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ABSTRACT
CP-Nets have proven to be an effective representation for captur-
ing preferences. However, their use in multiagent negotiation is
not straightforward. The main reason for this is that CP-Nets cap-
ture partial ordering of preferences, whereas negotiatingagents are
required to compare any two outcomes based on the request and
offers. This makes it necessary for agents to generate totalorders
from their CP-Nets. We have previously proposed a heuristicto
generate total orders from a given CP-Net. This paper proposes an-
other heuristic based on Borda count, applies it in negotiation, and
compares its performance with the previous heuristic.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems

General Terms
Algorithms, Experimentation

Keywords
Negotiation, Qualitative Preferences

1. INTRODUCTION
Modeling users’ preferences is an inevitable part of automated

negotiation tools. While reasoning on and representing theuser’s
preferences, there are several issues to be taken into account. One,
outcome space grows exponentially with the number of attributes
and their possible values. It may be infeasible to ask a user to order
or rank all outcomes when the outcome space is very large. Two,
the user may have difficulty in assessing her preferences in aquanti-
tative way [?]. Representing someone’s preferences with numerical
values is an arduous task for a human. Three, it is difficult tofind
a mathematical model for representing some preferences such as
conditional preferences in which there are preferential dependen-
cies between attributes. Therefore, it is more effective and intuitive
to use a qualitative preference model.

Although it is desired for users to express their preferences qual-
itatively, most of the current negotiation strategies [?, ?, ?, ?, ?]
work with quantitative preferences. Hence, to use qualitative pref-
erences in negotiation, it is necessary to estimate quantitative pref-
erences from qualitative preferences. Accordingly, this paper is
about estimation of quantitative preferences from qualitative pref-
erences. That is, we propose heuristics to allow agents to have a
qualitative preference model, while their negotiation strategy em-
ploys quantitative information. In order to do so, we start from
∗This research is supported by Boğaziçi University Research Fund
under grant BAP5694.

a qualitative preference representation, namely CP-Nets.CP-Nets
allow representation of conditional preferences and tolerate partial
ordering. We extend the GENIUS negotiation framework [?] to al-
low elicitation of acyclic CP-Net preferences. Then, we apply our
heuristics to generate utility-based information from thequantita-
tive representation of the preferences.

The goal of this study is to compare the performance of the se-
lected heuristics in a realistic negotiation setting. Thus, we com-
pare the performance of agents when they apply heuristics ontheir
users’ qualitative preferences in the form of CP-Nets and negoti-
ate with estimated utilities versus when they have their users’ real
total preference orderings in the form of UCP-Nets and negotiate
with real utilities. To accomplish this, users were asked tocreate
their preference profiles both quantitatively (UCP-Nets) and qual-
itatively (CP-Nets), using the GENIUS interface for an apartment
renting domain. The given UCP-Nets serve as ground truth. The
agents apply heuristics on the given CP-Net and then negotiate with
the resulting estimated utilities. Each negotiation outcome is evalu-
ated based on the given UCP-Net, which is not only consistentwith
the CP-Net but also provides a total ordering of outcomes rather
than a partial ordering.

The rest of this paper is organized as follows: Section 2 and
Section 3 gives an introduction on CP-Nets and UCP-Nets, respec-
tively. Section 4 explains the heuristics that we propose tobe used
with CP-Nets. Section 5 explains our experimental setup, metrics,
and results. Finally, Section 6 discusses our work.

2. CP-NETS
Conditional preference networks (CP-nets) is a graphical model

for representing qualitative preferences in a compact way [?]. In
CP-nets, each node represents an attribute (issue) and eachedge
denotes preferential dependency between nodes. Here, if there is
an edge fromX to Y , X is called “parent node” andY is called
“child node”. The preference on child nodes depends on theirpar-
ent nodes’ values. To express conditional preferences, each node is
associated with a conditional preference table (CPT), which repre-
sents a total order on possible values of that node with respect to its
parents’ values.

