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Abstract. Cooperative problem solving without communication is an often-
studied field within multi-agent research. Realistic problems investigated in this 
particular field are complex and difficult to model, and therefore not suitable for 
education. This paper presents the distributed weighing problem as a novel 
problem to be used for educational purposes within the domain of cooperation 
without communication. An example agent-based architecture is developed of 
which parts can be provided to students as a starting-point for practical 
exercises in cooperative problem solving without communication. Two example 
strategies are discussed and implemented using this example architecture. 
Moreover, it is shown how such strategies can be tested and formally validated 
against a number of desired properties. The educational benefits of the 
distributed weighing problem are presented as observed in a course for 6 groups 
of each 3 students. 

1   Introduction 

Coordination and cooperation between agents has been a topic of research for many 
years (see for example [5] and [9]), and is a part of everyday life. For instance, within 
the port of Rotterdam coordination is essential [14]. The port has approximately 24 
terminals and about 120 sea vessels and barges are continuously loading and 
unloading containers. Coordination is needed to determine routes for the vessels and 
barges in such a way that they do not have to wait too long for other ships when they 
arrive at a certain terminal.  

In the above example, the port authorities communicate with the ships to determine 
a schedule that is satisfactory for all parties. However, in a number of cases of 
cooperation between agents, no communication takes place (see also [7]). For 
instance, without communication people often coordinate their actions so that they do 
not bump in to each other on the street. Management games such as the broken 
squares problem [1] have been developed to train people in cooperation without 
communication. The broken squares problem requires the players to each construct a 
square out of a set of given parts. The parts, however, are distributed randomly across 
the individuals, therefore they need to forward those broken parts to other players for 
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which those parts are useful. The problem is solved when all individuals have formed 
their individual goal square. Also in the domain of software agents cooperation with 
limited or no communication plays a role. Agents might not have all the information 
or abilities they need to reach a certain goal. They may need to cooperate with other 
agents to be able to reach that goal. The problem solving capacity of the overall 
system increases with the cooperation capacity of the agents in the system. However, 
the communication load increases with the number of agents, which makes it 
attractive to solve the cooperation problem using limited communication. 

As the examples show, in a number of cooperation problems communication is not 
possible or unnecessary. Students in the fields of artificial intelligence, computer 
science, information science, and management need to be familiar with solving such 
problems. Especially, the IT-related students need to be trained in the development of 
cooperative software agents. Suitable problems for educational purposes are problems 
that can easily be modelled. Scalability of the problem allows for testing the 
generality of the solution. Problems identified in the literature for cooperation without 
communication are often very hard to model. The broken squares problem for 
example entails modelling the different shapes of the pieces of the puzzle, the shapes 
that can be created when combining pieces of puzzles, and so on. Therefore it is hard 
to get students to study this type of problem in depth. 

To improve the quality of education in cooperation without communication, this 
paper introduces a problem that is purely cooperative and can be solved without 
communication. The problem is derived from the twelve balls problem (see [11]), also 
known as the twelve coins problem. It involves twelve balls, each with the same 
appearance, of which one has a deviating weight which can either be lighter or 
heavier compared to the other balls. The balls can be put on a balance and weighed 
against each other. The goal of the problem is to find the deviating ball, and determine 
how it deviates from the rest (whether it is heavier or lighter). An additional 
restriction applies: The maximum number of weighings allowed is three. 

The twelve balls problem, which is initially a centralized problem, can easily be 
modelled as a distributed problem without communication. To this end, each ball is 
represented by one agent that can decide to jump on the balance or not. The common 
goal is to derive the solution for the problem. The agents representing the balls are not 
allowed to communicate with each other. As the emphasis is on cooperation and not 
on efficiency of the solution, the requirement of solving the problem within three 
weighings is dropped. To ensure the eventual solution of the problem, no repetition of 
weighings is allowed, so the combined strategy of the agents should always result in 
performing a different weighing than before. In the rest of the paper this distributed 
problem is addressed as the distributed weighing problem. The number of balls can 
easily be scaled to any preferred number.  

