to OE requires:

Transfer successfulness from OD to OE:
∀ γ ∈ Traces(HV) ∀ t, o
stateHV (γ , t, output(OD)) |= to_be_observed(o)
⇒ stateHV (γ , t + 1, input(OE)) |= to_be_observed(o)

Transfer groundedness from OD to OE:
∀ γ ∈ Traces(HV) ∀ t, o
stateHV (γ , t + 1, input(OE)) |= to_be_observed(o)
⇒ stateHV (γ , t, output(OD)) |= to_be_observed(o)

Similar transfer properties are used for all other information transfer between compo-
nents within HV (as depicted in Fig. 3, lower part). For the proofs these properties are
assumptions, on the basis of the design specification: the transfer properties are the
expression of the semantics of the information links in a design specification.

352 F. Cornelissen et al.

5.3.2. Assumptions on Hypothesis Determination

For the component Hypothesis Determination the assumption is made that it is efficient
and effective in generating focus hypotheses. Focus efficiency means that no hypotheses
are chosen in focus that have already been assessed.

Focus efficiency of HD. The component hypothesis determination is called focus
efficient if:

∀ γ ∈ Traces(HD) ∀ t ∀ h
[stateHD(γ , t, input(HD)) |= assessed(h) ⇒
stateHD(γ , t, output(HD)) �|= focus(h)]

Focus effectiveness means that as long as not all hypotheses have been assessed, focus
hypotheses will be generated.

Focus effectiveness of HD. The component hypothesis determination is called focus effec-
tive if:

∀ γ ∈ Traces(HD) ∀ t
[∃ h stateHD(γ , t, input(HD)) �|= assessed(h) ∧
∀ h stateS (γ , t′, input(HD)) �|= confirmed(h)]
⇒ ∃ h′ stateHD(γ , t, output(HD)) |= focus(h′)]

5.3.3. Domain Assumptions

The properties at the top level also need assumptions on the (domain) ontology and
knowledge to be used by the process model. These are assumptions of the type considered
in Fensel (1995) and Fensel and Benjamins (1996).

Finite number of hypotheses. The number of hypotheses is finite.

Static world. The world state is static during the processing of system S.

5.4. Sketch of Proofs of some of the Properties of the Top Level

In this section only a short sketch is given. For more details, see the Appendix. In
Fig. 5 the logical connections between the properties at different levels are depicted. At
each step that the system shows progression, due to assessment conservativity, the set
of assessed hypotheses becomes strictly larger. The proofs follow the pattern that the
assumptions guarantee that as long as not all hypotheses have been assessed the system
will show progression. If the number of hypotheses is finite, say N , then within at most
N steps the set of assessed hypotheses will be the set of all hypotheses, and the system
terminates.

It can be noted that for a static world the property of assessment correctness implies
assessment conservatism, so in the graph of Fig. 5 more logical relationships can be
drawn. However, to avoid a complicated graph we did not attempt to give a complete
account of all possible logical relationships in Fig. 5.

Compositional Verification of Knowledge-Based Task Models and Problem-Solving Methods 353

Fig. 5. Logical relations between properties at different levels for the diagnostic process model.

6. Assumptions to Prove the Properties of HV

The properties of Hypothesis Validation needed to prove the properties of the top level
of the system were discussed in Section 5.3 (see Fig. 5). The assumed properties of the
sub-components of Hypothesis Validation, needed to prove these properties can also be
found in Fig. 5, at the lower level. For shortness, these properties are only explained
informally.

The required properties of component observation determination are:

Observation efficiency of OD. No observations are generated that were already per-
formed.

∀ γ ∈ Traces(OD) ∀ t ∀ o
[stateOD(γ , t, input(OD)) |= observed(o) ⇒
stateOD(γ , t, output(OD)) �|= to_be_observed(o)]

Observation effectiveness of OD. If there exists at least one hypothesis in focus, and
not all observations have been performed, then at least one observation is generated.

∀ γ ∈ Traces(OD) ∀ t ∀ h
[∃ o stateOD(γ , t, input(OD)) �|= observed(o)
∧ stateOD(γ , t, input(OD)) |= focus(h) ⇒
∃ o′ stateOD(γ , t, output(OD)) |= to_be_observed(o′)]

354 F. Cornelissen et al.

Execution effectiveness of OD. Every generated observation is performed.

∀ γ ∈ Traces(OD) ∀ t ∀ o
[stateOD(γ , t, output(OD)) |= to_be_observed(o)
⇒ ∃ t′ >t stateOD(γ , t′, input(OD)) |= observed(o)]

This actually is an environment property of OD.

The required properties of observation execution are:

Observation conservativity of OE. Once an observation result has been obtained, it
persists.

∀ γ ∈ Traces(S) ∀ t ∀ o
[stateS (γ , t, output(OE)) |= o ⇒ stateS (γ , t + 1, output(OE)) |= o] ∧
[stateS (γ , t, output(OE)) |= ¬ o ⇒ stateS (γ , t + 1, output(OE)) |= ¬ o]

Observation correctness of OE. Every observation result that is obtained is true in the
world situation.

∀ γ ∈ Traces(OE) ∀ t ∀ o
[stateOE (γ , t, output(OE)) |= o ⇒ EW |= o] ∧
[stateOE (γ , t, output(OE)) |= ¬ o ⇒ EW |= ¬ o]

The required properties of hypothesis evaluation are:

Assessment conservativity of HE. Once a hypothesis assessment has been derived, it
persists.