Consider apartment renting domain in Example 1 and CP-net
depicted in Figure 1. According to this CP-net, the user’s prefer-
ence on parking area depends on neighborhood. CPT forParking
Areashows that the user prefers an apartment having a parking area
when the neighborhood is eitherKadikoy or Kartal. However, she
prefers an apartment not having a parking area when it is atEtiler.
Note that in CP-nets, each preference statement is interpreted un-
der “everything else being equal” interpretation. The statement,
“Etiler is preferred overKadikoy for neighborhood”, means that if
all other attributes such as price and parking area are the same, an



Figure 1: A sample CP-net for apartment renting domain

apartment atEtiler is preferred over an apartment atKadikoy.

EXAMPLE 1. For simplicity, we have only three attributes in
our apartment renting domain:Price, Neighborhoodand Parking
Area. There are three neighborhoods:Etiler, Kadikoy and Kar-
tal whereas the valid values for the price are categorized asHigh,
Medium and Low. A parking area may exist or not. Thus, the
domain for parking area has two values:YesandNo.

In acyclic CP-Nets, there are only one best outcome so it is
straightforward to determine the best outcome by answeringthe
“outcome optimization query”. From ancestors to descendants, the
most desired value for each attribute is chosen in order to get the
best offer. However, we need to check whether there exists anim-
proving flipsequence from one outcome to another (and vice versa)
to answer dominance queries (whether an outcome would be pre-
ferred over another). An improving flip is changing the valueof
a single attribute with a more desired value by using CPT for the
attribute. If we cannot reach one outcome from another and vice
versa via improving flip sequences, we cannot compare these two
outcomes. The fact that we may not be able to compare some out-
comes is the challenge of using CP-Nets in negotiation.

3. UCP-NETS
Boutilier et al. propose a graphical preference model namely

UCP-nets [?] by combining a well-known qualitative preference
representation, CP-Nets with generalized additive models. Hence,
UCP-nets are able to represent preferences in a quantitative way
rather than representing simply preference ordering. GAI-models [?]
perform dominance queries (whether an outcome would be pre-
ferred over another) straightforwardly whereas CP-Nets perform
outcome optimization queries (maximal outcome) straightforwardly.
Therefore, it is claimed that by the combination of both models,
UCP-Net becomes more powerful [?].

Figure 2 shows a sample UCP-Net, which is consistent with CP-
Net seen in Figure 1. Similar to CP-nets, we firstly specify pref-
erential dependency among attributes. Instead of specifying a total
preference ordering over the values of each attribute according to
their parents’ values (conditions), we assign a real value (utility)
for all values of each attribute by taking conditions into account.
For instance, when neighborhood isEtiler, the value of having a
parking area (Yes) is specified as0.8. Notice that the real values
are not restricted to be between zero and one in this model. Util-
ity function u(X1, X2,...Xn) is represented in Equation 1 where
Xi is the ith attribute of outcome,Ui denotes parents ofXi and
fi(Xi, Ui) represents a factor. For example, our sample UCP-Net

Figure 2: Sample UCP-net

involves three factorsf1(Neighborhood),f2(Price) andf3(Parking
Area, Neighborhood). The utility of an outcome is estimatedas the
sum of these factors. For example, the utility of (No, Etiler, High)
is equal to4.5 (= 1.0 + 3.0 + 0.5).

u(X1, X2, ...Xn) =
∑

i

fi(Xi, Ui) (1)

In CP-Nets, it is implicitly induced that an ancestor has higher
priority over its descendants. Note that this property constitutes a
key role in UCP-nets in which each attribute should dominateits
children. When we assign utilities, we need to ensure that each
node dominates its children. There are several ways of verifying
whether the constructed graph is a valid UCP-net (whether itsatis-
fies the CP-relations among attributes).

