Heuristic-based Approaches for CP-Nets in Negotiation -

Reyhan Aydogan, Tim Baarslag?, Koen V. Hindriks?, Catholijn M. Jonker?, Pinar Yolum?!

'Bogazici University, Bebek, Istanbul, Turkey
{reyhan.aydogan, pinar.yolum}@boun.edu.tr
2Delft University of Technology, Delft, The Netherlands
{T.Baarslag, k.v.hindriks, c.m.jonker}@tudelft.nl

ABSTRACT

CP-Nets have proven to be an effective representation fauca
ing preferences. However, their use in multiagent negotiais

not straightforward. The main reason for this is that CPsNeip-
ture partial ordering of preferences, whereas negotiatgents are

required to compare any two outcomes based on the request an

offers. This makes it necessary for agents to generatedadals
from their CP-Nets. We have previously proposed a heurtstic
generate total orders from a given CP-Net. This paper pespas-
other heuristic based on Borda count, applies it in negotiaind
compares its performance with the previous heuristic.

Categories and Subject Descriptors
1.2.11 Distributed Artificial Intelligence ]: Multiagent Systems

General Terms
Algorithms, Experimentation

Keywords

Negotiation, Qualitative Preferences

1. INTRODUCTION

Modeling users’ preferences is an inevitable part of autetha
negotiation tools. While reasoning on and representingutieg’s
preferences, there are several issues to be taken intoraccaue,
outcome space grows exponentially with the number of aiietd
and their possible values. It may be infeasible to ask a osander
or rank all outcomes when the outcome space is very large, Two
the user may have difficulty in assessing her preferenceguasati-
tative way [?]. Representing someone’s preferences with numerical
values is an arduous task for a human. Three, it is difficufintd
a mathematical model for representing some preferencés asic
conditional preferences in which there are preferentigledeen-
cies between attributes. Therefore, it is more effectiveiatuitive
to use a qualitative preference model.

Although it is desired for users to express their prefersmgel-
itatively, most of the current negotiation strategi@s?, ?, ?, 7|
work with quantitative preferences. Hence, to use qualégiref-
erences in negotiation, it is necessary to estimate qatinétpref-
erences from qualitative preferences. Accordingly, tlipgy is
about estimation of quantitative preferences from quialggpref-
erences. That is, we propose heuristics to allow agentsue aa
gualitative preference model, while their negotiatioratgy em-
ploys quantitative information. In order to do so, we staoi
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a qualitative preference representation, namely CP-N&fsNets
allow representation of conditional preferences and &béepartial
ordering. We extend the E31Us negotiation framework?] to al-
low elicitation of acyclic CP-Net preferences. Then, welgmur
heuristics to generate utility-based information from thentita-

ciive representation of the preferences.

The goal of this study is to compare the performance of the se-
lected heuristics in a realistic negotiation setting. Thms com-
pare the performance of agents when they apply heuristitisesn
users’ qualitative preferences in the form of CP-Nets argbtie
ate with estimated utilities versus when they have theirdiseal
total preference orderings in the form of UCP-Nets and naggot
with real utilities. To accomplish this, users were askedreate
their preference profiles both quantitatively (UCP-Nets) gual-
itatively (CP-Nets), using the &\ius interface for an apartment
renting domain. The given UCP-Nets serve as ground trutle Th
agents apply heuristics on the given CP-Net and then negetith
the resulting estimated utilities. Each negotiation ooteas evalu-
ated based on the given UCP-Net, which is not only consistiht
the CP-Net but also provides a total ordering of outcomeserat
than a partial ordering.

The rest of this paper is organized as follows: Section 2 and
Section 3 gives an introduction on CP-Nets and UCP-Netperes
tively. Section 4 explains the heuristics that we propodeetosed
with CP-Nets. Section 5 explains our experimental setuptriose
and results. Finally, Section 6 discusses our work.

