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Abstract Having a robust speech recognition system
that can be relied upon in different environments is a
strong requirement for modern systems. However audio-
only speech recognition still lacks robustness when the
signal to noise ratio decreases. This is especially true
when the system is deployed in public spaces or is used
for crises situations management where the background
noise is expected to be extremely large. The video in-
formation is not affected by noise which makes it an
ideal candidate for data fusion. The acoustic features
have been well defined during the course of the years,
the most used features being mel-frequency cepstral coef-
ficiens (MFCCs) or linear predictive coefficients(LPCs).
On the visual side, however, there is still much place for
improvements. It is still not clear which visual features
retain the most speech related information. Until now the
visual features used were static features which describe
the face of the user at one instance in time only. In the
paper [1] the authors have shown that most of the tech-
niques used for extraction of static visual features result
in equivalent features or at least the most informative
features exhibit this. This means that all techniques de-
scribe the same aspect of the visual stream. However the
improvement of recognition even though looks promis-
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ing is still modest. We argue that the main problem of
existing methods is that the resulting features contain
no information about the motion of the speaker’s lips.
We present in this paper a new method for extracting
useful features from the point of view of speech recog-
nition based on optical flow analysis. The video features
extracted using this method are preserving the informa-
tion about speaker mouth motion. We tested the method
on an audio-video database for Dutch language. The
Audio-Visual Speech Recognizer(AVSR) used is based
on HMMs method and was trained for large vocabulary
continuous speech. For completion we also present the
method introduced in the paper [2] for extracting static
visual features. We will compare these two methods with
respect to the induced recognition performance. Another
way to recover motion information from static features
is to use their first and/or the second derivative as vi-
sual features. However this can not always guaranty that
the resulted features are physically sound quantities. We
will also present for comparison the recognition results
based on such features. The evaluation of these methods
will be done under different noise conditions. We show
that the audio-video recognition based on the true mo-
tion features outperforms the other settings in low Signal
to Noise Ratio(SNR) conditions.

Keywords audio-visual fusion · speech recognition ·
automatic lipreading · optical flow · mouth movement

1 Introduction

Over the years much work has been done in the domain
of automatic speech recognition. The progress made is
significant for small, medium and even large vocabu-
lary systems. However the good results are only valid if
the recordings for the database used for testing are per-
formed in similar conditions to the ones present when the
training database was created. The level of accuracy of
the current Automatic Speech Recognition(ASR) suffers
greatly when the background noise increases. Therefore
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researchers start thinking of using additional reliable in-
formation that can account for changes in the quality of
acoustic signal, such as visual cues from the face of the
speaker.

Stating that combining information from more sources
should improve the performance of a system that de-
pends on that kind of knowledge, seems such a common
sense statement. However, the case of human speech per-
ception was considered as a purely auditory process. It
was the publication in “Nature” in 1976 of the paper
“Hearing lips and seeing voices”, by Harry McGurk and
John MacDonald [3] that changed this belief. In this pa-
per the authors present the results of their experiments
that proved for the first time that actually human be-
ings use both visual and auditory information process-
ing speech, regardless of the acoustic environment. In
the experiments the subjects were presented a film of a
person’s talking head, in which repeated utterances of
the syllable [ba] were dubbed on to lip movements for
the syllable [ga]. The results of the experiment showed
that in fact the subjects reported hearing [da]. In the
reverse experiment a majority reported hearing [bagba]
or [gaba]. However, when the subjects listened to the
soundtrack from the film without visual input they re-
ported the syllables accurately as repetitions of [ba] or
[ga]. This is called McGurk effect. Later studies confirm
the reliability of these findings. This discovery proved
that the above statement is not at all absurd and encour-
aged the research in lip reading and audio-visual speech
recognition. Hence not only that the visual modality is
unaffected by the noise in the acoustic stream, but also
if we look at the way humans perceive speech the visual
modality is valuable even in noise free situations.

However the research in lip reading domain started
only recently, mainly because of reduced computer power.
The results of a lip reading system are not influenced by
the presence of noise in the acoustic signal. That makes
the visual stream extremely useful for speech recognition
in noisy conditions.

Since the research in ASR has already a long his-
tory, the audio features that best describe the speech
gained somewhat maturity. Hence the most popular set
of features used to parameterize the speech are the Lin-
ear Predictive Coefficients (LPC) and the Mel-Frequency
Cepstrum Coefficients (MFCC). This is not the case for
visual features, where the search for the best features
that capture the most information about speech is still
going on.

There were many methods developed to extract vi-
sual features. They fit mainly in two broad classes: ap-
pearance based methods and geometrical methods; a com-
bination of the two was also used. The methods from the
first class consider the raw image or a transformation
of it as feature processing [4,5]. The transformation of
the image is employed in order to obtain some data re-
duction. The most popular method for this is Principal
Component Analysis (PCA) [6,7]. Other methods which

were used as an alternative to PCA are based on dis-
crete cosine transform [8] and discrete wavelet transform.
However this approach gives rise to very high dimension-
ality of the feature vectors. These methods are not trying
in anyway to uncover the features that bring the most
information about speech, instead they are blindly pro-
cessing the image. The features are chosen based on the
quantity of information they carry in general. Therefore
it might happen that the features extracted, even though
they carry a large amount of information, are more use-
ful for other types of applications like speaker identifi-
cation. On the other side the methods from the second
class start from the idea that it is better to try to model
the speech production apparatus. However not all parts
of the speech production system are visible, hence these
methods try to model the visual parts of the speech ap-
paratus such as lips, teeth, tongue but also other parts
of the face. The algorithms are aiming to detection and
tracking of specific points on the face. Usually the detec-
tion process is assisted by 2D or 3D geometrical models
of the face [9]. One other approach is to use statistical
methods based on image filtering algorithms and try to
directly extract the shape of the lips. The dimensional-
ity reduction obtained through the latter approaches is
very large. Moreover the reduction of dimensionality was
done in a direction that is more appropriate for speech
recognition. One other classification of the methods used
for visual feature extraction can be made based on how
much information about the actual motion of the parts
of the face is retained by the feature vectors. To under-
stand the implications of the above statement we can
think of the following: We see the picture of a person
having the mouth half opened. There is no way of telling
if the person was closing its mouth or opening it. All
the above presented methods consider only one frame as
input for the feature extraction module, hence there is
no information about the actual motion of the mouth in
the resulted feature vector. One way to include motion
information starting from static features is to include the
first and/or the second derivatives of the features. How-
ever there is not always guaranteed that the resulted
features have valid physical meaning. Another approach
is to perform optical flow analysis on the input video
stream. However until now the optical flow was mainly
employed as a measure of the overall movement on the
face and used for onset/offset detection [10,11,12,13,14,
15,16,17,18].