One method for verifying UCP-nets, is to compute the values of
MaxspanandMinspanfor variables and check whether Equation 2
is satisfied or not. In this equationX andY are attributes and
Yi are the children ofX. Note that Minspan(X) is the minimum
difference between the utilities of each possible values ofX for
the given parent value. If this is the case, we can say that a given
graph is a valid UCP-net. For example, in our sample UCP-net
Neighborhoodis a parent ofParking Area. We estimate the value
of Maxspan(Parking Area)the way that we evaluate the maximum
difference between the utilities of the values of Parking Area for
each possible value of its parent [Etiler:0.2 (1 − 0.8), Kadikoy:
0.3 (0.9−0.6) and Kartal:0.7 (1−0.3)] and choose the maximum
among them (Maxspan=0.7). To be able to get a valid UCP-net
satisfying the CP-relations, the difference between the utilities of
each possible value ofNeighborhoodshould be at least0.7. In our
example, it is equal to1.0 (1.5 − 0.5), which is higher than0.75.
Thus, this graph is a valid UCP-net:

Minspan(X) >=
∑

i

Maxspan(Yi). (2)

Since we use normalized utility values between zero and one in
our negotiation setting, the utility of outcome is divided by the util-
ity of the best outcome (whose utility is the highest). For this case,
the utility of best outcome is5 (=1+1+3). Thus, the normalized
utility of (No, Kartal, High) would be0.26(= 1.3/5).



Figure 3: Induced preference graph from the CP-Net in Figure1.

4. PROPOSED HEURISTICS
Most of the negotiation strategies [?, ?, ?, ?, ?, ?] work with

quantitative preferences such asutility functions. However, it is de-
sired for users to express their preferences qualitatively. Thus, we
propose heuristics to use acyclic CP-Nets (a qualitative preference
model) in negotiation while agents still negotiate with their strate-
gies using quantitative information,utility (a real value between
zero and one). To do this, we generate artificial utilities from a
given CP-Net by applying our heuristics.

In our framework, a preference graph is induced from a given
CP-Net while eliciting a user’s preferences in the form of CP-Net.
In this preference graph, each node denotes a possible outcome and
each edge represents an improving flip. Note that the direction
of edges are ordered from less desired to more desired services.
Therefore, the least desired (worst) outcome will be placedat the
top of preference graph (root node) whereas the leaf node holds the
best outcome. For intermediate nodes, we only compare the nodes
having a path from others. The nodes having no path to each other
cannot be compared under “everything else being equal” interpre-
tation.

Consider the preference graph in Figure 3 induced from the CP-
Net in Figure 1. Here, the node (Yes, Etiler, Low) represents a
low-priced apartment atEtiler having a parking area. It is seen that
there is an edge from (No, Kartal, High) to (No,Kartal, Medium).
It can be inferred that an apartment with a medium price atKartal
not having a parking area is preferred over an apartment witha high
price atKartal not having a parking area.

Before negotiating, the agent applies one of the proposed heuris-
tics and uses the estimated utilities produced by a chosen heuristic.
The proposed heuristics are:

• Depth Heuristic (Section 4.1)

• Borda Scoring Heuristic (Section 4.2)

4.1 Depth Heuristic (DH)
We have previously proposed an approach based on capturing the

depth of an outcome in preference graph [?] but in that studydepth
is used by the proposed negotiation strategy – it is not independent
from the negotiation strategy. However, in this study we usethe
concept ofdepthto produce estimated utilities of outcomes regard-
less of negotiation strategy. That is, the agent using this heuristic is
able to apply any negotiation strategy (working with utility values).

Depth of an outcome node in a preference graph indicates how
far it is from the worst choice; in other words the highest distance
from the worst outcome. It is intuitive to say that the better(more
preferred) a service is, the further from the worst outcome it is.
Depth of an outcome node is estimated as the length of the longest
path from the root node. Note hat the root node in the preference
graph represents the worst choice whereas the leaf node denotes the
best outcome.