2. CP-NETS

Conditional preference networks (CP-nets) is a graphicadeh
for representing qualitative preferences in a compact Way I|h
CP-nets, each node represents an attribute (issue) andedgeh
denotes preferential dependency between nodes. Hererd ih
an edge fromX to Y, X is called “parent node” andt” is called
“child node”. The preference on child nodes depends on pegir
ent nodes’ values. To express conditional preferenceb, rezde is
associated with a conditional preference table (CPT), wvhépre-
sents a total order on possible values of that node with cespés
parents’ values.

Consider apartment renting domain in Example 1 and CP-net
depicted in Figure 1. According to this CP-net, the user&fqr
ence on parking area depends on neighborhood. CPPdoting
Areashows that the user prefers an apartment having a parkiag are
when the neighborhood is eithadikoy or Kartal However, she
prefers an apartment not having a parking area when it itikgr.
Note that in CP-nets, each preference statement is integotm-
der “everything else being equal” interpretation. The estant,
“Etiler is preferred oveKadikoy for neighborhood”, means that if
all other attributes such as price and parking area are the,san



CPT for Price CPT for Neighborhood CPT for ParkingArea
Low > Medium Etiler > Kaclikoy Etiler-Yes - 0.8
Medium > High Kadikoy > Kartal l Kadikoy-No 0.6

Kadikoy-Yes 0.9

Efiler-No 1.0

CPT for Parking Area Kartal-No 0.3
Kartal-Yes 1.0

Etiler |No > Yes

CPT for Price

Kadilmy Yes > No

High 0.5 CPT for Neighborhood
Karal | Yes > No Medmnm | 0.73 Etiler 3.0
Low 1.0 Kadikoy 1.3
Figure 1: A sample CP-net for apartment renting domain Fartal 0.5

apartment aktiler is preferred over an apartmentiéadikoy. Ei 25 le UCP-net
igure 2: Sample -ne

ExaMPLE 1. For simplicity, we have only three attributes in
our apartment renting domainPrice Neighborhoodand Parking

Area There are three neighborhood<£tiler, Kadikoy and Kar- involves three factorg; (Neighborhood) /- (Price) andfs(Parking

tal whereas the valid values for the price are categorizeddas, Area, Neighborhood). The utility of an outcome is estimatedhe

g/lediquand Lokl_/v. A parhkingt area Imag exisctj I(\)Ir not. Thus, the sum of these factors. For example, the utility Mo Etiler, High)
omain for parking area has two value¥esand No. is equal toL.5 (= 1.0 + 3.0 + 0.5).

In acyclic CP-Nets, there are only one best outcome so it is
straightforward to determine the best outcome by answetieg w(X1, Xo, .. Xn) = Z fi( X, UD) (1)
“outcome optimization query”. From ancestors to descetsjdhe i
most desired value for each attribute is chosen in order taohge
best offer. However, we need to check whether there exisisian
proving flipsequence from one outcome to another (and vice versa)
to answer dominance queries (whether an outcome would be pre
ferred over another). An improving flip is changing the vabie
a single attribute with a more desired value by using CPTHer t
attribute. If we cannot reach one outcome from another aoe vi
versa via improving flip sequences, we cannot compare these t
outcomes. The fact that we may not be able to compare some out-
comes is the challenge of using CP-Nets in negotiation.

In CP-Nets, it is implicitly induced that an ancestor hashkig
priority over its descendants. Note that this property tianss a
key role in UCP-nets in which each attribute should domiritste
children. When we assign utilities, we need to ensure thelh ea
node dominates its children. There are several ways ofywegf
whether the constructed graph is a valid UCP-net (whethetis-
fies the CP-relations among attributes).

One method for verifying UCP-nets, is to compute the valdes o
MaxspanandMinspanfor variables and check whether Equation 2
is satisfied or not. In this equatioN andY are attributes and
Y; are the children ofX. Note that Minspan(X) is the minimum
3. UCP-NETS difference between the utilities of each possible values(afor