In this paper we will analyze the importance of mo-
tion detection for speech recognition. For this we will first
present the Lip Geometry Estimation(LGE) method for
static feature extraction. This method combines appear-
ance approach with a statistical approach for extracting
the shape of the mouth. This method was introduced in
[19] explored in detail in [20]. The results, expressed in
terms of recognition accuracy, even though they show a
promising increase in the case of low signal to noise ratio,
are still not spectacular. We will introduce then a new
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method for visual feature modeling that is based on opti-
cal flow analysis. This method is extracting information
about the movement on the contour of the mouth. We
will show that in this case the improvements are much
greater. To analyze the importance of the motion infor-
mation for speech recognition we will compare the results
in the following three settings:

– the visual feature used are obtained using the LGE
method, hence no expressed motion information is
present.

– the motion information is recovered from the static
features by including the first and/or the second or-
der derivatives of the static features.

– the visual features are obtained based on optical flow
analysis. The motion information is thus present in
the features obtained.

2 Related Theory

2.1 Optical flow analysis

The Optical Flow is a concept that is concerned with the
notion of motion of objects within a visual representa-
tion. A common definition of the Optical Flow is:
“The velocity field which warps one video frame in a sub-
sequent one.”

In [21] the optical flow is defined as:
“The distribution of apparent velocities of movement of
brightness patterns in an image.”

In the latter definition the word “apparent”signals
the fact that sometimes the optical flow does not corre-
spond to the true motion field. The most known example
is the “rotating barber’s pole illusion.” The problem of
finding the optical flow in an image falls in a broader class
of problems called “image registration problem.” Data
registration in general deals with spatial and temporal
alignment of objects within imagery or spatial data sets.
Image registration can occur at pixel level (i.e. any pixel
in an image can be matched with known accuracy with a
pixel or pixels in another image) or at object level (i.e. it
relates objects rather than pixels). The domain where the
image registration problem is one of the key challenges is
medical imaging. In medical imaging the problem of reg-
istration arises whenever images acquired from different
subjects, at different times, or from different scanners
need to be combined for analysis or visualization. In [22]
the problem of finding the optical flow seen as an image
registration problem is defined as follows:
“We consider that the pixels values in the two images
are given by the functions F (X) and G(X) (in 2D X =
(x, y)). Our goal is to determine the dissimilarity vec-
tor h which minimizes some measure of the difference
between F (X + h) and G(X), for X in some region of
interest <.”

There are quite a few methods for optical flow de-
tection from which we mention Lukas-Kanade method,

Horn-Schunck method, phase correlation (i.e. the inverse
of normalized cross-power spectrum), gradient constraint-
based methods, block correlation methods, etc. However,
Lucas-Kanade and Horn-Schunck algorithms are the two
most used algorithms for determining the optical flow.
The first algorithm was published in [22] by Bruce D.
Lucas and Takeo Kanade. This algorithm assumes that
the images are roughly aligned and that the optical flow
is constant in a small neighborhood. Then it uses a type
of Newton-Raphson iteration taking the gradient of the
error and assuming that the analyzed function is al-
most linear and it moves in the direction of this gra-
dient. The second algorithm assumes that the apparent
velocity of the brightness pattern varies smoothly almost
everywhere in the image. The algorithm minimizes the
square of the magnitude of the gradient of the optical
flow velocity and the measure of non-smoothness of the
optical flow. It was published in [21] by Berthold K.P.
Horn and Brian G. Schunck. In [23] the authors explore
the possibility of combining the two approaches used in
Lucas-Kanade and Horn-Schunck methods, namely lo-
cal constrains methods and global constraints methods,
in order to build a hybrid method that can provide the
corroborated strengths of both paradigms.

Other known algorithms are developed by Uras et
al. [24], Nagel [25], Anandan [26], Singh[27], Heeger [28],
Waxman et al. [29] and Fleet and Jepson [30]. In [31]
and [32] a number of nine, respectively eight, different
techniques for detection of optical flow were investigated.
The performance of these methods was compared on syn-
thetic scenes. The difficulty of comparing different opti-
cal flow techniques comes from the fact that is hard to
produce ground-truth motion fields. In [32] this problem
was overcome with a modified ray tracer that allowed the
generation of ground-truth flow maps. The latter study
reports that a modified version of Lucas-Kanade algo-
rithm produced the best result, however not very dens
flow maps. On the second place was placed Proesmans
algorithm which produced very dense flow maps but with
less quality.