The intuition here is that we know that if there is an edge from
x to y, we ensure thaty is preferred overx and the depth ofy is
higher than that ofx. According to this approach, the higher the
depth of a service, the more likely it is to be preferred by theuser.
Further, if two outcomes are at the same depth, it is assumed that
these services are equally preferred by the user. We apply Equa-
tion 3 to estimate the utility values between zero and one. Inshort,
the depth of a given outcome is divided by the depth of the pref-
erence graph (the highest depth) to obtain estimated utility of that
outcome. For example, if we have a preference graph with a depth
of 6 in Figure 3, an outcome whose depth is equal to3 will have



utility of 0.5(= 3/6) according to this approach.

U(x) =
Depth(x,PG)

Depth(PG)
(3)

4.2 Borda Scoring Heuristic
CP-Nets orders outcomes partially in which we cannot compare

some outcomes. If we would have a total linear ordering of out-
comes, we would be able to compare all of the outcomes with each
other. And we know that there are a plenty of linear orderingscon-
sistent with the partial preference ordering induced from agiven
CP-Net. One of these linear orderings may reflect the user’s real
preference orderings. Thus, this heuristic is based on finding all
possible linear extensions of a given partial preference ordering and
selecting one of the most suitable linear extensions.

At that point, the question “How do we choose one of the most
suitable linear orderings?” arises immediately. One possible an-
swer may be to take the benefit from voting theory and apply a
voting procedure to get one candidate linear ordering. For this pur-
pose, we estimate all linear extensions of a given partial preference
ordering induced from a preference graph and apply a voting pro-
cedure called “Borda Rule” [?] in order to obtain one of the most
suitable linear orderings.

According to Borda Rule, we score outcomes according to their
position in the ordering. Let assume that we havem alternatives
ordered as< o1, o2...om > whereoi+1 is preferred overoi. When
we score the outcomes, each outcome will get a point of its position
minus one, which means thatoi will get i − 1. The sum of points
namelyBorda countrepresents the aggregation of existing alterna-
tive orderings. To illustrate this, consider we have three orderings
such as< x, y, z >, < z, x, y >, < x, z, y > wherex, y and
z are possible outcomes. Borda count ofx would be equal to one
(= 0 + 1 + 0) whereas that ofy would be five (= 1 + 2 + 2). In
this approach, Borda count of each outcome over all possiblelinear
extensions will reflect how much that outcome is preferred. Thus,
we will estimate utilities based on the estimated Borda counts.

This heuristic uses Varol Rotem Algorithm [?] to find all possi-
ble linear extensions of a given partially ordered outcomes(poset).
This algorithms takes one linear ordering consisting with the given
preference graph and produces all possible linear orderings. It
needsO(e(P )) or O(n · e(P )) time depending on which linear
ordering is used at the beginning [?].

One of the problems with this approach is that the number of
all possible linear extensions of a given partial ordering may be so
huge that this technique may become impractical because of high
complexity. In order to reduce the complexity, we partitionthe
preference graph and apply Borda Rule to all possible linearexten-
sions of each subpartition.

How do we partition the preference graph? We know that the
root node holds the worst outcome while the leaf node holds the
best outcome. Thus, we need to find an ordering for the outcomes
within the intermediate nodes. We partition this part in such a way
that each subpartition can involve at mostn, predefined number of
outcomes. For this purpose,n can be taken as10 or 15 according
to the size of the preference graph. Note that we choose10 in
this study. Figure 4 shows how we partition the preference graph
induced from the CP-Net in Figure 1.

After applying Borda rule to each partition, we normalize Borda
counts in a way that Borda count of each outcome will be between
zero and one. To do this, we can divide Borda count of each out-
come in that partition by the maximum Borda count. Consider we
have four outcomes (x, y, w andz) in a partition and their corre-
sponding Borda counts are25, 10, 20, 30 respectively. The normal-

Figure 4: Partitioning Preference graph in Figure 3.

ized Borda counts would be25/30, 10/30, 20/30, 30/30.