Boutilier et al. propose a graphical preference model namely the given parent value. If this is the case, we can say thatemgi
UCP-nets P] by combining a well-known qualitative preference graph is a valid UCP-net. For example, in our sample UCP-net

representation, CP-Nets with generalized additive modé¢sce, Neighborhoods a parent ofParking Area We estimate the value
UCP-nets are able to represent preferences in a quareitatly of Maxspan(Parking Areahe way that we evaluate the maximum
rather than representing simply preference ordering. @atiels [?] difference between the utilities of the values of Parkinga\for
perform dominance queries (whether an outcome would be pre- each possible value of its parent [Etiler:2 (1 — 0.8), Kadikoy:
ferred over another) straightforwardly whereas CP-Netfopa 0.3 (0.9 —0.6) and Kartal:0.7 (1 — 0.3)] and choose the maximum

outcome optimization queries (maximal outcome) strawtaardly. among them (Maxspari=7). To be able to get a valid UCP-net
Therefore, it is claimed that by the combination of both miede  satisfying the CP-relations, the difference between tligies of
UCP-Net becomes more powerf(] | each possible value ®feighborhoodshould be at leagt.7. In our
Figure 2 shows a sample UCP-Net, which is consistent with CP- example, it is equal t0.0 (1.5 — 0.5), which is higher thar.75.
Net seen in Figure 1. Similar to CP-nets, we firstly specifgfpr Thus, this graph is a valid UCP-net:
erential dependency among attributes. Instead of spagifyitotal
preference ordering over the values of each attribute doupto
their parents’ values (conditions), we assign a real vali#ity)
for all values of each attribute by taking conditions int@@mt.
For instance, when neighborhood Asiler, the value of having a Since we use normalized utility values between zero andmne i
parking area Yes) is specified a$.8. Notice that the real values  our negotiation setting, the utility of outcome is dividedthe util-
are not restricted to be between zero and one in this moddk Ut ity of the best outcome (whose utility is the highest). Fas tase,
ity function u(X:, X»,...X,) is represented in Equation 1 where the utility of best outcome i§ (=1+1+3). Thus, the normalized
X; is thest" attribute of outcomelJ; denotes parents of; and utility of (No, Kartal, High) would be0.26(= 1.3/5).
fi(X:,U;) represents a factor. For example, our sample UCP-Net

Minspan(X) >= Z Mazxspan(Y;). 2)
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Figure 3: Induced preference graph from the CP-Net in Figurel.

4. PROPOSED HEURISTICS

Most of the negotiation strategie8, [?, ?, ?, ?, ?] work with
guantitative preferences suchudsity functions However, itis de-
sired for users to express their preferences qualitativihys, we
propose heuristics to use acyclic CP-Nets (a qualitatieéepence
model) in negotiation while agents still negotiate withitlerate-
gies using quantitative informationitility (a real value between
zero and one). To do this, we generate artificial utilitiesrfra
given CP-Net by applying our heuristics.

In our framework, a preference graph is induced from a given
CP-Net while eliciting a user’s preferences in the form of iG&t.

In this preference graph, each node denotes a possiblenogit@od
each edge represents an improving flip. Note that the dimecti
of edges are ordered from less desired to more desired sgervic
Therefore, the least desired (worst) outcome will be plaateithe
top of preference graph (root node) whereas the leaf nodks hioé
best outcome. For intermediate nodes, we only compare tiesno
having a path from others. The nodes having no path to eaeh oth
cannot be compared under “everything else being equalfdree
tation.

Consider the preference graph in Figure 3 induced from the CP
Net in Figure 1. Here, the node/és Etiler, Low) represents a
low-priced apartment dtiler having a parking area. Itis seen that
there is an edge from\, Kartal High) to (No,Kartal Medium).

It can be inferred that an apartment with a medium prickatal
not having a parking area is preferred over an apartmentaniigh
price atKartal not having a parking area.

Before negotiating, the agent applies one of the proposeddie
tics and uses the estimated utilities produced by a choaistie.
The proposed heuristics are:

e Depth Heuristic (Section 4.1)
e Borda Scoring Heuristic (Section 4.2)

4.1 Depth Heuristic (DH)

We have previously proposed an approach based on captheng t
depth of an outcome in preference graphljut in that studydepth
is used by the proposed negotiation strategy — it is not iadegnt
from the negotiation strategy. However, in this study we tise
concept ofdepthto produce estimated utilities of outcomes regard-
less of negotiation strategy. That is, the agent using #isiktic is
able to apply any negotiation strategy (working with wilielues).