Consider the function I(x, y, t) which gives the image
intensity at location (x, y) at time t. Every optical flow
detection method has as goal to compute the motion of
every pixel in the image from time t to time t + δt. If we
denote the new position of the pixel (x, y) from time t
with (x + δx, y + δy) at time t + δt we get the following
constraint equation:

I(x, y, t) = I(x + δx, y + δy, t + δt) (1)
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Assuming that the movement inside the image is small
enough, the image constraint equation can be rewritten
in terms of Taylor series as follows:

I(x, y, t) = I(x + δx, y + δy, t + δt)
= I(x, y, t) + ∂I

∂xδx + ∂I
∂y δy + ∂I

∂t δt + < (2)

where < means higher order terms, which are small
enough to be ignored. Using the initial image constraint
and ignoring < we get the following equation:

∂I

∂x
δx +

∂I

∂y
δy +

∂I

∂t
δt = 0 (3)

which can be rewritten as:

∂I

∂x
Vx +

∂I

∂y
Vy = −∂I

∂t
(4)

where Vx and Vy are the components of the optical
flow. Denoting the partial derivatives of I(x, y, t) with
respect to spatial coordinates x and y and time t with
Ix, Iy and It respectively the new constraint equation
reads:

IxVx + IyVy = −It (5)

Hence the problem of detecting optical flow is equiv-
alent to solving the system (5). However, this system has
only one equation but two unknowns making it under-
determined. To be able to solve this system some as-
sumptions need to be taken. Based on these assumptions
new equations can be introduced. The resulted flow ob-
tained will carry the marks of these assumptions.

We used for the current research for analyzing the op-
tical flow the algorithms developed by Lucas and Kanade.
Lucas and Kanade’s algorithm starts with the assump-
tion that optical flow is constant in a small neighborhood
of the point (x, y). Assuming that the flow (Vx, Vy) is
constant in a small rectangular region of size (n, n) with
n > 1 (usually n = 5 gives sufficient good results), that
is centered at point (x, y) and numbering the pixels, we
get the following system:

Ix1Vx + Iy1Vy = It1

· · · · · ·
IxnVx + IynVy = Itn

(6)

which is an over-determined system. Written in ma-
tricial form it reads:

Ix1 Iy1

...
...

Ixn
Iyn

[
Vx

Vy

]
=

−It1
...

−Itn

 (7)

A weighted least squares fit solution of the above sys-
tem is:

V = [AT WA]−1(−AT Wb) (8)

where A =

Ix1 Iy1

...
...

Ixn
Iyn

, V =
[
Vx

Vy

]
b =

It1
...

Itn

 and W is

a weighting function that gives more importance to the
center pixel of the window. This means that the optical
flow vector can be found only by calculating the deriva-
tives of the image in all dimensions. The Lucas-Kanade
optical flow detection algorithm is very fast because it ex-
amines only a limited number of possible matches. How-
ever its main advantage is the robustness in the presence
of noise. One disadvantage of this method is that it does
not yield a high density of flow vectors, (i.e. the veloc-
ity is only determined close to the boundaries of objects
and inside large areas with almost constant brightness
the information fades quickly.

2.2 Data Fusion Architecture

After deciding what features should be extracted for each
data stream, we came to the question: How should we
combine the information from the two modalities, such
that to obtain good recognition. In order to tackle this
problem researchers look at the methods that were al-
ready used for audio-only speech recognition. Over the
years several approaches to speech recognition have been
explored, including dynamic time warping [33], neural
networks [34,35] and support vector machines [36], but
by far the most successful and dominant approach is the
probabilistic approach based on hidden Markov models.
Here the recognition task is phrased as finding the most
likely word sequence W given the sequence of audio fea-
ture vectors Oa:

Ŵ = max
W

P (W |Oa) (9)

Using Bayes’ rule and the fact that the observation se-
quence is constant for a given utterance this can be
rewritten as:

Ŵ = max
W

P (Oa|W )P (W ) (10)
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the term P (Oa|W ) is called the acoustic model and is re-
alized by a collection of hidden Markov models, usually
one per phoneme when large dictionary speech recog-
nizer is targeted. The a priori probability that the string
W occurs in the language P (W ) is called the language
model and is in general realized using n-gram models.

However we are now having a bi-modal system that
takes as input data from two modalities. When combin-
ing the two data streams, or for that matter when com-
bining multiple modalities in general, there are a number
of issues that a comprehensive model should address:
1. The signals may have different dynamic ranges. For

example the duration of the sound of a phoneme is
usually shorter than the duration of the correspond-
ing lip movement.

2. There may be a time offset between the signals. In
lip reading the video signal usually starts before the
audio signal. This offset is not constant over the ut-
terance and may be as large as 120 ms, almost the
duration of a phoneme. The two signals thus evolve
asynchronously, within certain limits.

3. There may be a different number of distinguishable
classes that require different model topologies. For
speech phonemes constitute a good set of classes,
but for lip reading many of the distinctions between
phonemes are not visible. There are for instance 44
different phonemes in English while the number of
visemes is only around 12 (e.g for example /t/ and
/d/ or /p/, /b/ and /m/ only differ with respect to
voicing).

4. The signals may be sampled at different rates. In par-
ticular, video sample rates are usually slower than
audio sample rates (i.d. usually the video frame rate
is 25-30fps while the audio signal is sampled at a rate
larger than 100fps).

5. The modalities may not be equally reliable. Audio
contains more information about speech than the vi-
sual modality does in clear environment. As a con-
sequence the decisions based upon audio information
are generally more reliable than those based upon
video information. In some cases the reliability may
change dynamically over time. However when the back-
ground noise increases (e.g. if people start talking in
the background or the system is deployed outside the
office) audio recognition becomes less reliable.
One other question that arises when two or more

modalities are present is at what processing stage should
the modalities be fused. Models on human speech per-
ception [37,38] like the Fuzzy Logical Model of Percep-
tion (FLMP) developed by D. Massaro [39] suggest a
late integration approach. However, evidence here is not
conclusive. Therefore, for automatic audio-visual recog-
nition, models for integration at several levels have been
developed.

In the late integration approach the recognition is
performed on both modalities separately and in the end
the partial results from each subprocess are combined in

a final result [40]. As a consequence this approach can
easily handle different classes in different channels. Com-
plications introduced by time offsets and limited asyn-
chrony can be dealt with by integrating at the utterance
level. On the other hand it does not model any interac-
tion among processes, therefore such information is com-
pletely lost in the recognition phase; the two models may
base their conclusions about the occurrence of a speech
unit at a given time on completely different paths. In fact
it is not at all guaranteed that both models will deliver
the same hypothesis. As a consequence N-best recogni-
tion has to be used for both models, which leads to a
considerable increase in processing time. Another major
drawback for continuous recognition is that fusion can
only take place after a complete utterance has been rec-
ognized.