U(x, pi) = Umax(pi−1) +
Spi

N
∗ BRCount(x, pi) (4)

Another issue pertains to using these normalized Borda counts
in order to estimate final utilities. We distribute the utilities by
taking the number of outcomes at each partition into account. To
achieve this, we apply the formula in Equation 4 whereU(x, pi)
denotes the utility of outcomex in the ith partition,Umax(i − 1)
denotes the utility of outcome whose utility is maximum in the
previous partition (i − 1), N denotes the number of possible out-
comes,Spi denotes the number of outcomes inith partition and
BRCount(x, pi) denotes normalized Borda count of the outcome
x. Note thatUmax(p0) ,the utility of worst outcome (root node in
the preference graph), is equal to1/N . Furthermore, the utility of
the best outcome (leaf node in the preference graph) is equalto one
according to this approach.

Table 1 shows the estimated utilities for each heuristic when we
have the CP-net in Figure 1 and the last column of this table shows
utilities estimated by the UCP-net in Figure 2, which is consistent
with the given CP-net.

5. EXPERIMENTS
To evaluate the proposed heuristics, we extend GENIUS [?], which

is a platform for bilateral negotiation. Our extension enables an
agent to elicit user’s preferences in the form of CP-Nets andto use
utilities estimated by chosen heuristic while negotiatingwith an-
other agent. In this setting, the platform also keeps the user’s total
ordering of outcomes in the form of UCP-Nets and evaluates each
negotiation outcome for that agent based on the given UCP-Net.
The given UCP-Net is consistent with the given CP-net. In our



Table 1: Estimated Utilities for Each Heuristic and UCP-net

Service DH BSH UCP-net
[Etiler, No, Low] 1.0 1.0 1.0
[Etiler, No,Medium] 0.83 0.92 0.95
[Etiler, Yes, Low] 0.83 0.94 0.96
[Etiler, Yes, Medium] 0.67 0.74 0.91
[Kadikoy, Yes, Low] 0.67 0.82 0.68
[Etiler, No, High] 0.67 0.72 0.90
[Kadikoy, No, Low] 0.5 0.60 0.62
[Kadikoy, Yes, Medium] 0.5 0.54 0.63
[Etiler, Yes, High] 0.5 0.52 0.86
[Kartal, Yes, Low] 0.5 0.60 0.5
[Kadikoy, No, Medium] 0.33 0.43 0.57
[Kadikoy, Yes, High] 0.33 0.44 0.58
[Kartal, Yes, Medium] 0.33 0.43 0.45
[Kartal, No, Low] 0.33 0.39 0.36
[Kartal, No, Medium] 0.17 0.13 0.31
[Kartal, Yes, High] 0.17 0.17 0.40
[Kadikoy, No, High] 0.17 0.17 0.52
[Kartal, No,High] 0.0 0.06 0.26

experiments, the UCP-Net serves as ground truth. After an agent
negotiates using its CP-Net, we evaluate its performance asif we
knew the correct total ordering (UCP-Net).

In order to compare the performance of the heuristics, we inves-
tigate three test cases depicted in Figure 5. In each test case, two
agentsAgent A and Agent B negotiate with each other. We fix
both agents’ negotiation strategies so thatAgent A negotiates with
the sameAgent B (having same preference profile and strategy).
In the first case,Agent A has a CP-net and applies Depth Heuristic
(DH) to derive the estimated utilities. During the negotiation, the
agent will act on according to these estimated utilities. Inthe sec-
ond case,Agent A has the same CP-Net with the first case but it
applies Borda Scoring Heuristic (BSH) to estimate utilities which
will be used in negotiation. In the last case,Agent A has its user’s
real total preference orderings in the form of UCP-Net (consistent
with the CP-net and able to compare all outcomes). Thus, it uses
the real utilities during the negotiation. Consequently, we are able
to observe what the agent gets at the end of negotiation when it ap-
plies heuristics on partial preference information (CP-Net) versus
when it has total preference information (UCP-Net).

