
Avoiding Approximation Errors in Multi-Issue Negotiation
with Issue Dependencies

Koen Hindriks
Man-Machine Interaction Group
Delft University of Technology

Mekelweg 4, Delft, The Netherlands
+31.15.2781315

k.v.hindriks@tudelft.nl

Catholijn Jonker
Man-Machine Interaction Group
Delft University of Technology

Mekelweg 4, Delft, The Netherlands
+31.24.2782523

c.m.jonker@tudelft.nl

Dmytro Tykhonov
Man-Machine Interaction Group
Delft University of Technology

Mekelweg 4, Delft, The Netherlands
Telephone number, incl. country code

d.tykhonov@tudelft.nl

ABSTRACT
Searching for good bids in a utility space based on multiple,
dependent issues in general is intractable. Tractable algorithms do
exist for independent issue sets, so one idea is to eliminate the
dependencies by approximating the more complex utility space
with issue dependencies. It has been shown that an approximation
may give reasonable results when some structural features of the
negotiation domain and preference profile are exploited. Of
course, there is a risk that approximation results in significantly
different negotiation outcomes. In this paper, we present a
checking procedure to mitigate this risk and show that by tuning
the parameters of this procedure the outcome deviation can be
controlled. These parameters allow for a trade-off between
computational cost and accuracy of negotiation outcome. Based
on experimental results we propose specific values for the
parameters of the checking procedure that provide a good balance
between computational costs and accuracy. Additionally, we show
how different values of these parameters influence the
computational costs of negotiating multiple issues with
dependencies.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
--- intelligent agents, multi-agent systems.

General Terms
Algorithms, Performance, Economics, Experimentation, Theory.

Keywords
Efficient multi-issue negotiation, issue dependencies, tunable
algorithm, approximating utility spaces.

1. INTRODUCTION
Negotiation is a process by which a joint decision is made by two
or more parties (cf. [10]). The parties or agents first express
conflicting demands and then move towards agreement by a
process of concession making. During the negotiation both agents
make various offers, called bids, to each other that more or less

match with their own preferences. The negotiation outcome is
either a failure, or a deal, i.e., a bid accepted by all parties. If
multiple issues are at stake then these issues may need to be
negotiated simultaneously and the bids made may vary on each of
these issues.

One of the complicating factors in a computational approach to
negotiation is that the value associated with a bundle of multiple
issues may not be a simple function of the value associated with
individual issues. In [10], Raiffa explains how to mathematically
model a preference profile of an agent that can be used during the
negotiation to determine the utility of exchanged bids. The
representation of an agent’s preferences by mathematical
functions, called utility functions, which map values of issues to
the utility of bids, i.e. bundles of issue values, allows the
development of software support for negotiations. In negotiation
domains with issue dependencies which influence the overall
utility of a bid, however, the utility space is non-linear in the
issues (cf. [1]). In [7], Klein et al. show that in that case there is
no efficient method to compute alternative bids during a
negotiation, even if the agent tries to guess the opponent’s profile.

Some proposals have been made to reduce the computational
complexity of multi-issue negotiation with issue dependencies.
For example, [7] propose the use of a mediator which may be
more computationally efficient when both agents in a negotiation
reveal their preferences to this mediator. An alternative,
interesting option is to investigate the complexity of the utility
space itself and try to eliminate the dependencies between issues.
In [5], an approximation method is proposed to eliminate issue
dependencies, see Figure 1. This method exploits some structural
features of preference profiles of agents to approximate the
original profile. The resulting approximated utility function
without dependencies can be handled by negotiation algorithms
that can efficiently deal with independent multiple issues and have
a polynomial time complexity (see e.g. [6]).

It is clear that the method proposed in [5] removes the
computational intractability of multi-issue negotiation with issue
dependencies by transforming the original profile input to one that
can be linearly decomposed. Tested over numerous random spaces
of interdependent issues, the negotiation outcome using this
approximation is reasonably good, see [5]. The negotiation
outcome, however, does not only depend on the preference profile
but also on the process of negotiation itself. It is to be expected
that the risk of obtaining a bad outcome due to the use of an
approximation cannot be avoided completely even if the
approximation is quite good.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

�����������	

������
�

����

��������	�������	�����
�����������	�����

�����	��	�
�	�����

Figure 1. Multi-issue negotiation with issue dependencies
using approximated utility spaces

In this paper, we analyze the risk of a bad negotiation outcome
when using an approximation of the agent’s preference profile. It
turns out that in some domains this risk may still be unreasonably
high. The results show that using the approximated space a bid
might be proposed that in the original utility space would have a
too low utility. The risk of such an erroneous bid can be quite
high and, as a consequence, the risk of obtaining a bad negotiation
outcome is significant. In order to control this risk, we therefore
also have to look at the process of negotiation. More precisely, we
investigate a way to incorporate a method to control the risk of an
erroneous bid in the negotiation algorithm itself. This paper
presents a checking procedure to control the risk of erroneous
bids which can be incorporated in any negotiation algorithm.

Of course, this checking procedure introduces some additional
computational costs. A procedure that completely eliminates the
risk of erroneous bids, moreover, would make the negotiation
process intractable again. One of the main contributions of this
paper is that it shows that a trade-off can be made between
computational efficiency and approximation accuracy, which is
directly related to the negotiation outcome. The parameters of the
checking procedure allow the tuning of a negotiation algorithm to
increase either the computational efficiency or decrease the risk of
erroneous bids. Derived from experimental results, we propose
specific values for these parameters that ensure a reasonable
balance between computational costs and outcome deviation (in
terms of utility) in many domains. Finally, we present
experimental results that show that the approach of adding a
checking procedure to the negotiation algorithm is scalable and
allows an agent to negotiate about high-dimensional utility spaces.