The distributed weighing problem is explained in more detail in section 2. Section 
3 describes an example design of a component-based multi-agent system that models 
the problem. This design can serve as a starting-point in practical assignments in 
cooperation without communication. Example strategies that can be used by the 
agents are shown in more detail in section 4. Section 5 shows how such strategies can 
be tested and formally validated against a number of desired properties. Experiences 
in using the problem in education are discussed in Section 6. Section 7 compares the 
work with related literature and presents conclusions. 
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2   The Distributed Weighing Problem 

This section describes the distributed weighing problem at a more detailed level, 
including the assumptions that agents are allowed to make on the behaviour of other 
players in the puzzle. Two possible protocols for the problem are introduced, and their 
differences discussed. Thereafter, a theoretical overview is presented of the possible 
types of agents one can encounter when solving the problem.  

2.1   Puzzle Design 

The distributed weighing problem is a derivative of the twelve balls problem, 
explained in the introduction, in which an arbitrary number of balls is used. Each ball 
is represented by an agent. All balls but one have exactly the same weight. The 
deviating ball is either heavier or lighter than the others. The goal of the game is to 
determine which ball is the deviating ball and to determine the deviation (heavier of 
lighter). The puzzle is solved when at least one ball knows the answer. Actions of a 
ball are observable to others. A ball has the following options: 

1. join_left. If not already on the balance, the ball agent can select this option when 
it wants to join the left scale. 

2. join_right. If not already on the balance, the ball agent can perform this action in 
case it wants to join the right scale. 

3. do_nothing. This option can be used in case the ball agent is satisfied with the 
current balance configuration. If the agent is already on the balance, this is its 
only course of action. This design choice simplifies the problem of detecting that 
an agent decides not to join any scale. 

A balance is available to perform the weighings determined by the balls. The game 
begins with an empty balance. After a weighing is performed, all agents are 
automatically removed from the balance. 

The weighing process is performed according to a sequential protocol. In this 
protocol all balls get turns in a predetermined order. At the beginning an empty 
balance is observed by the first ball in line. After a ball has performed the chosen 
response action (possibly the observable “do_nothing”), the next ball observes the 
new situation. For example, ball B observes a situation with ball A on the left scale 
and an empty right scale. After all agents have performed the “do_nothing” action 
after each other, the balance performs the weighing and the agents observe the result 
of the weighing (i.e., one scale heavier than the other, or both scales equal). When 
playing this protocol, each ball knows after which other agent it has the turn. The first 
ball knows it has the turn at the beginning of the game. 

In fact, the sequential protocol reflects a specific type of cooperation without 
communication. In such cooperation problems, where the parties involved contribute 
to the problem sequentially, their main concern is what action they have to perform. 
In cooperation problems where the parties involved contribute to the problem in 
parallel, an additional concern is when to perform the action. In future work, the 
distributed weighing problem will be used to study parallel cooperation as well. 



194 T. Bosse, M. Hoogendoorn, and C.M. Jonker 

2.2   Types of Agents 

In order to ensure success, the agents are allowed to assume that the other agents will 
also behave with some intelligence and with the same goal in mind. In this section 
(and only this section) this assumption is dropped for the purpose of identifying all 
possible kinds of agents. In principle, three different types of agents can be identified: 

A. Nasty. This agent tries to cause loops. A loop means that the same weighing is 
done over and over again. Nasty agents do not meet the benevolent requirement 
presented in [13] which roughly states that agents want to help each other 
whenever possible. 

B. Dummy. A dummy agent performs arbitrary moves without any notion of 
previous weighings, or the possible consequences of his moves. Therefore the 
strategy can non-intentionally cause loops. Such an agent might also confuse 
agents that try to solve the problem in a more intelligent fashion. 