Depth of an outcome node in a preference graph indicates how
far it is from the worst choice; in other words the highestatise
from the worst outcome. It is intuitive to say that the beftaore
preferred) a service is, the further from the worst outcotis. i
Depth of an outcome node is estimated as the length of the#ing
path from the root node. Note hat the root node in the preferen
graph represents the worst choice whereas the leaf nodéedehe
best outcome.

The intuition here is that we know that if there is an edge from
x to y, we ensure thay is preferred over: and the depth of is
higher than that ofc. According to this approach, the higher the
depth of a service, the more likely it is to be preferred byuker.
Further, if two outcomes are at the same depth, it is assuhad t
these services are equally preferred by the user. We applg-Eq
tion 3 to estimate the utility values between zero and onehbnt,
the depth of a given outcome is divided by the depth of the-pref
erence graph (the highest depth) to obtain estimatedyubdithat
outcome. For example, if we have a preference graph with thdep
of 6 in Figure 3, an outcome whose depth is equat twill have



utility of 0.5(= 3/6) according to this approach.

_ Depth(z, PG)
Ulw) = Depth(PGQG) ®)

4.2 Borda Scoring Heuristic

CP-Nets orders outcomes partially in which we cannot compar
some outcomes. If we would have a total linear ordering of out
comes, we would be able to compare all of the outcomes with eac
other. And we know that there are a plenty of linear ordercws
sistent with the partial preference ordering induced frogiven
CP-Net. One of these linear orderings may reflect the useak r
preference orderings. Thus, this heuristic is based onnignéll
possible linear extensions of a given partial preferenderimg and
selecting one of the most suitable linear extensions.

At that point, the question “How do we choose one of the most
suitable linear orderings?” arises immediately. One fbssin-
swer may be to take the benefit from voting theory and apply a
voting procedure to get one candidate linear ordering. fiemtur-
pose, we estimate all linear extensions of a given partefepence
ordering induced from a preference graph and apply a votiog p
cedure called “Borda Rule™] in order to obtain one of the most
suitable linear orderings.

According to Borda Rule, we score outcomes according ta thei
position in the ordering. Let assume that we havalternatives
ordered ax< o1, 02...0m > Whereo, 41 is preferred oveo;. When
we score the outcomes, each outcome will get a point of itsipns
minus one, which means that will get ¢ — 1. The sum of points
namelyBorda countrepresents the aggregation of existing alterna-
tive orderings. To illustrate this, consider we have threenngs
such as< z,y,z >, < z,z,y >, < x,z,y > Wherez, y and
z are possible outcomes. Borda countofvould be equal to one
(= 0 + 1 + 0) whereas that of would be five £ 1 + 2 + 2). In
this approach, Borda count of each outcome over all poskitdar
extensions will reflect how much that outcome is preferreldust
we will estimate utilities based on the estimated Borda tun

This heuristic uses Varol Rotem Algorithrfi][to find all possi-
ble linear extensions of a given partially ordered outco(pesej.
This algorithms takes one linear ordering consisting withdiven
preference graph and produces all possible linear ordering
needsO(e(P)) or O(n - e(P)) time depending on which linear
ordering is used at the beginningj [

One of the problems with this approach is that the number of
all possible linear extensions of a given partial orderirayrbe so
huge that this technique may become impractical becausgglof h
complexity. In order to reduce the complexity, we partitidre
preference graph and apply Borda Rule to all possible liaggn-
sions of each subpartition.

How do we partition the preference graph? We know that the
root node holds the worst outcome while the leaf node holds th
best outcome. Thus, we need to find an ordering for the outsome
within the intermediate nodes. We partition this part intsaavay
that each subpatrtition can involve at mastpredefined number of
outcomes. For this purpose,can be taken a0 or 15 according
to the size of the preference graph. Note that we chd@si
this study. Figure 4 shows how we partition the preferenegplyr
induced from the CP-Net in Figure 1.