(a) ∀ γ ∈ Traces(S) ∀ t ∀ h
[stateS (γ , t, output(HE)) |= h ⇒ stateS (γ , t + 1, output(HE)) |= h]

(b) ∀ γ ∈ Traces(S) ∀ t ∀ h
[stateS (γ , t, output(HE)) |= ¬ h ⇒ stateS (γ , t + 1, output(HE)) |= ¬ h

Assessment decisiveness of HE. If, for all possible observations, observation results
have been input, then for every hypothesis an assessment can be derived.

∀ γ ∈ Traces(HE) ∀ t
[∀ o [stateHE (γ , t, input(HE)) |= o ∨ stateHE (γ , t, input(HE)) |= ¬ o]
⇒
∀ h [stateHE (γ , t, output(HE)) |= h ∨ stateHE (γ , t, output(HE)) |= ¬ h]

Assessment correctness of HE. If a hypothesis is derived, then it is true in the world
situation; if the negation of a hypothesis is derived, then the hypothesis is false in the
world situation.

(a) (∀ γ ∈ Traces(S) ∀ t ∀ h
stateS (γ , t, output(HE)) |= h ⇒ EW |= h)

(b) (∀ γ ∈ Traces(S) ∀ t ∀ h
stateS (γ , t, output(HE)) |= ¬ h ⇒ EW |= ¬ h)

In addition to the domain assumptions mentioned in Section 5.3.3, the following are
needed:

Compositional Verification of Knowledge-Based Task Models and Problem-Solving Methods 355

Empirically foundedness. The hypotheses can be uniquely characterized by means of
observations; in other words, if two world situations satisfy exactly the same observa-
tions, then they also satisfy exactly the same hypotheses; see Treur and Willems (1994).

∀ o [EW1 |= o ⇔ EW2 |= o] ⇒ ∀ h [EW1 |= h ⇔ EW2 |= h]

Finite number of observations. The number of observations needs to be finite because
(in the worst case) the system should be able to do all (relevant) observations to assess
all hypotheses.

7. Verification of Properties of Primitive Components

In Sections 5 and 6 verification of the generic model was described, based on assumed
properties of the primitive components. If the model is to be used, instances are re-
quired for the primitive components (e.g., containing domain knowledge), and for these
instances it has to be verified whether they satisfy the required properties. The instances
of primitive components can be verified – for not too large knowledge bases – making
use of the more standard methods described in Treur and Willems (1994). This will be
illustrated for the example model for diagnosis.

To start, the component Hypothesis Determination should satisfy focus efficiency
and focus effectiveness. Focus efficiency means that no hypotheses are chosen in focus
that have already been assessed. In the temporal trace language this is expressed in
the following form. For all traces, at all time points, if at the input the information is
available that some hypothesis h was already assessed, then it will not be at the output
that it is in focus:

∀ γ ∈ Traces(HD) ∀ t ∀ h
[stateHD(γ , t, input(HD)) |= assessed(h) ⇒
stateHD(γ , t, output(HD)) �|= focus(h)]

The domain description W(HD) is defined by some constraints (related to the required
properties) on the set of complete models CMod(I(HD)), where I(HD) is the combination
of input and output information types of the component Hypothesis Determination. The
constraint C1 related to the above property is expressed as follows:

∧h ¬ (assessed(h) ∧ focus(h))

Here ∧h means taking the conjunction over all hypotheses h; similarly ∨h will
denote taking the disjunction. The second property to be satisfied by Hypothesis Deter-
mination is focus effectiveness; this means that as long as not all hypotheses have been
assessed, and no hypothesis has been confirmed, focus hypotheses will be generated. In
the temporal trace language this is expressed as follows. For all traces and time points,
if there exists at least one hypothesis for which no information is at the input that it was
assessed, and for no hypothesis there is information on the input that it was confirmed,
then there exists at least one hypothesis such that on the output there is information that
it is in focus:

∀ γ ∈ Traces(HD) ∀ t
[∃ h stateHD(γ , t, input(HD)) �|= assessed(h) ∧
∀ h stateS (γ , t, input(HD)) �|= confirmed(h)]

356 F. Cornelissen et al.

⇒ ∃ h′ stateHD(γ , t, output(HD)) |= focus(h′)]

This property can be reformulated to the following defining constraint C2 for W(HD):

∧h assessed(h) ∨ ∨h confirmed(h) ∨ ∨h focus(h)

In conclusion, a component can safely be chosen to play the role of Hypothesis
Determination in the diagnostic model if it is sound and strongly complete with respect
to the domain description W(HD) defined by the two constraints above (i.e., the set of
complete models satisfying the constraints), related to the temporal properties, i.e.,

W(HD) = {M ∈ CMod(I(HD)) | M |= C1 ∧ C2}

In a similar manner the properties ‘observation effectiveness’ and ‘observation ef-
ficiency’ of the component Observation Determination reduce to constraints (on the set
of complete models) defining domain description W(OD). Observation efficiency means
that no observations are generated that were already performed:

∀ γ ∈ Traces(OD) ∀ t ∀ o
[stateOD(γ , t, input(OD)) |= observed(o) ⇒
stateOD(γ , t, output(OD)) �|= to_be_observed(o)]

This is reformulated as the following defining constraint C3 for W(OD):

∧o¬ (observed(o) ∧ to_be_observed(o))

Observation effectiveness means that if there exists at least one hypothesis in focus,
and not all observations have been performed, then at least one observation is generated.