C. Progressive. Progressive agents are those who always move towards the 
solution. Three basic strategies can be distinguished in the behaviour of the 
agent: 

C-a. Non-repetitive. An agent that follows a non-repetitive strategy tries to prevent 
a weighing that has already been done. If the other agents are also non-
repetitive, no loops will emerge during the problem solving process. Success is 
ensured if the agents keep performing weighings until they know the answer. 

C-b. Information-eager. Agents following an information-eager strategy only aim 
for weighings from which new information can be derived. For example, a first 
weighing of ball A and B on the left scale against ball C and D on the right 
scale results in a balance. Therefore, it is known that all the balls are non-
deviant, and a weighing of ball A against ball B would not add any information 
and is not accepted in the information-eager strategy.  

C-c. Efficient. For each number of balls there is a minimal number of weighings 
that is always enough to find a solution. For the general problem (from [10]) 
with a maximum of n weighings the maximum number of balls for which the 
solution can be determined, m, is defined as: m ≤ (3n - 3) / 2. In case of the 
twelve balls problem that is always three weighings. An agent that follows an 
efficient strategy aims at finding the solution in that amount of weighings.  

For educational purposes the focus is on agents of type C. Agents of type A and B 
are considered less interesting, because they do not cooperate. When strictly 
following the strategies of type C, the robustness relationships depicted in Table 1 
hold. Robust means that the agents find a solution. As the table shows, strict C-a 
agents are robust against all other C agents, since these also try to prevent repetition. 
Strict C-b agents are robust against other strict C-b agents and strict C-c agents, but 
not against strict C-a agents. This is because a strict C-b agent assumes that the others 
are also information-eager. If this is not the case, a situation might occur which the 
agent cannot handle. For example, consider the situation sketched above when it is 
known that ball A and B are non-deviant. Then, a strict C-a agent might still propose 
a weighing of ball A against B, whilst a strict C-b agent will not allow this. As a 
result, the C-b agent will not be able to derive any appropriate action for the situation. 
For similar reasons, strict C-c agents are only robust against other strict C-c agents. 
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Table 1. Robustness of C-
strategies 

    

 C-a C-b C-c 
C-a + + + 
C-b - + + 
C-c - - + 

Section 4 presents the strategies of a type C-a and of 
a type C-b agent. A type C-c agent is not considered, 
since the focus is on finding a solution using a simple 
strategy, not on finding it in an efficient manner. It is 
however easy to incorporate such a strategy in the 
design presented in the next section. 

 

3   Example Design of a Multi-agent System for the Distributed 
Weighing Problem 

This Section presents an example design of a multi-agent system for the distributed 
twelve balls problem. Students can, based on their experience in modelling and 
designing multi-agent systems, be provided with parts of this model as a starting-point 
for the exercise. 

3.1    Top Level 

The multi-agent system is designed using the component-based agent modelling 
approach DESIRE; cf. [3]. The highest level of abstraction consists of the agents 
representing the balls (called ball_A, ball_B, and so on) and the External World. The 
agents can perform actions in the external world, and observe the external world.  

The execution of actions generated by the agents is modelled as follows. After an 
agent generates a certain action to be performed (e.g., jump on the left scale of the 
balance), this action is transferred to the external world, where the result of the action 
will occur (e.g., ball A is currently on the left scale of the balance). Thus, the 
execution of physical actions by the agents is modelled as part of the component 
external world. The action do_nothing represents the fact that an agent does not move 
for a certain period of time. Introducing this as an action makes the problem of 
knowing when an agent finished his turn easy. 

Besides performing actions, the agents can observe the world. In the simplest 
model, these observations are not modelled explicitly (i.e., the agents do not have to 
determine pro-actively when to observe what). Instead, every relevant aspect of the 
world is transferred automatically from the external world to the agents in the form of 
observation results. These observation results include the current position of the balls 
on the balance, the results of weighings, and the actions performed by others. 