For our current research we used the other end ap-
proach, namely early integration. The feature fusion ap-
proach takes the features extracted for each modality
and combine them in a common vector that will be fed
to the recognition system. One advantage of this type of
fusion is that we can immediately reuse the techniques
developed for audio-only speech recognition. For this the
different modalities need to be firstly synchronized and
if there is a difference in the frame rate then some type
of interpolation should be used in order to complete the
sparser stream. For audio-visual case the audio features
are usually sampled at every 10ms, while a standard
video camera will limit the frame rate of video features
to 25 or 30Hz. A solution can be to copy a video vector
for several frames, arguing that the shape of the mouth
will not change much faster than the sampling rate, but
this may introduce discontinuities at the boundaries be-
tween such vector intervals. The method of choice there-
fore is linear interpolation between two subsequent video
vectors for up-sampling the video signal as depicted in
Figure 1. However, the combined vectors become rather
large and the interpolation process induces correlations.
Therefore, the training of the recognition models can be-
come a burden for the resulted system. To cope with this
problem typically a projection of the combined vector to
a smaller space is introduced, for example using princi-
pal component analysis, possibly followed by an MLLT
data rotation to de-correlate the features.

An additional method, feasible for early fusion ap-
proach, to cope with the problem of insufficient data for
training a multi-modal system is to use a system that
was already been well trained for a single modality as
an initial step. In our system we used the distributions
of our already well-trained speech recognizer to initial-
ize the audio parameters of the bi-modal system thereby
reducing the amount of training necessary and ensuring
quicker convergence of the video distributions.

The half way solution to the multi-stream fusion prob-
lem is to think of a model that can simultaneously cope
with both data streams and directly give a unified re-
sult. This model should tackle the issues such as the
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Fig. 1 Feature fusion for audio-visual speech recognition.

different dynamic ranges and different frame rate of the
two modalities. In short it should alleviate all problems
that appear at the feature level fusion. This is generally
called model fusion. However, this solution leads most of
the time to an explosion in the number of model parame-
ters and hence to slower recognition, overfitting and poor
generalization of the models. Based again on the HMM
approach there were developed quite a big number of
generalizations which can be regarded as model fusion
approaches. Probably the first solution that comes to
mind to integrate two or more data streams that can be
modeled using HMMs is to build one large model hav-
ing the cartesian product of all the states of the separate
models as its states. This is called Cartesian Product
HMM. Each possible combination of paths through both
uni-modal models can be represented in a single path
through the product HMM. It hence allows for asyn-
chrony and can deal with different submodel topologies.
However, this model is so computationally complex that
is only interesting from theoretical point of view. Other
models were developed by placing constraints on the
states or the transitions in order to make the new mod-
els tractable. The Multi-Stream HMM [41,42] allows for
multiple input feature streams that may have different
frame rates and can be asynchronous. It assumes that the
model consists of a number of sub-unit models that corre-
spond to the level at which the streams have to synchro-
nize, for example phoneme level or syllable level. Each
sub-unit models has parallel HMMs, each of which pro-
cesses a single stream independently of the other mod-
els. The Factorial HMM arises by forming a dynamic
Bayesian network composed of several independent lay-
ers. It was introduced by Ghahramani and Jordan [43] to
model time series that can be seen as loosely coupled ran-
dom processes. Together with the model they also pro-
vided several algorithms to efficiently learn the parame-
ters of the model. In case of audio-visual speech recogni-
tion the model will have two separate layers, one for each
input stream. It thus allows for asynchrony and differ-
ent numbers of distinguishable classes in both streams.
As the streams are combined at the output level in ev-
ery time step it does however require equal frame rates.
Finally the last model created for speech recognition as

a generalization of HMM framework is Coupled Hidden
Markov Model. Speech recognition and lip reading can be
seen as two dependent processes, each having their own
dynamics and observations but influencing each other.

3 Features extraction algorithms

3.1 Lip geometry estimation

In this subsection we will describe step by step a fea-
ture extraction method called Lip Geometry Estimation
(LGE). Using image filtering techniques and based on
a statistical interpretation of the results from the filters
it directly estimates the geometry of the mouth. How-
ever, this technique is unique because it does not rely on
any a-priori geometrical lip model. The overview of the
signal processing described in this section is depicted in
Figure 2.

As the first step of the processing pipeline we have
to locate the face and then the mouth of the speaker.
The detection of the Region of Interest(ROI) removes
unnecessary areas from the image which is very impor-
tant from at least two reasons: firstly the processing time
is greatly reduced and secondly many possible unwanted
artifacts can be avoided. For this we use the Viola-Jones
algorithm for object detection [44]. This classifier uses a
new method for detecting the most representative Haar
like features using a learning algorithm based on Ad-
aBoost. It combines the weak classifiers using a “cas-
cade”approach which corroborated with a fast method
for computing the Haar-like features allows for high speed
and very low false-negative rates. In order to increase the
reliability of the ROI extraction process in the following
frames we use a combination detection/tracking process-
ing model. Hence in a first step the ROI is detected us-
ing a mouth detector and then in the next frames we use
a tracking algorithm which is trained using the last ex-
tracted ROI. The object tracking algorithm uses a Gaus-
sian Mixture Model to model the color distribution of the
object and of the background. Then it uses a deformable
template to optimally fit the tracked object.
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Fig. 2 Signal processing pipeline for the audio-visual speech recognition system based on LGE feature extraction technique.

The next step in the process is to somehow detect
which pixels belong to the lips. Fortunately, now, because
the input image contains only the mouth area and since
the lips have a distinct coloring we can extract the lip’s
pixels without the need for complicated object recogni-
tion techniques. In order to utilize this fact, we need to
apply some sort of lip-selective filter to the image. In our
current research we use several different filters depend-
ing on the illumination conditions and the quality of the
recorded video sequences.