In our experiments, each agent uses a concession based strategy
in which the agent starts with the outcome having the highestutility
and concedes over time. It also remembers the best counter offer
that is made by the opponent agent. If the utility of the current
counter offer is higher than or equal to the utility of agent’s previous
offer, then the agent will accept the offer. The agent will take the
best counter offer of its opponent into account while generating its
offer. If the utility of the current offer is lower than that of the best
counter offer, the agent will take the opponent’s best counter offer.

Since the opponent agent (Agent B)’s preference profile has a
significant impact on negotiation outcome, we generate50 differ-
ent preference profiles forAgent B. That is, the sameAgent A
will negotiate with50 different Agent Bs. Note thatAgent B’s
preferences are represented with a linear additive utilityfunction
in this experiment. Another factor having an influence on nego-
tiation outcome in this setting is UCP-Net of the user. Different
UCP-Nets mean different ordering of outcomes (different prefer-
ence profiles forAgent A), so represent different users. Thus, we
generate four different UCP-Nets forAgent A consistent with the

Figure 5: Experiment Set-up for Comparison of Heuristics

given CP-net—four different users having the same CP-net. As a
result, both agents will negotiate200 times (4 different users of
Agent A * 50 differentAgent B) and the performance of the pro-
posed approached will be performed over these200 negotiations.

We define two evaluation criteria for comparison:

• Sum of outcome utilities forAgent A over 50 negotiations
(Section 5.1)

• Number of times that the agent using a heuristic negotiates
at least as well as the agent having UCP-Net (Section 5.2)

Furthermore, we investigate the performance of the heuristics in
negotiation from a different point of view by taking the structure of
CP-Nets into account. For this purpose, we generate three different
CP-Nets:CPNet-1, CPNet-2 andCPNet-3. CPNet-1 involves one
dependency such as preference ofparking areadepends onneigh-
borhoodwhereasCPNet-2 involves two dependencies such as both
preferences ofparking areaand price depend onneighborhood.
There are not any dependencies between attributes inCPNet-3. For
each CP-Net, we generate four different UCP-Nets consistent with
them and perform the experiments mentioned above.

5.1 Sum of Utilities for Agent A
Our first evaluation criterion is the sum of negotiation outcomes’

utilities with respect toAgent A over50 different negotiations with
Agent B. Note that the utility of an outcome is a real value between
zero and one. Table 2 shows these total utilities for three different
CP-Nets and four different UCP-Nets consistent with each CP-Net.
As expectedAgent A using UCP-Net gets the highest score when
it has a consistent UCP-Net withCPNet-1 and CPNet-3 since it
negotiates with user’s real preference orderings. Overall, the per-
formance of the agent using BSH is quite close to that of the agent
using UCP-Net (172 vs 179 and 171 vs. 172). For the case of
CPNet-2 (having two dependencies), the score of BSH is approx-
imately the same with the score of of UCP-net. SinceCPNet-2
involves two dependencies (the user specifies her preferences in a
more detailed way), the agent may get more information than the
case of other CP-Nets (one dependency and no dependency). This



leads to better results. Note that the score of heuristics are the high-
est when they haveCPNet-2.

Table 2: Sum of Outcome Utilities over50 Negotiations for Agent A

AGENT A DH BSH UCP-Net
CPNET-1 with UCPNet-1A 39.03 39.00 41.88
CPNET-1 with UCPNet-2A 38.27 40.73 43.66
CPNET-1 with UCPNet-3A 45.73 45.69 45.80
CPNET-1 with UCPNet-4A 46.88 46.94 47.29
Overall Sum (200 negotiations): 169.91 172.36 178.63
CPNET-2 with UCPNet-1B 39.93 41.66 41.70
CPNET-2 with UCPNet-2B 42.94 43.56 43.21
CPNET-2 with UCPNet-3B 46.15 46.76 46.75
CPNET-2 with UCPNet-4B 42.18 43.56 43.53
Overall Sum (200 negotiations): 171.20 175.55 175.20
CPNET-3 with UCPNet-1C 40.17 41.61 40.83
CPNET-3 with UCPNet-2C 41.58 42.50 45.64
CPNET-3 with UCPNet-3C 42.83 43.97 43.37
CPNET-3 with UCPNet-4C 42.36 43.36 42.64
Overall Sum (200 negotiations): 166.94 171.44 172.48