3.2   Agent Level 

The composition of the agents is based on the generic agent model as described in [3]. 
In the current model, four of the generic agent components are used, namely Own 
Process Control, World Interaction Management, Maintenance of Agent Information, 
and Agent Specific Task. 

According to the generic agent model, the task of the component Own Process 
Control is to control the agent’s own activities (e.g., determining, monitoring and 
evaluating its own goals, plans and characteristics). In the current domain, this is done 
by maintaining the following information: the agent’s own name, the name of the 
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current protocol, and other information associated with the protocols. For example, 
for the sequential protocol, the agent needs to know either the order in which the 
agents are allowed to perform actions (e.g., A-B-C-D-E-F-G-H-I-J-K-L-A), or the 
name of the agent ahead of it. 

The component World Interaction Management takes care of the processes 
involved in interaction with the external world, i.e., observation interpretation, 
directed observation initiation, and action performance. The component passes actions 
and observation results (e.g., concerning the current position of the balls on the 
balance) from the relevant other components to the world and vice versa. 

The task of the component Maintenance of Agent Information is to maintain 
(partial) agent models, containing relevant information about the state of the 
surrounding agents. In most applications, this information is obtained in two different 
ways: by observing the other agents and by communicating with them. Obviously, in 
the distributed weighing domain only the first approach occurs. For this domain, the 
agent models are restricted to the assumed weights of the agents (including itself). At 
any time, to each agent exactly one of the following values is assigned: {unknown, 
neutral, heavier_or_neutral, lighter_or_neutral, heavier, lighter}. Initially, each agent gets the 
value unknown. In later stages of the process, these values are updated in accordance 
with the observed weighing results. A number of knowledge rules are used to perform 
this modification: 

• each ball occurring in a balanced weighing gets the value neutral 
• each ball not occurring in an unbalanced weighing gets the value neutral 
• each ball occurring on the lower scale in one weighing, and occurring on the 

higher scale in another weighing, gets the value neutral 
• each unknown ball occurring on the lower scale in a weighing gets the value 

heavier_or_neutral 
• each unknown ball occurring on the higher scale in a weighing gets the value 

lighter_or_neutral 
• if one ball is lighter_or_neutral and all other balls are neutral, then this ball gets the 

value lighter 
• if one ball is heavier_or_neutral and all other balls are neutral, then this ball gets 

the value heavier 

Moreover, it is assumed that all agents have perfect recall. 
Within the generic agent model specific tasks (e.g., design, diagnosis, information 

retrieval) can be modelled in the component Agent Specific Task. For the current 
domain, the specific task can be described as the determination of actions to be 
performed, based on the current situation of the balance. Thus, the output of this 
component is a proposal of the form join_left, join_right, or do_nothing. The exact 
knowledge used within Agent Specific Task depends on the strategy used by the 
agent, as described in the next section. 

4   Example Strategies 

This section describes a concrete example of a strict non-repetitive and a strict 
information-eager strategy. These examples show that the problem is relatively easy 
to solve. Moreover, they illustrate what comes into play when designing such 
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strategies. The current strategies were used to construct strict C-a and strict C-b type 
agents that were tested in different combinations (see Section 5).  

4.1   Non-repetitive Strategy 

Non-repetitive strategies require looking ahead at the possible options that can still be 
performed without resulting in repetition. Without these calculations it is impossible 
to determine whether jumping on a scale can or cannot result in a new weighing of m 
to m balls, for some m. Two solutions are considered here: (1) Generate all possible 
weighings; (2) Use a mathematical formula to calculate the amount of options left. 

A first option is to generate all possible weighings that might result after jumping 
on one of the scales, until you find one that has not been done in the past. If such a 
weighing cannot be found, try the same for jumping on the other scale. If that does 
not work either, then don’t jump on any scale. However, its exponential character 
makes this option unsuitable for scaling to larger numbers. 