∀ γ ∈ Traces(OD) ∀ t ∀ h
[∃ o stateOD(γ , t, input(OD)) �|= observed(o)
∧ stateOD(γ , t, input(OD)) |= focus(h) ⇒
∃ o′ stateOD(γ , t, output(OD)) |= to_be_observed(o′)]

This is reformulated as the following defining constraint C4 for W(OD):

∧h¬ focus(h) ∨ ∧o observed(o) ∨ ∨o to_be_observed(o)

Again, a proper choice for an instantiation of component Observation Determina-
tion is made if it satisfies soundness and strong completeness with respect to domain
description W(OD) defined by the two constraints:

W(HD) = {M ∈ CMod(I(OD)) | M |= C3 ∧ C4}

One of the required properties of Hypothesis Evaluation is assessment decisiveness,
which means that if for all possible observations observation results have been input,
then for every hypothesis an assessment can be derived:

∀ γ ∈ Traces(HE) ∀ t
[∀ o [stateHE (γ , t, input(HE)) |= o ∨ stateHE (γ , t, input(HE)) |= ¬ o] ⇒
∀ h [stateHE (γ , t, output(HE)) |= h ∨ stateHE (γ , t, output(HE)) |= ¬ h]

This can be reformulated into the property ‘empirically foundedness’ of the domain
description W describing the world situations to which the system is applied.

Compositional Verification of Knowledge-Based Task Models and Problem-Solving Methods 357

This shows in terms of the diagnostic example how within a compositional verifica-
tion process, required (possibly dynamic) properties of candidate primitive components
for a generic model can be formulated as static properties of their domain description;
cf. Treur and Willems (1994) and Leemans et al. (2002).

8. Discussion

Within this discussion a number of issues are discussed in subsequent subsections.

8.1. Compositionality in Design and in Verification

The design method DESIRE is based on compositionality. The compositional verifica-
tion method described in this paper fits well to DESIRE, but can also be useful in any
other compositional modeling approach. The advantage of a compositional approach to
design is the ability to reuse components and process models easily; the compositional
verification method extends this to the reuse of proofs for properties of components that
are reused. For example, the compositional diagnostic reasoning model described in
this paper could be modified by changing the component Hypothesis Validation. If this
changed component has the same properties as the current, the proof of the top-level
properties can be reused to show that the new system has the same properties as the
original. This has high value for a library of generic models (i.e., problem-solving meth-
ods), where the domain knowledge is not yet known. The verification of generic models
forces one to find the assumptions under which the generic task model is applicable for
the considered domain, as is also discussed in Fensel (1995) and Fensel and Benjamins
(1996). A library of reusable components and task models will be set up, consisting of
both specifications of the components and models, and their design rationale. The prop-
erties of the components and their logical relations (e.g., as represented in Fig. 5) are to
be part of the design rationale of a model. When the model is applied, only the properties
at the leaves of such a tree have to be verified against the domain knowledge used. This
is what the current paper contributes to principled development of knowledge-based
systems based on knowledge-level models.

Due to the compositional nature of the verification method, a distributed approach to
verification is facilitated. This implies that several persons can work on the verification of
the same model at the same time, once the properties to be verified have been determined.
Since the proof of properties of a composed component depends on the properties of its
sub-components, it is only necessary to know or to agree on the properties of these sub-
components. The verification method proposed in this paper is useful for compositional
knowledge-based systems as well as compositional multi-agent systems.

8.2. Expressivity of the Temporal Trace Language

One of the approaches based on a standard temporal logic can be found in Fisher and
Wooldridge (1997). A main difference in comparison to this work is that our approach
exploits compositionality in an interated manner. An advantage of their approach is
that they can make use of a temporal belief logic. It would be a challenge to extend the
approach to a compositional variant of temporal belief logic. A first step in this direction
can be found in Engelfriet et al. (1999).

The reason why, instead of a standard temporal logic language, the temporal trace
language was used to formalize the dynamic properties is that it is much more expressive

358 F. Cornelissen et al.

in a number of respects. In the first place, it has order-sorted predicate logic expressivity,
whereas most standard temporal logics are propositional. Secondly, the explicit reference
to time points and time durations offers the possibility of modeling the dynamics of real-
time phenomena, such as sensory activity patterns in relation to mental properties (Port
and van Gelder, 1995). Third, in our approach states are three-valued; the standard
temporal logics are based on two-valued states, which implies that for a given trace a
form of closed world assumption is imposed. This means that, for example, in Concurrent
MetateM (Fisher, 1994), if the executable temporal logic specification leaves some atom
unspecified, during construction of a trace the semantics will force it to be false. To avoid
this, an atom has to be split into a positive and a negative variant. In our approach this
is not needed.

Fourth, the possibility to quantify over traces allows for specification of more com-
plex behaviors. As within most temporal logics, reactiveness and proactiveness proper-
ties can be specified. In addition, in our language also properties expressing different
types of adaptive behavior can be expressed: for example, a property such as ‘exercise
improves skill’, which is a relative property in the sense that it involves the comparison
of two alternatives for the history (e.g., one with many exercises, and one with almost no
exercises). This type of property can be expressed in our language, whereas in standard
forms of temporal logic different alternative histories cannot be compared. Fifth, in our
language it is possible to define local languages for parts of a system. For example, the
distinction between internal, external and interface languages is crucial, and is supported
by the language, which also entails the possibility to quantify over system parts; this
allows for specification of system modification over time (Dastani et al., 2001). Sixth,
since state properties are used as first-class citizens in the temporal trace language, it is
possible to explicitly refer to them, and to quantify over them, enabling the specification
of what are sometimes called second-order properties.