Moreover, it is seen thatAgent A’s score while applying Borda
Scoring Heuristic (BSH) is higher than the case in which it uses
Depth Heuristic (DH) for all CP-Nets (based on overall sum over
200 negotiations). According to this criterion, BSH may be pre-
ferred over DH.

5.2 Number of Times as Well as UCP-Net
Our second evaluation criterion is the number of times that the

agent that applies a heuristic on a given CP-Net negotiates at least
as well as the agent having a UCP-Net. For each CP-Net and UCP-
Net pairs, we compare the negotiation outcome for the agent using
a heuristic with that for the agent having UCP-Net. If the utility
of outcome for the agent using a heuristic is higher than or equal
to the utility of outcome for the agent having UCP-Net, that agent
receives one point. Since50 different opponent agents (Agent B)
negotiate with the same agent (Agent A), we count the number of
times thatAgent A using a heuristic is successful at least as the
agent having UCP-Net over50 negotiations.

According to Table 3, whenAgent A usesCPNet-1 and applies
DH, it negotiates at least as well as the agent having total preference
ordering (UCP-Net) in78 per cent of negotiations whereas BSH is
successful at least as UCP-Net in76 per cent of negotiations. Al-
though the performance of BSH with respect to sum of utilities
(Section 5.1) is better than the performance of DH, it negotiates as
successfully as UCP-Net more than BSH forCPNet-1 (78 per cent
versus76 per cent). This stems from the fact that when BSH com-
pletes a negotiation better than DH, the difference betweenutilities
of the outcomes is much higher than the case when DH negotiates
better than BSH.

For CPNet-2 andCPNet-3, the agent using BSH negotiates suc-
cessfully as the agent having UCP-Net more than the agent using
DH. When agents haveCPNet-2, it is seen that BSH beats DH.
Note that in89.5 per cent of negotiations DH negotiates at least as
well as UCP-Net whereas98.5 per cent of negotiations BSH per-
forms at least as good as the UCP-Net.

6. DISCUSSION
We present two heuristics namelyDepthandBorda Scoringto

negotiate with CP-Nets and compare them in a realistic negotiation

Table 3: Number of Times Heuristics Performs As Well As UCP-Nets

AGENT A DH BSH
CPNET-1 with UCPNet-1A 40 35
CPNET-1 with UCPNet-2A 26 35
CPNET-1 with UCPNet-3A 46 38
CPNET-1 with UCPNet-4A 44 44
Overall Sum (200 negotiations): 156 152
CPNET-2 with UCPNet-1B 43 49
CPNET-2 with UCPNet-2B 48 48
CPNET-2 with UCPNet-3B 44 50
CPNET-2 with UCPNet-4B 44 50
Overall Sum (200 negotiations): 179 197
CPNET-3 with UCPNet-1C 44 50
CPNET-3 with UCPNet-2C 27 31
CPNET-3 with UCPNet-3C 45 49
CPNET-3 with UCPNet-4C 47 47
Overall Sum (200 negotiations): 163 177

setting. According to our experimental results, it would bebetter
to apply Borda Scoring heuristic in small domains since its perfor-
mance is higher than the performance of Depth heuristic. However,
we may prefer to use Depth Heuristic in large domains since its
complexity is lower than Borda Scoring heuristic.