A second option is to mathematically calculate how many possible weighings can 
be constructed in total, considering the current balance after an action of the agent 
(i.e. join_left, join_right, do_nothing), and the amount of balls still not on the balance. 
Thereafter, sum up the amount of past weighings of which the current proposal 
combined with the action of the agent is a subset. If there are more possible weighings 
than past weighings, the action for which the calculation was done is allowed to be 
performed. The number of possible weighings can be calculated as follows: Choose a 
type of weighing: m:m, where m varies from 1 to half the number of balls in the 
game. Let l denote the amount of available places on the left side of the balance with 
respect to your choice m, and r the amount of available places on the right side again 
with respect to m. For example, if you aim for a 3:3 weighing, and there is already 
one ball on the right scale, then r is 2. The amount of balls not on the balance is n. A 
formula to calculate the number of possible weighings w given these parameters is: 

!

)(

!

)(
)1(1

0

r

jn

l

in

w

rl

lj

l

i
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

×
⎟
⎠

⎞
⎜
⎝

⎛ −
=

∏∏
−+

=

−

=  

This number can be calculated for every possible value of m. The specific strategy 
determines which value is attempted first. The agent has the following arbitrary 
preference: (1) join_left; (2) join_right; (3) do_nothing. 

4.2   Information-Eager Strategy 

An agent that follows an Information-Eager strategy aims at weighings that provide 
some new information. Thus, if all agents are of this type, such weighings will indeed 
be performed until one of the agents solves the problem. In other words, after an 
Information-Eager agent has performed an action, the possibility to obtain a weighing 
that provides new information is still open (unless this was already impossible before 
the agent’s action). A strategy of this type does not need to consider all remaining 
possibilities, because it can make use of its knowledge about the weights of the 
existing balls. For example, if a certain agent has the value lighter_or_neutral, and there 
is a ball with value heavier_or_neutral on the left scale, then it may be wise to join this 
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YES
 

Do nothing 
 Am I already on

the balance? 
 

YES
 

Join the other scale 
 Does one of the scales con-

tain the maximally allowed 
number of balls? 

YES
 

Perform this action 
 

Is there an action that
immediately results in an 
advantageous weighing? 

 

NO 

 Perform an action based 
on a special sub-case

NO 

NO 

ball on the left scale, because the resulting weighing is guaranteed to change the value 
of one of these balls (as long as other balls “complete” the weighing to ensure that 
both scales contain an equal amount). A number of different strategies of this type can 
be implemented. The strategy that is described in this section uses a two-step 
algorithm. In the first step the current situation is classified. In the second step an 
appropriate action is selected, based on the current situation. 

In the first step, a number of different situations can be distinguished. The main 
distinction is between advantageous weighings and non-advantageous weighings. A 
weighing is advantageous if it is guaranteed to provide new information, no matter 
what the other balls do (as long as they “complete” the weighing, which is assumed). 
Advantageous weighings are weighings that (1) contain an unknown ball, (2) contain a 
heavier_or_neutral and a lighter_or_neutral ball on one scale, (3) contain a 
heavier_or_neutral ball on both scales, or (4) contain a lighter_or_neutral ball on both 
scales. Examples of the non-advantageous weighings are the case that all balls are 
neutral, the case that one ball is heavier_or_neutral and the rest is neutral, and so on.  

When the current situation is classified, an appropriate action can be determined. 
In order to do this, the current strategy uses the algorithm depicted in Figure 1. As can 
be seen in the figure, first an agent has to verify whether it is already on the balance, 
because then the only possible action is do_nothing. When the agent is not on the 
balance, it checks whether one of the scales contains the maximally allowed number 
of balls, which is exactly half of the total number of balls (e.g. for the twelve balls 
problem, it is 6). If this is the case, the agent has to jump on the other scale in order to 
complete the weighing. The next step is to check whether an action exists that 
immediately results in an advantageous weighing. For example, if a certain agent has 
the value lighter_or_neutral, and there is already a ball with value lighter_or_neutral on the 
left scale, then join_right is such an action. 