After applying Borda rule to each partition, we normalizer&@o
counts in a way that Borda count of each outcome will be betwee
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Figure 4: Partitioning Preference graph in Figure 3.

ized Borda counts would b5 /30, 10/30, 20/30, 30/30.

U(w,pl) = Umaz(pi—l) + % * BRCOU‘nt(x7pl) (4)

Another issue pertains to using these normalized Bordatsoun
in order to estimate final utilities. We distribute the uids by
taking the number of outcomes at each partition into accotiot
achieve this, we apply the formula in Equation 4 whéter, p;)
denotes the utility of outcome in the '™ partition, Uynqz (i — 1)
denotes the utility of outcome whose utility is maximum ire th
previous partition{ — 1), N denotes the number of possible out-
comes,S,, denotes the number of outcomesiffi partition and
BRCount(z,p;) denotes normalized Borda count of the outcome
z. Note thatU,,.. (po) ,the utility of worst outcome (root node in
the preference graph), is equallt@N. Furthermore, the utility of
the best outcome (leaf node in the preference graph) is ¢énoak
according to this approach.

Table 1 shows the estimated utilities for each heuristicrwie
have the CP-net in Figure 1 and the last column of this tatde/sh
utilities estimated by the UCP-net in Figure 2, which is ¢stet
with the given CP-net.

5. EXPERIMENTS

To evaluate the proposed heuristics, we extead Bs[?], which
is a platform for bilateral negotiation. Our extension deatan
agent to elicit user’s preferences in the form of CP-Netstangse
utilities estimated by chosen heuristic while negotiatwith an-

zero and one. To do this, we can divide Borda count of each out- other agent. In this setting, the platform also keeps theévssal

come in that partition by the maximum Borda count. Consider w
have four outcomesr( y, w andz) in a partition and their corre-
sponding Borda counts a8, 10, 20, 30 respectively. The normal-

ordering of outcomes in the form of UCP-Nets and evaluateh ea
negotiation outcome for that agent based on the given UQP-Ne
The given UCP-Net is consistent with the given CP-net. In our



Table 1: Estimated Utilities for Each Heuristic and UCP-net

Service DH | BSH | UCP-net
[Etiler, No, Low] 1.0 | 1.0 1.0
[Etiler, No,Medium] 0.83| 0.92 | 0.95
[Etiler, Yes, Low] 0.83] 0.94 | 0.96
[Etiler, Yes, Medium] 0.67] 0.74 | 0.91
[Kadikoy, Yes, Low] 0.67| 0.82 | 0.68
[Etiler, No, High] 0.67| 0.72 | 0.90
[Kadikoy, No, Low] 0.5 | 0.60 | 0.62
[Kadikoy, Yes, Medium]| 0.5 | 0.54 | 0.63
[Etiler, Yes, High] 0.5 | 0.52 | 0.86
[Kartal, Yes, Low] 0.5 | 0.60 | 0.5
[Kadikoy, No, Medium] | 0.33 | 0.43 | 0.57
[Kadikoy, Yes, High] 0.33] 0.44 | 0.58
[Kartal, Yes, Medium] 0.33] 0.43 | 0.45
[Kartal, No, Low] 0.33| 0.39 | 0.36
[Kartal, No, Medium] 0.17] 0.13 | 0.31
[Kartal, Yes, High] 0.17] 0.17 | 0.40
[Kadikoy, No, High] 0.17| 0.17 | 0.52
[Kartal, No,High] 0.0 | 0.06 | 0.26

experiments, the UCP-Net serves as ground truth. After antag
negotiates using its CP-Net, we evaluate its performandeves
knew the correct total ordering (UCP-Net).

In order to compare the performance of the heuristics, wesinv
tigate three test cases depicted in Figure 5. In each tesf tes
agentsAgent A and Agent B negotiate with each other. We fix
both agents’ negotiation strategies so tAgent A negotiates with
the sameAgent B (having same preference profile and strategy).
In the first caseAgent A has a CP-net and applies Depth Heuristic
(DH) to derive the estimated utilities. During the negatiaf the
agent will act on according to these estimated utilitiesthinsec-
ond caseAgent A has the same CP-Net with the first case but it
applies Borda Scoring Heuristic (BSH) to estimate utiitiehich
will be used in negotiation. In the last cagggent A has its user's
real total preference orderings in the form of UCP-Net (&xtaat
with the CP-net and able to compare all outcomes). Thusge# us
the real utilities during the negotiation. Consequentlg, ave able
to observe what the agent gets at the end of negotiation wiagA i
plies heuristics on partial preference information (CR}Nersus
when it has total preference information (UCP-Net).