8.3. Diagnosis and its Dynamics

The example model used to illustrate the compositional verification method in this
paper is a generic process model for the dynamics of diagnostic reasoning. In other
literature diagnosis has been related to different types of logical formalizations, such
as diagnosis from first principles (Reiter, 1987), hypothetical or abductive reasoning
Console and Torasso, 1990, 1991, default logic and other nonmonotonic logics. In this
literature the main focus is on the outcome of a diagnostic task and how this outcome
relates to the input. The approaches abstract as much as possible from the dynamics
of the intermediate diagnostic process, which involves, among others, the decisions
about selection of hypotheses to focus on, and selection of observations to be performed
for a given particular intermediate (information) state within the diagnostic process.
As we wanted to test the compositional verification method on the aspect of internal
dynamics of a model, our choice has been to consider a diagnostic process model in the
tradition of Treur (1993), in which dynamic aspects such as hypothesis selection and
observation selection are modeled in an explicit manner. Since these dynamic aspects
play an important role, formalizations that only relate output of a diagnostic process to
input are not appropriate: an approach is needed in which the temporal aspects of (the
choices within) intermediate processes can be expressed. The temporal trace language
supports such an approach.

An alternative formalization of a diagnostic process that has this emphasis on the
dynamics of the intermediate process in common is described in Hoek et al. (1994).
A difference is that diagnosis addressed in that paper is based on causal knowledge,

Compositional Verification of Knowledge-Based Task Models and Problem-Solving Methods 359

whereas the current paper addresses diagnosis based on anti-causal knowledge. A more
important difference is that the language used in Hoek et al. (1994) is a form of (branching
time) temporal logic in which different histories cannot be compared. Although for most
of the relevant properties of diagnostic processes this may not be a problem, there are
properties (e.g., relative adaptive properties) which cannot be expressed in a branching
time temporal logic, as also discussed in Section 8.2 above.

Nevertheless, the diagnostic example model used to test the compositional verifica-
tion method in this paper does not display all possibilities the compositional verification
method offers for dynamics. One of the properties of the example domain is that the world
is static; this is not a requirement for the method. Apart from the work reported here, a
model for co-operative information agents has been verified (Jonker and Treur, 1998)
and a multi-agent system with agents negotiating about load balancing of electricity use,
where the world can be dynamic (Brazier et al., 1998).

8.4. Knowledge-Level Models and their Assumptions

Some well-known knowledge-level modeling approaches are ‘generic tasks’
(Chandrasekaran, 1986), DESIRE (Brazier et al., 1995, 1999b), and CommonKADS
(Schreiber et al., 2000). In the context of such knowledge-level modeling approaches
the explicit and formal specification and verification of dynamic (behavioral) properties
was never included. Work in this area that comes closest to the current paper is described
in Fensel (1995), Fensel and Benjamins (1996) and Fensel et al. (1996).

A main difference of the current paper in comparison to this work on knowledge-level
modeling is that in our approach compositionality of the verification is addressed; in the
work referred to only domain assumptions are taken into account, and no hierarchical
relations between properties are defined. Compared to Fensel and Benjamins (1996),
where also properties of diagnosis are identified, in the current paper the properties are
formalized in formal semantical terms (they are expressed in terms of temporal formal
semantics), whereas in the paper referred to the properties are not (yet) formalized. For
example, the formalization of the assumption ‘heuristic search knowledge’ (see Table 3
in Section 4 of the paper mentioned) in terms of the semantics of the behavior of the
system might turn out to be far from trivial. Especially the semantical formalization
of such dynamic properties and their logical relationships is a challenge. Furthermore,
assumptions on the dynamics of hypothesis determination and the heuristic knowledge
involved, as presented in our paper, have been left out of consideration. On the other
hand, the value of the paper is that it gives an extensive account on various assumptions
for model-based diagnosis; this was left out of consideration in our paper. Besides
compositionality, a difference of our approach from Harmelen and Teije (1997) is that
in the latter approach only static properties of diagnosis are considered, whereas in our
approach dynamic properties are also covered, formalized in temporal semantics.

8.5. Other Comparisons

Also in the area of Petri nets verification and compositionality are investigated e.g.
(Rambags, 1994). A difference from our approach is that composition is not iterated.
Another difference is that in contrast to our approach no language is provided in terms
of which properties can be expressed. This means that only very strict notions such
as observation equivalence can be addressed, whereas in our case we can also express
restricted aspects of a system, leaving the rest of its behavior unspecified. This gives
more flexibility of description and avoids having to prove too strong properties.

360 F. Cornelissen et al.

The temporal trace language used in this paper has some similarity with the approach
in situation calculus (McCarthy and Hayes, 1969). In Reiter (1993) proving properties
in situation calculus is addressed. A difference from this work is that explicit references
are made to temporal traces and that we can incorporate arbitrary time durations in the
processes.

8.6. Further Work

A continuation of this work covers the case of multi-agent models; for some first results,
see Jonker and Treur (1998). To support the handwork of verification it would be useful
to have tools to assist in the creation of the proofs. Moreover, in future work the develop-
ment of supporting tools for verification will be considered. Support can be categorized
into two types of tools: one type for verification of properties of primitive components,
and another type to relate properties of composed components to their sub-components.
At the moment tools of the first type exist for the verification of primitive components
with knowledge bases of limited complexity. No tools of the second type, i.e. for the
verification of composed components, exist yet. To obtain such tools, one approach is
formalizing the proofs of a verification process using a first-order logic in which time
and states are represented explicitly, and an interactive theorem prover for first-order
logic to support the proofs. An option is whether the tool KIV (based on dynamic logic)
can be used; see Reif (1995). Some first, positive experiences with KIV for verification
of an example model of a knowledge-based system are reported in Fensel et al. (1996).