However, if such an action cannot be 
found, then the action to be performed 
depends on the specific situation. For 
reasons of space, the knowledge used in this 
last step is not represented completely in 
Figure 1. However, an example sketch of 
such a knowledge rule is the following: “if I 
am neutral, and the left scale contains more 
balls than the right scale, and there are still 
two lighter_or_neutral balls not on the 
balance, then I will join_left”. The idea of 
this rule (and of many similar rules) is that 
the agent leaves empty spaces for the balls 
of which it is known that they will 
contribute to an advantageous weighing. 
Note that in general, this strategy has a 
preference for jumping on the balance when 
possible. An advantage of this approach is 
that the action do_nothing is often avoided, 
which minimizes the risk of accidentally 
accepting a non-advantageous weighing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Action selection algorithm 
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5   Testing Strategy Performance 

The system described in the previous sections has been used to run a complete set of 
simulation experiments for six balls. The different parameters used in the experiments 
were the strategy used by each agent (i.e., either non-repetitive or information-eager), 
the name of the deviating ball, and the type of the deviating ball (i.e., either lighter or 
heavier). Hence, 768 (= 26 * 6 * 2) experiments have been performed in total. In all 
experiments, the sequential protocol was used for performance of actions. Similar 
experiments can be performed with student implementations to determine how well 
their strategies perform. 

After performing the experiments, the resulting traces were automatically 
translated to a format that is suitable for the LEADSTO environment [2].  This 
environment has an automated checker, which offers the possibility to formally verify 
dynamic properties against traces. This checker takes a formally specified property 
and a set of traces as input, and verifies whether the property holds for the traces. For 
formal specification of the properties, the Temporal Trace Language TTL was used, 
cf. [12]. This language is based on sorted first-order predicate logic, and allows 
making explicit references to time points and traces. Using the automated checker, 
relevant properties can be checked against traces generated by a particular 
implementation of the distributed weighing problem. Hence, using such tools enables 
automatic performance measurement of the strategies that have been implemented 
(e.g. by students). Some examples of such properties are the following (both in 
informal and in formal TTL notation): 
 

reasoning_successfulness(γ:trace) 
In trace γ, eventually there will be a time point t on which some ball knows the solution. Formalisation: 

∃t:time ∃b1,b2:ball ∃ v:value 
[state(γ, t) |= belief(b1, has_value(b2, v), pos) ∧ state(γ, t) |= deviating_ball(b2, v)] 

 

no_repetition(γ:trace) 
In trace γ, no weighing w will be performed twice. Formalisation: 
∀t1:time ∀w:weighing 

[state(γ, t1) |= to_be_performed(w) ⇒ ¬∃t2:time [t2>t1 ∧ state(γ, t2) |= to_be_performed(w)]] 
 

reasoning_continuation(γ:trace) 
In trace γ, as long as there is no ball that knows the solution, a new weighing w will be performed. 
Formalisation: 

∀t1:time ∀b1,b2:ball 
[[state(γ, t1) |=/= belief(b1, has_value(b2, heavier), pos) ∧ 
  state(γ, t1) |=/= belief(b1, has_value(b2, lighter), pos)] ⇒ 
 ∃t2:time ∃w:weighing [t2>t1 ∧ state(γ, t2) |= to_be_performed(w)]] 

 

strong_new_information(γ:trace) 
In trace γ, after each observation result, each ball will update the agent model of at least one of the balls 
before the next observation result is available. Formalisation: 

∀t1:time ∀o1:obs_result ∀b1:ball 
[state(γ, t1) |= observation_result(o1, pos) ⇒ 
 ∃t2,t3:time ∃b2:ball ∃v1,v2:value 