In our experiments, each agent uses a concession basedgtrat
in which the agent starts with the outcome having the highidgty
and concedes over time. It also remembers the best courféer of
that is made by the opponent agent. If the utility of the aurre
counter offer is higher than or equal to the utility of agempt’evious
offer, then the agent will accept the offer. The agent wiketdhe
best counter offer of its opponent into account while getirggats
offer. If the utility of the current offer is lower than thaf the best
counter offer, the agent will take the opponent’s best cauoifer.

Since the opponent agemdent B)'s preference profile has a
significant impact on negotiation outcome, we genebatéiffer-
ent preference profiles foAgent B That is, the samé\gent A
will negotiate with50 different Agent Bs. Note thatAgent B's
preferences are represented with a linear additive ufilibction
in this experiment. Another factor having an influence onoseg
tiation outcome in this setting is UCP-Net of the user. Dfa
UCP-Nets mean different ordering of outcomes (differemtfgnr
ence profiles folrAgent A), so represent different users. Thus, we
generate four different UCP-Nets fdigent A consistent with the

UCP-net

Figure 5: Experiment Set-up for Comparison of Heuristics

given CP-net—four different users having the same CP-nsta A

result, both agents will negotia@00 times @ different users of

Agent A * 50 different Agent B) and the performance of the pro-

posed approached will be performed over thg@@negotiations.
We define two evaluation criteria for comparison:

e Sum of outcome utilities foAgent A over 50 negotiations
(Section 5.1)

e Number of times that the agent using a heuristic negotiates
at least as well as the agent having UCP-Net (Section 5.2)

Furthermore, we investigate the performance of the héesist
negotiation from a different point of view by taking the stture of
CP-Nets into account. For this purpose, we generate thffeeatit
CP-Nets:CPNetd, CPNet2 and CPNet3. CPNeti involves one
dependency such as preferencepafking arealepends omeigh-
borhoodwhereasCPNet2 involves two dependencies such as both
preferences oparking areaand price depend onmneighborhood
There are not any dependencies between attribut€®Met3. For
each CP-Net, we generate four different UCP-Nets congisti¢h
them and perform the experiments mentioned above.

5.1 Sum of Utilities for Agent A

Our first evaluation criterion is the sum of negotiation ames’
utilities with respect teAgent A over50 different negotiations with
Agent B Note that the utility of an outcome is a real value between
zero and one. Table 2 shows these total utilities for thréerdnt
CP-Nets and four different UCP-Nets consistent with eactiNeP
As expectedAgent A using UCP-Net gets the highest score when
it has a consistent UCP-Net witiPNet1 and CPNet3 since it
negotiates with user’s real preference orderings. Ovetal per-
formance of the agent using BSH is quite close to that of tleaiag
using UCP-Net {72 vs 179 and 171 vs. 172). For the case of
CPNet2 (having two dependencies), the score of BSH is approx-
imately the same with the score of of UCP-net. Siri@Net2
involves two dependencies (the user specifies her prefesanca
more detailed way), the agent may get more information than t
case of other CP-Nets (one dependency and no dependendy). Th



leads to better results. Note that the score of heuristetharhigh-
est when they havEPNet2.