The simplest way for doing this segmentation is to
use a thresholding technique based on the appropriate
color channel. For color input images the Hue channel is
most used. In the case of grayscale images, when the Hue
value is not defined the thresholding can be performed
directly on the gray channel. As we present further this
method requires that the result for each pixel be in terms
of degrees of “belongness”, so binary segmentation is
not enough. Therefore we use for our current research
parabolic thresholding. This method for image segmen-
tation was first proposed in [45]. The results of the filter
are given according with the following parabolic shaped
function:

F (h) =

{
1− (h−h0)

2

w2 , |h− h0| ≤ w

0, |h− h0| > w
(11)

Attention should be paid to the dynamic range of the
variable h, for instance in the case of Hue-based filtering
since Hue is a circular variable. The filter is defined by
the center of the interval h0 and by its half width w. Both
values should be calibrated in advance in order to obtain
sufficient accuracy. We may also combine a series of such
parabolic shaped filters for more robust lip detection.
Using the product of the Hue-based filter and a Value-
based filter can for example remove some of the noise
in the dark or bright areas of the image where the hue
values behave rather randomly.

A parabolic shaped filter is very simple and computa-
tionally very effective. Unfortunately, during our exper-
iments we found that in many cases, if the illumination
of the face is not perfect, the hue component itself is
not sufficient for proper lip selection. Instead of putting
additional constraints on the filtered color (such as a
threshold value of saturation or value component), we
decided to use a black-box approach. We trained a sim-
ple feed-forward neural network and used it as a filter.

Fig. 3 Pairs of dM(α) and dσ(α)2 vectors extracted from a
video sequence. The periods of silence around two spoken
sequences can be seen clearly.

The network that was used had only 5 neurons in a hid-
den layer and one output neuron. It was fed with the
RGB values of the processed pixel of the image. This
filter achieved extremely accurate results. The second
image in Figure 2 shows an example. Some artifacts are
still visible in the result.

The filtered image is then treated as a bivariate distri-
bution I(X, Y ) (after normalization). The mean of this
distribution: [EX, EY ] accurately approximates the cen-
ter of the mouth. Using this value, we transform the im-
age into polar coordinates:

J(a, r)=I(EX+r cos(a), EY+r sin(a))
We then compute the means and variances for the

conditional distributions, conditioned on the direction.
We therefore define the following functions of mean and
variance values for any angle:

M(α) =

∫
r
J(a, r)rdr∫

r
J(a, r)dr

(12)

σ2(α) =

∫
r
J(a, r)(r −M(α))2)dr∫

r
J(a, r)dr

(13)

As the image is discrete rather that continuous, all
of the values are obtained from summation rather than
integration, so we only operate on estimations of those

values, namely M̂(α) and ̂
σ(α)2. The vectors resulting

from sampling of those functions for one of the video
sequences can be seen in Figure 3.

As can be seen in Figure 2 the value of M̂(α) for a
specific angle relates directly to the distance from the
center of the mouth to the center of the lip in that given
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Fig. 4 Average dM(α) values for specific visemes in a video
sequence.

direction. Therefore a vector constructed from those val-
ues for a number of angles describes the shape of the
mouth on a given image. Such shape profiles were gath-
ered from a video sequence of spoken Dutch and grouped
based on the visemes. Figure 4 shows three profiles for
visemes [A], [o u O y Y 2: 9:] and [p b m]. In order to ob-
tain scale independence, the vectors were scaled so that
all their values fit in the interval. It can be seen that
the [ou] viseme can be distinguished from the others by
its relatively high value in the middle. There is how-
ever no feasible way of distinguishing between [A] and [p
b m] visemes. The lip shapes that correspond to those
visemes are completely different (mouth closed versus
mouth opened), but scaling of feature vectors removes
all of those differences.

Therefore the values of M̂(α) alone are not sufficient
for extracting useful data from the video sequence. How-
ever using the additional information about the variance
of conditional distributions, as can be seen in Figure 5
we can clearly discriminate the viseme [A] from [P]. The

values of ̂
σ(α)2 are also scaled in order to obtain size

independence, but the scaling factor is directly deter-
mined by the mean values rather than the variances. So
obviously using the two sets of values we get an accurate
shape of the mouth. This can also be seen from Figure 2,
the 95% confidence interval clearly describes how thick
is the lip in that specific direction. The lips of a wide-
stretched mouth, appear thinner than those of a closed
mouth when related to the overall size of the mouth.

As can be seen in the second image in Figure 2 even
after reducing the area of interest and even with optimal
filtering of the mouth in some cases the filtered image
still contains unwanted artifacts. In order to reduce the
impact of such occurrences a process of outliers deletion
can be used before the actual feature extraction. The
blue area showed in Figure 2 superimposed on the input
image was cleaned by the outlier deletion process.

The last stage of feature vector extraction is choosing
which direction to be used. Obviously, the chosen vector
dimension is a compromise between accuracy and pro-
cessing efficiency. The longer the vectors, the more infor-
mation on the original distribution they contain but the

Fig. 5 Average dσ(α)2 values for specific visemes in a video
sequence.

longer it takes to extract and process them. Also higher
dimensionality generally makes it more difficult to train
the recognition modules. After some experiments with
the data we chose to use the 18-dimensional vectors for
both features(see [2]).