Li et al. study the problem of collective decision making with
CP-Nets [?]. Their aim is to find a Pareto-optimal outcome when
agents’ preferences represented by CP-Nets. They firstly gener-
ate candidate outcomes to increase the computational efficiency in-
stead of using the entire outcome space. Then each agent in the
system ranks these candidate outcomes according to their own CP-
Nets. For ranking an outcome, they usethe longest path between
the optimal outcome and that outcomein the induced preference
graph. Thus, the minimum rank is desired for the agents. They
choose the final outcome for the agents by minimizing the maxi-
mum rank of the agents. In contrast, we usethe longest path be-
tween the worst outcome and that outcometo estimate the utilities
with our depth heuristic. Furthermore, while they propose aproce-
dure for collective decision making with the aim of choosingone
outcome for multiple agents, we focus on estimating utilityvalues
of each outcome that will be used during the negotiation for an in-
dividual agent.

Rosi et al. extend CP-Nets to capture multiple agents’ pref-
erences and presentmCP-Nets [?]. They propose several voting
semantics to aggregate agents’ qualitative preferences and to de-
termine whether an outcome is preferred over another for those
agents. One of the semantics provides a measure of quantifying the
quality of outcomes with respect to the agent’s preferences. Ac-
cording to this approach, the rank of an outcome is estimatedby
the length of the shortest sequence of worsening flips between that
outcome and one of the optimal outcomes. Note that they use par-
tial CP-Nets which may lead more than one optimal outcomes. It
is worth noticing that Liet al. use the longest path instead of the
smallest path in their study [?] while we use the longest sequence
of improving flips between the worst outcome and that outcomein
our depth heuristic to get the estimated utilities.

Son and Sakama propose to formalize negotiation processes by
using logic programming [?]. Consistency restoring rules are used
to represent each agent’s knowledge. These rules are supported by a
set of assumptions and ordered goals (preferences). Since an agent
has incomplete knowledge about its opponent, it needs to reason
on its own preferences under this uncertainty. Son and Sakama use



answer sets to generate offers and determine if an offer is accept-
able. In our work, the agent reasons on its user’s partial ordering of
preferences to negotiate effectively.

Chalamish and Kraus presents an automated mediator for bilat-
eral negotiations in which agents share their qualitative preferences
only with the mediator [?]. For representing agents’ qualitative
preferences, an extension of CP-Nets, namely Weighted CP-Nets
(WCP-Nets) are proposed and used. Note that their addition is the
property of weights – the weighted importance table. After agents
send their WCP-Nets to the mediator, it sorts all possible outcomes
with respect to agents’ preferences separately – resultingin two
sorted list of outcomes. While sorting outcomes, the mediator uses
an enhanced version of majority lexicographical (ML) ordering [?]
with weights. In ML ordering [?], a hierarchy of variables in CP-
Nets is taken into account to evaluate the outcome. To illustrate
this, assume that we have three variablesX, Y andZ and a CP-
Net saying thatx1 > x0, x1 : y1 > y0, x0 : y0 > y1, x1 : z1 >
z0 andx0 : z0 > z1. X is in the first level whileY andZ are in
the second level. According to ML ordering, the outcomex1y0z0
dominatesx0y0z0 since the former outcome wins inX, which is
in the first level (not need to check for the variables in the second
level). The weighted version of ML presented by Chalamish and
Kraus is based on comparison of weighted sum of the values that
the outcome gets for the assignment of its variables. For instance,
in case ofx1 >x0 the outcome includingx1 gets one while the out-
come includingx0 takes zero. To sum up, the mediator sorts out-
comes with this metric and recommends pareto-optimal outcomes
the agents to speed up the negotiation. While the mediator uses
other agents’ WCP-Nets to suggest pareto-optimal outcomesto the
negotiating agents, in our study the agent tries to derive estimated
utilities that will be employed by the agent’s negotiation strategy
from that agent’s CP-Net. Furthermore, we use the induced pref-
erence graph covering possible sequences of improving flipswhile
applying our heuristics and compare the performance of our heuris-
tics with users’ real preferences in a negotiation setting.