[t2<t1<t3 ∧ v1≠v2 ∧ state(γ, t2) |= belief(b1, has_value(b2, v1), pos) 
        ∧  state(γ, t3) |= belief(b1, has_value(b2, v2), pos) 
        ∧ ¬[∃t4:time ∃o2:obs_result 

t1<t4<t3 ∧ o2≠o1 ∧ state(γ, t4) |= observation_result(o2, pos)]]] 
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efficiency(γ:trace) 
In trace γ a solution is found within 3 weighings. Formalisation: 
reasoning_successfulness(γ)∧ 
∃ t1,t2,t3:time ∃ w1,w2,w3:weighing 

[state(γ, t1) |= to_be_performed(w1) ∧ state(γ, t2) |= to_be_performed(w2) ∧ 
 state(γ, t3) |= to_be_performed(w3) ∧ t1<t2<t3 ∧ 
 ([( t4:time ( w4:weighing 

state((, t4) |= to_be_performed(w4) ( t4 ( t1 ( t4 ( t2 ( t4 ( t3 ]] 
 
A summary of the results of the evaluation of the example strategies introduced in 
Section 4 can be found in Table 2. The properties are on the vertical axis, whereas 
three different categories of traces are on the horizontal axis. The cells indicate the 
percentages of generated traces for which a particular property holds. As can be seen 
in this table, the experiments in which all agents use the non-repetitive calculation 
strategy (C-a) of Section 4 were always successful (100%). Moreover, in these traces 
no repetition of weighings occurs, and the reasoning continues until the solution is 
known. As could be expected, not all of these traces (66.7%) satisfy the property 
strong_new_information. The reason for this is that these agents do not care whether 
they always derive new information, as long as there is no repetition of weighings. As 
a result, these traces do not always satisfy the property efficiency either. However, 
remember that the efficiency of the process is not considered as a measure of 
successful cooperation. On the other hand, the traces where all agents use the 
information-eager strategy (C-b) as given in Section 4 always derive new information. 
Of course, these traces are still not always efficient. Furthermore, these traces always 
satisfy the properties reasoning_successfulness, no_repetition, and reasoning_continuation. 

 

Table 2. Results of the automated checks - percentage of traces for which the property holds 
 

 all agents C-a all agents C-b some C-a, some C-b 
reasoning successfulness 100 100 74.6 

no repetition 100 100 78.8 
reasoning continuation 100 100 95.8 
strong new information 66.7 100 70.4 

efficiency 50.0 33.3 41.7 

The most interesting category is the set of “mixed” traces (where some agents used 
strategy C-a, and some agents used C-b). Table 2 shows that none of the properties 
succeeded for all of these traces. To be specific, 25.4% of the mixed traces was not 
successful. In fact, there were two reasons for failure: in 21.2% of the cases the same 
weighing was repeated forever (i.e., the property no_repetition failed), in 4.2% of the 
cases the reasoning stopped because an agent could not derive an action at all (i.e., the 
property reasoning_continuation failed). Closer examination of the unsuccessful traces 
led to the conclusion that the agent causing the failure was always of type C-b. In 
addition, the reason of failure had always to do with the agent’s assumption that the 
other agents were also of type C-b. Based on this assumption, a strict information-
eager agent can only deal with those situations where it is still possible to derive new 
information. In case a strict information-eager agent encounters another situation, it 
can show unpredictable behaviour (e.g., leading to repetition of weighings, or to 
termination of the reasoning). 
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Based on the above, it may be concluded that an agent using the non-repetitive 
strategy of Section 4.1 can successfully cooperate with other agents that use this 
strategy (although they do not always derive new information) and with agents that 
use the information-eager strategy of Section 4.2. On the contrary, agents using the 
information-eager strategy can cooperate with other agents of this strategy, but not 
always with agents of the non-repetitive strategy. This confirms the predictions about 
robustness made in Section 2.2. This is an important finding, because it has 
consequences for the requirements that may be defined when using the problem for 
educational purposes. For example, when students implement an agent of type C-b, it 
will not always have to be successful when cooperating with an agent of type C-a. 