3.2 Mouth motion estimation based on optical flow
analysis

Until now in the domain of lipreading and audio-visual
speech recognition the optical flow analysis was used
as raw data[9,13,16], or as a method to measure the
global movement[10,11,12,14,15,17,18] of the speaker
face. The variances of the horizontal and vertical com-
ponents of flow vectors were used as visual features for
silence detection, in the cases when the noise in the au-
dio modality was not allowing for an accurate decision.
Even though the results were very promising we argue
that using the optical flow only as a global measure much
of the information about speech is discarded. We propose
here a method that based on the optical flow better de-
scribes the actual speech. Our method measures the lip
movement on the contour of the mouth. The first step
of the method tries to accurately detect the center of
the speaker mouth. Since the LGE method provides a
good way for detecting the center of the mouth we used
that approach again for the present method. Also the
detection of the appropriate region of interest is highly
appreciated. Since the optical flow vectors can be com-
puted in every region of the image we need to restrict the
searching space in order to exclude unnecessary regions.
The same approach in two steps detection/tracking was
employed here. The Viola-Jones classifier and the Gaus-
sian Mixture based tracking algorithm were used.

The optical flow is computed inside the area of in-
terest. We use the algorithm developed by Lucas and
Kanade, since this algorithm has the best accuracy. We
are only interested in the mouth area, therefore we do
not need a very dense vector flow. The processing time
is another aspect that was considered when taking the
decision to use Lucas-Kanade. We will be interested to
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Fig. 6 Optical flow sample result for lipreading.

have a real time recognizer. A sample of the computed
optical flow is shown in Figure 6.

Hence considering the filtered image as the mass func-
tion of a bi-variate distribution we can compute its mean
vector [EX, EY ]. The point represented by the mean
vector can be safely considered as the center of the mouth.

Having identified the center of the mouth and com-
puted the optical flow in the area of interest, we can then
start to extract the visual features. The selected features
should describe the movement of the mouth along its
contour. Hence we divide the 2D space originating in the
center of the mouth into 18 equally wide directions. The
number of directions was taken such that to be equiva-
lent with the number of features extracted by the LGE
method. The features extracted should capture as much
information as possible, while keeping the dimensionality
in manageable limits.

The visual features are obtained by computing statis-
tics about the optical flow, hence the movement of the
mouth, in all chosen directions respectively. Even though
the global variance of the optical flow can be a valuable
feature for onset/offset discrimination, the information
about movement in certain parts of the mouth is canceled
out by averaging, hence is not suitable for our settings.
For a small enough angle the contour of the lip should
deform in the same way on the entire distance consid-
ered. Thus, the variance of the flow computed only in a
certain direction should always be close to zero.

We computed therefore as visual feature only the
mean displacement on the horizontal and vertical respec-
tively. Figure 7 shows the features extracted based on the
optical flow seen in Figure 6.

Figure 8 a) shows the horizontal mean of the optical
flow in all 18 directions for a certain utterance. The ut-
terance spreads over 119 video frames. While it is clear
from this picture that these visual features carry signif-
icant amount of information we can not tell anything
about what triggers these values. This can be somehow
clarified by looking to the cumulative sum of the features
in time, which is shown in Figure 8 b).

Fig. 7 Optical flow based extracted features.

The same analysis for the same utterance but this
time for the vertical mean of the optical flow is shown in
Figure 9. Above all the remarks made for the horizontal
case, which also stands here, we have to notice that the
amount of movement is much grater in the vertical direc-
tion. Hence we can conclude that the vertical movement
should carry more information about what is being said
than the horizontal movement. The cumulative sum in
this case makes a lot more sense for a human observer
than before. We can track most of the onset/offset mo-
ments by just looking at this image (for instance around
frames 75, 90 and 105).

3.3 Intensity based features

The shape of the lips is not the only determinant of a
spoken utterance. There are some other important fac-
tors such as the position of the tongue, teeth etc. Some
of them can be observed in the video sequence, the oth-
ers not. It is essential in the case of lipreading to extract
from the visual channel as much information as possible
about the utterance being spoken. We propose therefore
to augment the visual features extracted until now with
a few simple intensity related features. It would prob-
ably be possible to track the relative positions of the
teeth and tongue with respect to the lips. The tracking
accuracy would be limited by the fact that the visibility
of lips and tongue is normally very poor. Such a task
would also be too complex and therefore infeasible for
a lipreading application. There are however some easily
traceable features that can be measured in the image
which relate to the positions and movements of the cru-
cial parts of the mouth. The teeth for example are much
brighter than the rest of the face and can therefore be
located using a simple filtering of the image intensity.
The visibility and the position of the tongue cannot be
determined as easily as in the case of the teeth, because
the color of the tongue is almost indistinguishable from
the color of the lips. We can however easily determine
the amount of mouth cavity that is not obscured by the
tongue. While teeth are distinctly bright, the whole area
of the mouth behind the tongue is usually darker than
the rest of the face. So we can apply an intensity based
thresholding filter for both cases. The teeth and cavity
areas are both highlighted in Figure 2. In order to use
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a) b)

Fig. 8 The distribution over time of the horizontal mean of the optical flow for a fan with 18 distinct directions: a) shows
the actual values, while b) shows the cumulative sum.

a) b)

Fig. 9 The distribution over time of the vertical mean of the optical flow for a fan with 18 distinct directions: a) shows the
actual values, while b) shows the cumulative sum.

the information presented in the filtered images, we need
to extract from them some quantitative values. We chose
to use the total area of the highlighted region and the
position of its center of gravity relative to the center of
the mouth.

4 Data Corpus

Data corpora are an important part of any audio-visual
speech recognition research. However, partly because the
field is still young, or partly because the time and re-
sources it takes to record a multi-modal data corpus can
be overwhelming, the number of existing multi-modal
data corpus is small compared to the number of uni-
modal datasets. Having a good data corpus, (i.e. well
designed, capturing both general and also particular as-
pects of a certain process) might be of great help for
the researchers in this field. Data corpora are also devel-
oped to be shared between different researchers in order

to have the means for comparison of their results, so a
greater level of reusability is required. There are a num-
ber of limitations that an audio-visual dataset has, such
as:
– The recordings contain only a small number of re-

spondents. This greatly reduces the generality of the
results, since it generally generates highly undertrained
systems.

– The pool of utterances is usually very small.
– They usually contain only isolated words or digits

or even only the letters of the alphabet rather than
continuous speech.