Within the area of automated reasoning and theorem proving the application of
theorem provers and checkers to verification has been addressed for a number of systems.
For example, HOL (Alves-Foss and Levitt, 1991; Gordon and Melham, 1993; Melham,
1993), Nqthm (Bevier et al., 1989; Angelo et al., 1993; Boyer et al., 1995), or Coq
(Huet et al., 1997). Other relevant approaches in this area of automated reasoning and
verification can be found in Abadi and Lamport (1993), Bundy et al. (1997), Manna and
Pnueli (1995) and Yoeli (1990). It is one of the challenges for future work to find out
if and how for the specific case of knowledge-based systems and the specific notion of
compositionality that is used in our approach, one of these existing provers or checkers
can be used as a basis for a dedicated supporting software environment. In our view,
due to the conceptual and computational complexity of the applications aimed for, a
verification process needs an essential contribution from a human verifier. Therefore the
aim is to develop an interactive environment where the human user is responsible for
the identification of the composition structure leading to different abstraction levels, for
the properties at each of the abstraction levels, and perhaps also (per component) proof
skeletons, that can be detailed and checked by the software. The identification of the
composition structure and of the properties per abstraction level can be integrated with
the requirements engineering and design process, as has been described in Herlea et al.
(1999).

Acknowledgements. Dieter Fensel provided useful comments on an earlier version of this paper.

References

Abadi M, Lamport L (1993) Composing specifications, ACM Transactions on Programming Languages and
Systems 15(1):73–132

Alves-Foss J, Levitt K (1991) Verification of secure distributed systems in higher order logic: a modular
approach using generic components. In Proceedings of the IEEE Computer Society symposium on research
in security and privacy, Oakland, CA, pp 122–135

Compositional Verification of Knowledge-Based Task Models and Problem-Solving Methods 361

Angelo CM, Verkest D, Claesen L, De Man H (1993) On the comparison of HOL and Boyer-Moore for formal
hardware verification. Formal Methods in System Design 2:45–72

Benjamins R, Fensel D, Straatman R (1996) Assumptions of problem-solving methods and their role in
knowledge engineering. In Wahlster W (ed). Proceedings of the 12th European conference on artificial
intelligence, ECAI’96, Wiley, Chichester, pp 408–412

Beusekom F van, Brazier FMT, Schipper P, Treur J (1998) Development of an ecological decision support
system. In Pobil AP del, Mira J, Ali M (eds). Tasks and methods in applied artificial intelligence (Pro-
ceedings of the 11th international conference on industrial and engineering applications of AI and expert
systems, IEA/AIE’98, vol II). Lecture Notes in AI 1416, Springer, Berlin, pp 815–825

Bevier WR, Hunt Jr WA, Moore JS, Young WD (1989) An approach to systems verification. Journal of
Automated Reasoning 5:411–428

Boyer RS, Kaufmann M, Moore JS (1995) The Boyer-Moore theorem prover and its interactive enhancement
(Nqthm). Computers and Mathematics with Applications 29(2):27–62

Brazier FMT, Dunin-Keplicz B, Jennings NR, Treur J (1995) Formal specification of multi-agent systems:
a real-world case. In Lesser V (ed). Proceedings of the first international conference on multi-agent
systems, ICMAS’95. MIT Press, Cambridge, MA, pp 25–32. Extended version in International Journal
of Cooperative Information Systems 1997; 6:67–94

Brazier FMT, Treur J, Wijngaards NJE (1996) Modelling interaction with experts: the role of a shared task
model. In Wahlster W (ed). Proceedings of the 12th European conference on AI, ECAI’96, Wiley, Chich-
ester, pp 241–245

Brazier FMT, Cornelissen F, Gustavsson R, Jonker CM, Lindeberg O, Polak B, Treur J (1998) Agents Ne-
gotiating for Load Balancing of Electricity Use. In Papazoglou M, Takizawa M, Krämer B, Chanson S
(eds). Proc. of the 18th Internat. Conf. on Distributed Computing Systems, ICDCS’98. IEEE Computer
Society Press, 1998, pp 622–629

Brazier FMT, Jonker CM, Jungen FJ, Treur J (1999a) Distributed scheduling to support a call centre: a
co-operative multi-agent approach. Applied Artificial Intelligence Journal 13:65–90

Brazier FMT, Treur J, Wijngaards NJE, Willems M (1999b) Temporal semantics of compositional task models
and problem solving Methods. Data and Knowledge Engineering 29(1):17–42. Preliminary version in
Gaines BR, Musen MA (eds), Proceedings of the 10th Banff knowledge acquisition for knowledge-
based systems workshop, KAW’96. SRDG Publications, Department of Computer Science, University
of Calgary, 1996, pp 15/1–15/17

Brazier FMT, Jonker CM, Treur J, Wijngaards NJE (2000) On the use of shared task models in knowledge
acquisition, strategic user interaction and clarification agents. International Journal of Human–Computer
Studies 52:77–110

Bundy A, Giunchiglia F, Villafiorita A, Walsh T (1997) Abstract proof checking: an example motivated by an
incompleteness theorem. Journal of Automated Reasoning 19:319–346

Chandrasekaran B (1986) Generic tasks in knowledge-based reasoning: high-level building blocks for expert
system design. IEEE Expert 1:23–30

Console L, Torasso P (1990) Hypothetical reasoning in causal models. International Journal of Intelligent
Systems 5:83–124

Console L, Torasso P (1991) A spectrum of logical definitions of model-based diagnosis. Computational
Intelligence 7:133–141

Dastani M, Jonker CM, Treur J (2001) A requirement specification language for configuration dynamics of
multi-agent systems. InWooldridge M, Ciancarini P,Weiss G (eds). Proceedings of the second international
workshop on agent-oriented software engineering, AOSE’01. Lecture Notes in Computer Science, vol
2222. Springer, 2002, pp 169–187