Table 2: Sum of Outcome Utilities over50 Negotiations for Agent A

AGENT A DH BSH UCP-Net
CPNET-1 with UCPNet-1A | 39.03 | 39.00 | 41.88
CPNET-1 with UCPNet-2A | 38.27 | 40.73 | 43.66
CPNET-1 with UCPNet-3A | 45.73 | 45.69 | 45.80
CPNET-1 with UCPNet-4A | 46.88 | 46.94 | 47.29
Overall Sum (200 negotiations); 169.91 | 172.36| 178.63
CPNET-2 with UCPNet-1B | 39.93 | 41.66 | 41.70
CPNET-2 with UCPNet-2B | 42.94 | 43.56 | 43.21
CPNET-2 with UCPNet-3B | 46.15 | 46.76 | 46.75
CPNET-2 with UCPNet-4B | 42.18 | 43.56 | 43.53
Overall Sum (200 negotiations); 171.20| 175.55| 175.20
CPNET-3 with UCPNet-1C | 40.17 | 41.61 | 40.83
CPNET-3 with UCPNet-2C | 41.58 | 42.50 | 45.64
CPNET-3 with UCPNet-3C | 42.83 | 43.97 | 43.37
CPNET-3 with UCPNet-4C | 42.36 | 43.36 | 42.64
Overall Sum (200 negotiations); 166.94 | 171.44| 172.48

Moreover, it is seen thadgent A’'s score while applying Borda
Scoring Heuristic (BSH) is higher than the case in which gas
Depth Heuristic (DH) for all CP-Nets (based on overall sursrov
200 negotiations). According to this criterion, BSH may be pre-
ferred over DH.

5.2 Number of Times as Well as UCP-Net

Our second evaluation criterion is the number of times that t
agent that applies a heuristic on a given CP-Net negotiatesst
as well as the agent having a UCP-Net. For each CP-Net and UC
Net pairs, we compare the negotiation outcome for the agengu
a heuristic with that for the agent having UCP-Net. If thdityti
of outcome for the agent using a heuristic is higher than oakq
to the utility of outcome for the agent having UCP-Net, thgerat
receives one point. Sinc# different opponent agent&\gent B)
negotiate with the same agemtdent A), we count the number of
times thatAgent A using a heuristic is successful at least as the
agent having UCP-Net ovéh negotiations.

According to Table 3, wheAgent A usesCPNeti and applies
DH, it negotiates at least as well as the agent having totéépence
ordering (UCP-Net) iry8 per cent of negotiations whereas BSH is
successful at least as UCP-Net76 per cent of negotiations. Al-
though the performance of BSH with respect to sum of utditie
(Section 5.1) is better than the performance of DH, it neges as
successfully as UCP-Net more than BSH @PNetd (78 per cent
versusr6 per cent). This stems from the fact that when BSH com-
pletes a negotiation better than DH, the difference betwutiéities
of the outcomes is much higher than the case when DH negsotiate
better than BSH.

For CPNet2 and CPNet3, the agent using BSH negotiates suc-
cessfully as the agent having UCP-Net more than the agemg usi
DH. When agents hav€PNet2, it is seen that BSH beats DH.
Note that in89.5 per cent of negotiations DH negotiates at least as
well as UCP-Net whered8.5 per cent of negotiations BSH per-
forms at least as good as the UCP-Net.

6. DISCUSSION

We present two heuristics namdbepthand Borda Scoringto
negotiate with CP-Nets and compare them in a realistic et

Table 3: Number of Times Heuristics Performs As Well As UCP-Nets
AGENT A DH | BSH
CPNET-1 with UCPNet-1A 40 | 35
CPNET-1 with UCPNet-2A 26 | 35
CPNET-1 with UCPNet-3A 46 | 38
CPNET-1 with UCPNet-4A 44 | 44
Overall Sum (200 negotiations){ 156 | 152
CPNET-2 with UCPNet-1B 43 | 49
CPNET-2 with UCPNet-2B 48 | 48
CPNET-2 with UCPNet-3B 44 | 50
CPNET-2 with UCPNet-4B 44 | 50
Overall Sum (200 negotiations)] 179 | 197
CPNET-3 with UCPNet-1C 44 | 50
CPNET-3 with UCPNet-2C 27 |31
CPNET-3 with UCPNet-3C 45 | 49
CPNET-3 with UCPNet-4C 47 | 47
Overall Sum (200 negotiations)] 163 | 177

setting. According to our experimental results, it wouldidmtter

to apply Borda Scoring heuristic in small domains since ésqr-
mance is higher than the performance of Depth heuristic. évew
we may prefer to use Depth Heuristic in large domains sirge it
complexity is lower than Borda Scoring heuristic.