– They have a poor coverage of the set of phonemes
and visemes in the language. This problem is related
with the previous ones since the phonemes/visemes
coverage is correlated with the set of words/sentences
used. So using utterances that are rich in phonemes
and visemes should be a strong requirement espe-
cially for the cases when the dataset is intended for
speech recognition.
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– The last and definitely not the least important is-
sue is that usually the datasets are collected with
some specific applications in mind, which lessens their
reusability [46].

One of the first datasets that used for lipreading was
TULIPS1.0 [47]. This database was assembled in 1995
and consists of very short recordings of 12 subjects ut-
tering the first 4 digits in English. Later other datasets
were compiled, which are larger and have a greater de-
gree of usability. These datasets were built having as tar-
get mainly audio-visual speech recognition, speaker de-
tection and person identification. The most well know are
ValidDB [48], XM2VTSDB [49], BANCA [50], AVOZES,
CUAVE [51] and VidTIMIT.

For this research we used an audio-visual data corpus
for Dutch. The Delft University of Technology Audio-
Visual Speech Corpus (DUTAVSC) was intended only for
lip reading and audio-visual speech recognition hence the
video only shows the lower part of the face. The record-
ings were made during 5 sessions with 8 respondents
and contain continuous speech. The utterances contain
phonetically rich sentences. The sentences were gathered
from Dutch newspapers and grouped in sets of five sen-
tences such that each set contained all phonemes found
in Dutch. To these sets were added separate words as
spelling samples. Special attention was also paid to the
phoneme distribution in the chosen sentences, such that
to result in a natural distribution over them. All respon-
dents were native Dutch speakers. The audio recordings
were sampled at 44kHz with 16-bit resolution and were
stored in uncompressed form so that no signal degrada-
tion resulted during storage. The video recordings have
384x288 pixel resolution and were saved at a frame rate
of 25fps. Since the video shows only the lower part of the
face, then using this resolution, similar with the resolu-
tion used in some well known databases such as XM2VTS
[49] or BANCA [50], a very fine detail of the mouth re-
gion was achieved. Such a restricted view can be achieved
in real application by using a smart camera which can
detect the face of the speaker and zoom in on it. The
video clips were stored using MPEG1 compression with
a high bit rate in order to make an optimal trade be-
tween image quality and file size. The database contains
approximately 7 hours of recordings. Some sample video
frames from this database are shown in Figure 10.

5 Test results

5.1 Setup of the experiments

The task of our system was continuous speech recogni-
tion under different levels of background noise for Dutch
(see section 4). From the audio stream we extracted
the MFCCs at every 10ms using a Hamming window of
25ms. Each feature vector contained 12 MFCCs plus log
energy, plus the corresponding deltas and acceleration

values, hence a total of 39 features in each vector. All
features were scaled around zero by subtracting the cep-
stral mean on a per utterance basis. The video data was
recorded at 25fps. Each of the two algorithms is extract-
ing a number of 36 features for the contour of the mouth
plus 6 intensity based features. In order to reduce the
dimensionality of the resulted vectors we applied PCA
on the visual features (excluding the intensity features)
and saved the first 5 features corresponding to the most
informative directions. In the end a total of 50 features
were fed to the recognizer. For the case where the mo-
tion information has to be recovered from static features
additional 10 features represented by deltas and acceler-
ations values in time were taken.

The Cambridge Hidden Markov Model Toolkit [52]
was used for actual training and recognition. The recog-
nition units were established at phonemes level. Each
phoneme was modeled by Gaussian mixtures continuous
density left-right HMM with 5-states, with only three
emitting states. The model is shown in Figure 1. The
models were trained iteratively, using embedded Baum-
Welch re-estimation and Viterbi alignment. We used 44
models for phonemes and 16 models for visemes recog-
nition. However since there is no direct mapping from
phonemes set to visemes set we chose to use the phonemes
as basic recognition units and to define the visemes by
clustering the corresponding phonemes together. This
was obtained by sharing the distributions in the visual
stream among phonemes models from the same set (i.d.
by tying the states of the models). Since our audio-visual
database is relatively small for training a robust continu-
ous speech recognizer, let alone a bi-modal recognizer, we
had to think of a way to better guess the initial values for
the parameters in order to improve the convergence dur-
ing training. For the parameters related with the audio
stream we used as initial guess the values of the param-
eters from an already trained speech recognizer. There-
fore the training on our database will only induce some
adaptation on the audio side. For the additional visual
parameters we used as initial values the global means
and variances computed over the entire video training
set. As all models initially had the same parameters for
their visual features the distribution of the feature vec-
tors during Baum-Welch re-estimation was guided by the
speech features. In this way a continuous multi-modal
recognizer can be obtained in a few training cycles with
a limited amount of training data. The combined models
were re-estimated three times, using the bi-modal train-
ing data. We also included one short pause model and
a silence model. The short pause model had only one
emitting state which was tied to the center-state of the
silence model.

To check the performance of the recognizer we used
two widely used performance measures. The word error
rate (WER) is defined as follows:

WER = 100 − N−D−S
N x100%, where N is the to-

tal number of words, D is the number of deletion error
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Fig. 10 DUTAVSC Database.

and S is the number of substitutions. However in the
next figures and tables we will use the Word Recognition
Rate(WRR) which is defined as 100 - WER. To take into
account also the errors by insertion, the percentage ac-
curacy(ACC) is also frequently used. ACC is computed
as follows:

ACC = N−D−S−I
N x100%, where I represents the num-

ber of insertion errors.
We also investigated the performance of the system

when the two data streams are weighted. If the weight
for the audio stream is wa then the weight of the video
side is computed as 1− wa.

5.2 Static visual features

Table 1 shows the results of the recognition for static vi-
sual features. The results for several weighting settings
are also shown. The conclusion that emerges from this ta-
ble is that as soon as the noise level increases the weight
of the audio channel should be reduced, which is exactly
what one expects. We can see that when the SNR is
around 20dB the audio modality is still reliable as the
maximum of performance was attained for relatively high
audio weight.