Engelfriet J, Jonker, CM, Treur J (1999) Compositional verification of multi-agent systems in temporal multi-
epistemic logic. In Mueller JP, Singh MP, Rao AS (eds). Intelligent Agents V: Proceedings of the fifth
international workshop on agent theories, architectures and languages, ATAL’98. Lecture Notes in AI
1555, Springer, Berline, pp 177–194. Extended version in Journal of Logic, Language and Information,
vol 11, 2002, pp 195–225

Fensel D (1995) Assumptions and limitations of a problem solving method: a case study. In Gaines BR,
Musen MA (eds). Proceedings of the ninth Banff knowledge acquisition for knowledge-based systems
workshop, KAW’95. SRDG Publications, Department of Computer Science, University of Calgary

Fensel D, Benjamins R (1996) Assumptions in model-based diagnosis. In Gaines BR, Musen MA (eds).
Proceedings of the 10th Banff knowledge acquisition for knowledge-based systems workshop, KAW’96.
SRDG Publications, Department of Computer Science, University of Calgary, pp 5/1–5/18

Fensel D, Schonegge A, Groenboom R, Wielinga B (1996) Specification and verification of knowledge-based
systems. In Gaines BR, Musen MA (eds). Proceedings of the 10th Banff knowledge acquisition for
knowledge-based systems workshop, KAW’96. SRDG Publications, Department of Computer Science,
University of Calgary, pp 4/1–4/20

362 F. Cornelissen et al.

Fisher M (1994) A survey of Concurrent MetateM: the language and its applications. In Gabbay DM,
Ohlbach HJ (eds). Temporal logic: Proceedings of the first international conference. Lecture Notes in AI
827, pp 480–505

Fisher M, Wooldridge M (1997) On the formal specification and verification of multi-agent systems. Interna-
tional Journal of Co-operative Information Systems 6:67–94

Gordon MJC, Melham TF (eds) (1993) Introduction to HOL: a theorem proving environment for higher order
logic. Cambridge University Press, Cambridge, UK

Harmelen F van, Teije A ten (1997) Validation and verification of diagnostic systems based on their conceptual
model. In Proceedings of the fourth European symposium on the validation and verification of knowledge-
based Systems, EUROVAV’97

Herlea DE, Jonker CM, Treur J, Wijngaards NJE (1999) Integration of behavioural requirementsspecifica-
tion within a knowledge engineering methodology. In Fensel D, Studer R (eds).Knowledge Acquisition,
modelling and management (Proceedings of the 11th European workshop on knowledge acquisition,
modelling and management, EKAW’99). Lecture Notes in AI 1621, Springer, Berlin, pp 173–190

Hoek W van der, Meyer J-JCh, Treur J (1994) Formal semantics of temporal epistemic reflection. In Fribourg
L, Turini F (eds). Logic program synthesis and transformation-meta-programming in logic: Proceedings of
the fourth international workshop on meta-programming in logic, META’94. Lecture Notes in Computer
Science 883, Springer, Berlin, pp 332–352

Huet G, Kahn G, Paulin-Mohring C (1997) The Coq Proof Assistant: a tutorial, Version 6.1. Rapport technique
No 204, INRIA

Jonker CM, Treur J (1998) Compositional verification of multi-agent systems: a formal analysis of pro-
activeness and reactiveness. In de Roever WP, Langmaack H, Pnueli A (eds). Proceedings of the interna-
tional workshop on compositionality, COMPOS’97. Lecture Notes in Computer Science 1536, Springer,
Berlin, pp 350–380. Extended version in International Journal of Cooperative Information Systems, vol
11, 2002, pp 51–92

Jonker CM, Treur J (1999) A generic process control model and its application to the control of biochemical
processes. In Imam I, KodratoffY, El-Dessouki A, Ali M (eds). Multiple approaches to intelligent systems
(Proceedings of the 12th international conference on industrial and engineering applications of AI and
expert systems, IEA/AIE’99). Lecture Notes in AI 1611, Springer, Berlin, pp 296–305. Extended version
in Applied Artificial Intelligence Journal 2002; 16:51–71

Jonker CM, Treur J (2001) An agent architecture for multi-attribute negotiation. In Nebel B (ed). Proceedings
of the 17th international joint conference on AI, IJCAI’01. Morgan Kaufmann, San Matro, CA, pp 1195–
1201

Jonker CM, Vollebregt AM (2000) ICEBERG: exploiting context in information brokering agents. In Klusch
M, Kerschberg L (eds). Cooperative information agents IV: Proceedings of the fourth international work-
shop on cooperative information agents, CIA 2000. Lecture Notes inArtificial Intelligence 1860, Springer,
Berlin, pp 27–38

Leemans NEM, Treur J, Willems M, (2002) A semantical perspective on verification of knowledge. Data and
Knowledge Engineering 40:33–70

Manna Z, Pnueli A (1995) Temporal verification of reactive systems: safety. Springer, Berlin
McCarthy J, Hayes PJ (1969) Some philosophical problems from the standpoint of artificial intelligence.