6    Educational Results 

Six groups of each three 3rd year Bachelor students in Artificial Intelligence were 
given the assignment to implement the distributed weighing problem within 4 weeks 
time. They were each provided with an implemented external world and had to design 
and implement the agents representing the balls, including their strategies. The 
assignment required that their agent should be of type C (i.e., either C-a, C-b or C-c).  

The solutions of the groups were tested in different settings, and evaluated using 
the properties described in Section 5. First the solutions were tested when all agents in 
the system used the same solution strategy (i.e., implemented by the same group). In 
this test the systems of three of the six groups only solved the problem in some 
settings (i.e., not for all possibilities of deviation). This indicates that they must have 
made some mistake, since it follows from Table 1 that agents should always be robust 
against agents using the same strategy. The other three groups succeeded in all 
settings. The second test consisted of using agents designed by different groups in one 
multi-agent system. Here, again in some cases no solution was found. In a subset of 
these cases this was to be expected. For example, when a C-b agent tried to cooperate 
with a C-a agent (see again Table 1). However, there were also some failures in cases 
where agents of the same type tried to cooperate. The most common types of failure 
in these cases were: (1) Derivation of multiple actions (e.g., an agent trying to jump 
on both scales at the same time); (2) No derivation of an action at all. The 
experiments were shown to all groups in a joint session. The students found it difficult 
to believe that the others would not follow the same line of reasoning as they did. 
After letting them explain to one another what kind of strategy they incorporated into 
their agent, the students understood that the assumptions they had made regarding the 
strategy of other agents were too strong. This gave them an important insight into the 
difficulties accompanying cooperation without communications. 

Besides evaluating the performance of the strategies, students were also graded for 
the documentation they had written regarding their agent design and strategy. A 
standard evaluation form has been developed for this purpose, which comprises 
elements such as analysis, conceptual design, detailed design and rationale. 

7   Discussion and Conclusion 

The distributed weighing problem introduced in this paper has been designed with the 
goal of creating a cooperation problem without communication that is scalable, that is 
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relatively easy with respect to meta-reasoning required of the agents, and for which it 
is easy to create a simulated environment.  

Other (educational) problems from the field of logic (e.g., the muddy children 
problem [8]) and from the field of distributed problem solving (e.g., the mutual 
exclusion problem [6]) do not have all these advantages. The muddy children problem 
is scalable, and simulating the environment is easy, but the problem is heavy in terms 
of reasoning. The mutual exclusion problem, on the contrary, is a too easy in terms of 
reasoning. In the mutual exclusion problem, the parties involved do not have to reason 
at all about the consequences of their actions. The distributed weighing problem 
offers a nice alternative, since it requires a bit of reasoning about consequences of 
actions. However, explicit meta-reasoning (see for example [4]) is unnecessary, 
because of the assumption that all agents will aim for non-repetitive weighings, and 
the allowance of suboptimal solutions. Under these circumstances the problem can be 
solved by agents that operate according to the following: “my move aims for non-
repetitive weighings, and I assume other agents do the same”. 

An example solution to the problem was implemented in an agent-based 
framework, and rigorously tested for two example strategies of levels believed 
suitable for educational purposes. The two strategies were discussed and compared. 
Moreover, a methodology was presented to evaluate the performance of strategies, 
based on formal validation of properties. Using this methodology, the example 
strategies put forward were formally validated with respect to a number of desired 
properties. 

The educational use of the problem was promising. The students found the 
problem interesting and challenging, and were confronted with their own faulty 
assumptions on other students’ reasoning. To be able to design correct strategies for 
the problem, it turned out to be essential to make adequate assumptions about other 
agents, and to maintain some model of future possibilities. Therefore, the distributed 
weighing problem showed to be an appropriate problem for the education of 
cooperation without communication. 
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