Li et al. study the problem of collective decision making with
CP-Nets P]. Their aim is to find a Pareto-optimal outcome when
agents’ preferences represented by CP-Nets. They firstigrge
ate candidate outcomes to increase the computationakeificin-
stead of using the entire outcome space. Then each ager# in th
system ranks these candidate outcomes according to theiC&w

pNets. For ranking an outcome, they ubke longest path between

the optimal outcome and that outconmethe induced preference
graph. Thus, the minimum rank is desired for the agents. They
choose the final outcome for the agents by minimizing the maxi
mum rank of the agents. In contrast, we tise longest path be-
tween the worst outcome and that outcamestimate the utilities
with our depth heuristic. Furthermore, while they propogecce-
dure for collective decision making with the aim of choosone
outcome for multiple agents, we focus on estimating utiéjues

of each outcome that will be used during the negotiation foina
dividual agent.

Rosi et al. extend CP-Nets to capture multiple agents’ pref-
erences and presemiCP-Nets P]. They propose several voting
semantics to aggregate agents’ qualitative preferencgdcade-
termine whether an outcome is preferred over another fogetho
agents. One of the semantics provides a measure of quagtifye
quality of outcomes with respect to the agent’s preferendes
cording to this approach, the rank of an outcome is estimayed
the length of the shortest sequence of worsening flips betiee
outcome and one of the optimal outcomes. Note that they use pa
tial CP-Nets which may lead more than one optimal outcomees. |
is worth noticing that Liet al. use the longest path instead of the
smallest path in their study?’] while we use the longest sequence
of improving flips between the worst outcome and that outcome
our depth heuristic to get the estimated utilities.

Son and Sakama propose to formalize negotiation procegses b
using logic programming?]. Consistency restoring rules are used
to represent each agent’s knowledge. These rules are segpgra
set of assumptions and ordered goals (preferences). Siregeat
has incomplete knowledge about its opponent, it needs sorea
on its own preferences under this uncertainty. Son and Sakze



answer sets to generate offers and determine if an offercispac
able. In our work, the agent reasons on its user’s partiarord of
preferences to negotiate effectively.

Chalamish and Kraus presents an automated mediator for bila
eral negotiations in which agents share their qualitatreégrences
only with the mediator 7]. For representing agents’ qualitative
preferences, an extension of CP-Nets, namely Weighted &B-N
(WCP-Nets) are proposed and used. Note that their addgitmei
property of weights — the weighted importance table. Afgerds
send their WCP-Nets to the mediator, it sorts all possibteamues
with respect to agents’ preferences separately — resuitirtgio
sorted list of outcomes. While sorting outcomes, the mediages
an enhanced version of majority lexicographical (ML) oidgi{?]
with weights. In ML ordering P], a hierarchy of variables in CP-
Nets is taken into account to evaluate the outcome. To ittt
this, assume that we have three variab¥esY” and Z and a CP-
Net saying thatc; > xo, 1 : y1 > Yo, To : Yo > Y1, L1 : 21 >
zo andxo : zo > z1. X is in the first level whileY" and Z are in
the second level. According to ML ordering, the outcome zo
dominatesroyozo since the former outcome wins i, which is
in the first level (not need to check for the variables in theose
level). The weighted version of ML presented by Chalamisth an
Kraus is based on comparison of weighted sum of the valués tha
the outcome gets for the assignment of its variables. Fearice,
in case oft1 > xo the outcome including gets one while the out-
come includingz, takes zero. To sum up, the mediator sorts out-
comes with this metric and recommends pareto-optimal ouso
the agents to speed up the negotiation. While the mediags us
other agents’ WCP-Nets to suggest pareto-optimal outcoontbe
negotiating agents, in our study the agent tries to deritimated
utilities that will be employed by the agent's negotiatidrategy
from that agent’s CP-Net. Furthermore, we use the inducet pr
erence graph covering possible sequences of improvingviijile
applying our heuristics and compare the performance of euris-
tics with users’ real preferences in a negotiation setting.