Machine Intelligence 4:463–502
Melham T (1993) Higher order logic and hardware verification. Cambridge Tracts in Theoretical Computer

Science 31, Cambridge University Press, Cambridge, UK
Port RF, Gelder T van (eds) (1995) Mind as motion: explorations in the dynamics of cognition. MIT Press,

Cambridge, MA
Rambags PMP (1994) Decomposition and protocols in high-level Petri nets. PhD thesis. Eindhoven University
Reif W (1995) The KIV approach to software engineering. In Broy M, Jänichen S (eds). Methods, languages,

and tools for the construction of correct software. Lecture Notes in Computer Science 1009, Springer,
Berlin

Reiter R (1987) A theory of diagnosis from first principles. Artificial Intelligence 32:57–95
Reiter R (1993) Proving properties of states in the situation calculus. Artificial Intelligence 64:337–351
Schreiber ATh, Akkermans JM, Anjewierden AA, Hoog R de, Shadbolt NR, Velde W van de, Wielinga BJ

(2000) Knowledge engineering and management. MIT Press, Cambridge, MA
Treur J (1993) Heuristic reasoning and relative incompleteness. International Journal of Approximate Rea-

soning 8:51–87
Treur J, Willems M (1994) A logical foundation for verification. In Cohn AG (ed). Proceedings of the 11th

European conference on artificial intelligence, ECAI’94. Wiley, Chichester, 745–749
Yoeli M (1990) Formal verification of hardware design. IEEE Computer Society Press, Los Alamitos, CA

Compositional Verification of Knowledge-Based Task Models and Problem-Solving Methods 363

A. On the Proofs of the Properties of the Top Level

In this appendix, as an illustration, some of the details are given of the proofs of the
properties at the top level. Some of the details of the proofs of the following four
properties are shown (see Fig. 5) or sketched:

• system assessment correct
(from: hypothesis validation assessment correct)

• system assessment conservative
(from: hypothesis validation assessment conservative)

• system assessment effective
(from: system assessment conservative, hypothesis determination focus efficient, hypothesis
determination focus effective, and hypothesis validation assessment effective)

• system terminates
(from: system assessment effective)

A.1. The Property System Assessment Correct

Assumption for the proof is hypothesis validation assessment correct:

(∀ γ ∈ Traces(S) ∀ t ∀ h
stateS (γ , t, output(HV)) |= confirmed(h) ⇒ EW |= h)
∧
(∀ γ ∈ Traces(S) ∀ t ∀ h
stateS (γ , t, output(HV)) |= rejected(h) ⇒ EW |= ¬ h)

The proof runs as follows. The system S is correct if

(∀ γ ∈ Traces(S) ∀ t ∀ h
stateS (γ , t, output(S)) |= confirmed(h) ⇒ EW |= h) ∧
(∀ γ ∈ Traces(S) ∀ t ∀ h
stateS (γ , t, output(S)) |= rejected(h) ⇒ EW |= ¬ h)

The only information link to the output interface of S is diagnosis. The transfer ground-
edness property of this link expresses:

∀ γ ∈ Traces(S) ∀ t ∀ h
stateS (γ , t, output(S)) |= confirmed(h) ⇒
stateS (γ , t + 1, output(HV)) |= confirmed(h) ∧
stateS (γ , t, output(S)) |= rejected(h) ⇒
stateS (γ , t + 1, output(HV)) |= rejected(h)

Suppose M, t, h are given with

stateS (γ , t, output(S)) |= confirmed(h)

Then by the transfer groundedness property it holds

stateS (γ , t + 1, output(HV)) |= confirmed(h)

From assessment correctness of hypothesis validation it follows EW |=h.

364 F. Cornelissen et al.

In a similar manner it is proved that

stateS (γ , t, output(S)) |= confirmed(h)

implies EW |= ¬ h. This proves system correctness.

A.2. The Property System Assessment Conservative

The system S is called assessment conservative if:

(a) ∀ γ ∈ Traces(S) ∀ t ∀ h
[stateS (γ , t, output(S)) |= confirmed(h) ⇒
stateS (γ , t + 1, output(S)) |= confirmed(h)]

(b) ∀ γ ∈ Traces(S) ∀ t ∀ h
[stateS (γ , t, output(S)) |= rejected(h) ⇒
stateS (γ , t + 1, output(S)) |= rejected(h)]

Assumption for the proof: hypothesis validation assessment conservative.

The component hypothesis validation is called assessment conservative if:

(a) ∀ γ ∈ Traces(S) ∀ t ∀ h
[stateS (γ , t, output(HV)) |= rejected(h) ⇒
stateS (γ , t + 1, output(HV)) |= rejected(h)]

(b) ∀ γ ∈ Traces(S) ∀ t ∀ h
[stateS (γ , t, output(HV)) |= confirmed(h) ⇒
stateS (γ , t + 1, output(HV)) |= confirmed(h)]

Suppose M, t > 0, h are given with

stateS (γ , t, output(S)) |= confirmed(h)

By transfer groundedness it follows that

stateS (γ , t − 1, output(HV)) |= confirmed(h)

From this by assessment conservatism of HV it follows that

stateS (γ , t, output(HV)) |= confirmed(h)

By transfer successfulness it follows that

stateS (γ , t + 1, output(S)) |= confirmed(h)

The same proof can be followed with rejected(h) instead of confirmed(h). This proves con-
servatism of the system.