Since in noisy free environment the visual modality
does not bring much improvement to the overall recog-
nition accuracy it is more interesting to look at the ac-
curacy of the system under different levels of noise. Fig-
ure 11 shows the performance of the bi-modal recognizer
in terms of WRR as a function of SNR. The audio signal
was disturbed by adding white noise of different inten-
sity such that the SNR lies in the interval 25 to 0dB.
Only the samples used for evaluation were modified by
adding noise. For comparison the results of the audio-
only speech recognizer are presented along with the re-
sults from the bi-modal recognizer. The training of the
audio recognizer was done using the same settings. In
Figure 11 is clearly visible that when the level of noise
increases, in this case when the SNR goes below 15dB,
using the combined information gives better results. For
instance around level 10dB the increase in performance
is more than 10%. The same trend can be seen in the
word accuracy levels as it is shown in Figure 12. How-
ever since the accuracy takes into account also the errors
made by insertion of words the overall levels are lower
and we can have even negative values. Because the two

Fig. 11 Recognition results at several noise levels in terms
of word recognition rate. The visual features used were ex-
tracted using the LGE method.

Fig. 12 Recognition results at several noise levels in terms
of word recognition accuracy. The visual features used were
extracted using the LGE method.

channels have the same weight in recognition, the accu-
racy of the bi-modal recognizer approaches also 0% in
extreme noise conditions.

5.3 Deltas and accelerations

The question we want to answer is what happens if we re-
cover some of the motion information starting from static
visual features. The motion can be recovered by using the
first and/or second derivatives of the visual features. We
will consider the derivatives only of the geometry fea-
tures and not for the intensity based ones. The analysis



13

Table 1 Word recognition percentage for static visual features.

Recognition system WRR(%) WAcc(%)
clear audio;
equal weights 84.89 81.11

20dB SNR;
audio weight: 0.50 71.17 68.59

20dB SNR;
audio weight: 0.72 76.74 70.78

20dB SNR;
audio weight: 0.92 78.33 73.96

20dB SNR;
audio weight: 1.20 76.54 71.77

10dB SNR;
audio weight: 0.50 38.80 31.61

10dB SNR;
audio weight: 0.72 41.75 38.97

10dB SNR;
audio weight: 0.92 38.97 33.40

10dB SNR;
audio weight: 1.20 33.60 22.07

0dB SNR;
audio weight: 0.50 4.57 3.38

0dB SNR;
audio weight: 1.10 5.57 -1.79

proceeds into four distinct settings. Firstly we consider
the del features as additionally to the static features,
hence the total number of features will be 55. A second
round takes into account also the acceleration features,
making the feature vector dimension to increase to 60.
Adding more features provides more information about
what is being said. However, it also increases the dimen-
sionality of the problem. This, on the basis of a constant
training dataset, makes the resulted models to be poorer
trained. Therefore a comparison between them, or with
the initial bi-modal system is not entirely fair. For this
reason we also investigated the situations when the delta
features or when delta and acceleration features are used
instead of unmodified geometrical features. Figure 13
shows pair comparisons with respect to the resulted sys-
tems’ performances in some of the four settings.

5.4 Optical flow based features

This section presents the results obtained when the fea-
tures extracted contain real information about the mo-
tion on the speaker face. In order to keep the dimen-
sionality of the problem in manageable limits and also
to make the comparison of the results fair we applied
PCA to the visual data and saved only the features cor-
responding to the first 5 directions. The first 5 directions
accounted for 95.82% of the total variance.

Figure 14 shows for comparison the results of the sys-
tem in the three cases: the static visual features obtained
by using the LGE method, the visual features obtained
by computing the delta values of the geometrical features
and finally the visual features obtained by performing
optical flow analysis. In all cases the intensity features
are added. The results show that the optical flow fea-

Fig. 14 Comparison among the performances of the AVSR
when three different approaches are employed for computing
the visual features.

tures perform slightly better than the first two methods.
Again when the SNR has high values the audio modality
is driving the recognition process.

6 Conclusions

The research in the domain of audio-visual speech recog-
nition is still going on. In contrast with audio feature ex-
traction technology, in the case of the visual modality it
is still not very clear what features are more appropriate
for robust lipreading and audio-visual speech recogni-
tion. It has been shown [1] that the visual features used
until now describe more or less the same aspects of the
mouth during speech, or at least this is the conclusion
with respect to direction that accounts for the largest
part of the variance in the dataset. However, since the
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Fig. 13 Recognition results at several noise levels in terms of word recognition rate. The visual features used were extracted
using the LGE method. The motion information is recovered by computing the delta and acceleration values of the geometrical
features.

methods developed until now only use one video frame
from the input visual data for computing the visual fea-
tures, the resulted features described only one instance in
time. Therefore these methods might fail to account for
the actual movement in the mouth area. We introduced
in this paper a new method for extracting speech related
visual features based on the optical flow. The visual fea-
tures computed by the presented method capture real
information about the motion of the speaker’s mouth.
We showed that the performance of the recognition sys-
tem build based on the new features is much greater than
the performance of a system trained on static features.
We also compared the results based on the new method
with the results based on a middle way of recovering mo-
tion information, namely through delta and acceleration
computation.

We also showed that it is very important to set the
appropriate weights to the two data channels. The best
results are visible when the noise level increases which
was an expected behavior.

The results shown here are very promising, but we
could argue that the early fusion approach was not enough
to accurately capture the dependencies between the two
data streams and to perfectly cope with problems as
asynchronism and asymmetrical sample rate. Hence we
plan to investigate the use of Dynamic Bayesian Net-
works(DBNs) for audio-visual fusion. Many inference rou-
tines have been developed for DBNs [53,54] including
methods for calculating the probability of an observa-
tion sequence given the model and for finding the most
likely path through the network. These new develop-
ments make the DBNs models more tractable, hence
their use becomes more attractive [55].
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