A.3. The Property System Assessment Effective

Assumptions for the proof of the system’s assessment effectiveness are: system assess-
ment conservative, hypothesis determination focus efficient, hypothesis determination
focus effective, and hypothesis validation assessment effective. A crucial step in the
proof is the following intermediate proposition. It is shown how it is proven first. In a
trace γ ∈ Traces(S) and a time point t, component hypothesis validation shows progression
from time point t to time point t + 2 if

∃ h [stateS (γ , t, output(HV)) �|= assessed(h) ∧

Compositional Verification of Knowledge-Based Task Models and Problem-Solving Methods 365

stateS (γ , t + 2, output(HV)) |= assessed(h)]

Proposition. The component HV will show progression as long as no hypothesis has
been confirmed and there is still a hypothesis that was not rejected, i.e., for all traces
γ ∈ Traces(S) and time points t it holds:

[¬ [∃ h stateS (γ , t, output(HV)) |= confirmed(h)] ∧
¬ [∀ h stateS (γ , t, output(HV)) |= rejected(h)]]

⇒ ∃ h [stateS (γ , t, output(HV)) �|= assessed(h) ∧
stateS (γ , t + 2, output(HV)) |= assessed(h)]

Proof. The proof runs as follows. Assume the conditions

¬ [∃ h stateS (γ , t, output(HV)) |= confirmed(h)] ∧
¬ [∀ h stateS (γ , t, output(HV)) |= rejected(h)]

are satisfied. By transfer groundedness of the interaction from HV to HD it holds:
¬ [∃ h stateS (γ , t + 1, input(HD)) |= confirmed(h)] ∧
¬ [∀ h stateS (γ , t + 1, input(HD)) |= rejected(h)]

From this it follows that

∃ h stateS (γ , t + 1, input(HD)) �|= assessed(h) ∧
∀ h stateS (γ , t + 1, input(HD)) �|= confirmed(h)

By focus effectiveness of HD it follows that

∃ h stateS (γ , t + 1, output(HD)) |= focus(h)

By transfer successfulness from HD to HV it follows that

∃ h stateS (γ , t + 2, input(HV)) |= focus(h)

Using assessment effectiveness for HV it follows that there exists an h′ such that:

stateHV (γ , t + 2, input(HV)) |= focus(h′) ∧
stateHV (γ , t + 2, output(HV)) |= assessed(h′)

From transfer groundedness it follows that

stateHV (γ , t + 1, output(HD)) |= focus(h′)

and from focus efficiency of HD we have

stateHV (γ , t + 1, input(HD)) �|= assessed(h′)

By transfer groundedness it follows that

stateHV (γ , t, output(HV)) �|= assessed(h′)

This shows that the hypothesis h′ was not assessed at time t but is assessed at time t + 2.
This proves the Proposition.

The proof of the property system assessment effective depends on this proposition. As
soon as there is no longer any progression (which time point will eventually occur due
to finiteness of the set of hypotheses and by conservativity), one of the two conditions

366 F. Cornelissen et al.

¬ [∃ h stateS (γ , t, output(HV)) |= confirmed(h)] ∧
¬ [∀ h stateS (γ , t, output(HV)) |= rejected(h)]

in the Proposition has to be false. If the first one is false, then:

∃ h stateS (γ , t, output(HV)) |= confirmed(h)

If the second one is false, then:

∀ h stateS (γ , t, output(HV)) |= rejected(h)

From correctness, in the first case it follows that

∃ h EW |= h,

and in the second case:

∀ h EW |= ¬ h.

This finishes the overview of the proof of assessment effectiveness of S.

A.4. The Property System Terminates

Finally, the property termination of S is proven on the basis of the proposition above, the
assumptions assessment conservativity of HV, finite number of hypotheses, and static
world. From the proposition and conservativity (if a hypothesis is rejected it will always
stay rejected) it follows that for each time point t, if S does not terminate at time point
t + 1, the number of rejected hypotheses has been increased by at least one. Combining
this result with domain assumption finite number of hypotheses it follows that system S
will terminate after a finite number of time points.

Author Biographies

Frank Cornelissen completed his Master of Science degree in Artificial Intel-
ligence in 1996 at the Department of Artificial Intelligence at the Vrije Uni-
versiteit Amsterdam. He specialized in design and compositional verification of
knowledge-based systems and agent systems. From 1997 to 2000 he worked as a
scientific programmer in the same department, focusing on the implementation of
software environments to develop knowledge-based systems and agent systems,
and on a number of practical applications, for example, in ecological monitoring,
agent-based distributed agenda scheduling, and negotiating agents for power load
balancing. Currently he is employed at Object Technology International Inc.

Catholijn Jonker received her PhD degree in Computer Science in 1994 from
Utrecht University. Since 1995 she has worked as an assistant professor in the De-
partment of Artificial Intelligence at the Vrije Universiteit Amsterdam. Currently
she is coordinator of the Agent Systems Research Group within this department.
Her research has focused on the design and analysis of agent systems and their
application to information agents and electronic commerce. Curently the gen-
eral theme of Catholijn Jonker’s reseach interests is ‘dynamics of behavior of
agents in a dynamic environment’. This theme applies to: multi-issue negotia-
tion, intelligent information agents, dynamic maintenance of brokering systems,

requirements engineering, verification, validation, support systems for RE, design, andV&V of agent systems.

Compositional Verification of Knowledge-Based Task Models and Problem-Solving Methods 367

Jan Treur received his PhD in Mathematics and Logic in 1976 from Utrecht
University. Since 1986 he has worked in Artificial Intelligence, from 1990 as a
full professor and head of the Department of Artificial Intelligence at the Vrije
Universiteit Amsterdam. Since the 1990s a research programme on design and
analysis of knowledge-based and agent systems and their applications in different
domains has been developed. The application domains cover information agents,
electronic commerce, biology, cognitive science and social sciences. From 2001
he has held a part-time professorship at the Department of Philosophy in Utrecht.
His current research interests include agent systems and their behavioral dynam-
ics, biological, cognitive and social modeling, and philosophy of mind.

Correspondence and offprint requests to: J. Jonker, Vrije Universiteit Amsterdam, Dept of Artificial Intelli-
gence, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands. Email: jonker@cs.vu.nl