The paper is organized as follows. First, some of the basic notions
to model preference profiles that characterize our approach to
multi-issue negotiation are introduced. In section 3 a brief
overview of the approximation method for eliminating issue
dependencies is presented. Then in section 4 the outcome
deviation that results from using an approximated space as input
for a negotiation algorithm is analyzed and the need for an
additional method to prevent erroneous bids is argued for. In
section 5, the negotiation algorithm is adapted by incorporating a
checking procedure. Successively, the performance of this adapted
negotiation algorithm is investigated. Experimental results are
presented that confirm that a significant improvement can be
obtained by incorporating the checking procedure. The impact of
the checking procedure is analyzed in Section 6. The impact of on
the computational tractability of the negotiation algorithm is
investigated in Section 7. Section 6 shows that by varying certain
parameters of the method a trade-off can be made between
outcome deviation, caused by erroneous bids, and computational
costs. Furthermore, specific values for these parameters of the
checking procedure are proposed to obtain a good balance.
Finally, section 9 concludes the paper.

2. MODELING ISSUE DEPENDENCIES
The overall utility of a set of independent issues can be computed
as a weighted sum of the values of each of the issues by
associating an evaluation function with each issue variable (see
e.g. [6, 10]). The properties of the utility function are derived
from these evaluation functions which map issue values on a
closed interval [0; 1]. This model, represented in equation (1), can
be used for issue values that are numeric (e.g. price, time) as well
as for issue values that are discrete (e.g. colors, brands).

�
=

=
n

i
iiin xevwxxu

1
1)(),...,((1)

Equation (1) cannot be used, however, for modeling dependencies
between issues and equation (1) needs to be generalized to
equation (2) (cf. also [1]). Of course, the value of an issue does
not need to depend on all other issues and subsets of dependent
issues will have to be considered to model individual examples.

�
=

=
n

i
niin xxevwxxu

1
11),...,(),...,((2)

The representation of a utility space with non-linear issue
dependencies as in equation (2) is similar to the model proposed
in [7]. The main difference is that instead of considering only
binary issue values, we allow multi-valued, discrete, as well as
continuous issue ranges.

The complexity of a utility function determines the computational
complexity of the negotiation process. One of the main problems
in dependent multi-issue negotiation is the computational
complexity associated with searching for appropriate bids in the
corresponding utility spaces. In case a utility function of multiple
issues is non-linear in these issues, i.e. there are issue
dependencies, finding a particular bid in the utility space is
intractable.

3. APPROXIMATING UTILITY SPACES
To experimentally determine the need for, and later, to assess the
effectiveness of including our checking procedure in negotiations
in which approximated utility spaces are used, we need a
functioning approximation method and an implemented
negotiation strategy.

This section provides a brief overview of the WAID-
approximation technique of [5]. The WAID-method transforms a
utility space with issue dependencies into a space without such
dependencies to meet the input requirements of efficient multi-
issue negotiation algorithms, see Figure 1. The WAID-method is
explained only to the detail necessary to understand the problem
of approximations and in order to understand that using a checker
in the negotiation algorithm would diminish the risk of erroneous
bids. More details can be found in [5].

The main idea of the WAID-method is that structural features of
the negotiation domain and utility functions with issue
dependencies can be exploited to approximate a preference profile
and eliminate issue dependencies. It also seems that humans tend
to simplify the structure of their preferences and prefer to
negotiate one issue at a time [13].

Formally, the objective of the WAID-method is to transform a
utility space u(x1,…,xn) based on dependent issues as represented
by equation (2) to a utility space u’(x1,…,xn) without such
dependencies that can be represented by equation (1). The

transformation consists of approximating each of the evaluation
functions evi(x1,…,xn) by a function ev’i(xi) in which the
influence of the values of other issues xj, j�i, on the associated
value evi(x1,…,xn) have been eliminated.

The heart of the WAID-method is a weighted averaging
technique. The dedication of WAID to utility spaces for
negotiation shows in it’s exploitation of some general and, if
available, additional domain specific insight into negotiation.
These insights concern the relative importance of bids and what
utility can reasonably be expected of an outcome of a negotiation.

The WAID-method consists of 4 steps. The first step is to estimate
an expected outcome utility, called m-point. The m-point later
serves as a focus point for the approximation. Secondly, an
evaluation of the type of approximation that best fits the case at
hand is made. This second step is not elaborated here. Third, the
actual approximation is computed. In the last step the difference
of the original and approximated utility space is determined.
Depending on this analysis, negotiators can decide to use the
approximation or not in their negotiation algorithm.

Estimate an Expected Outcome Utility

In the first step, the expected utility of the outcome is estimated.
This estimate is called the m-point and is used to define a region
in the utility space where the actual outcome is expected to be.
The m-point is used to feed information about the final goal of
negotiation, i.e., the utility of the outcome, into the approximation
technique used to transform the utility space.

For multi-issue negotiation in general we may assume that the
expected outcome of the negotiation is located somewhere in the
open utility interval (0.5; 1), say 0.75. Lower than 0.5 would not
be accepted by the agent, and 1 is the maximal utility. The
approximation should be most accurate in that interval, and
especially around the m-point, because those points are most
important for getting a good negotiation outcome. An experienced
agent or one with additional knowledge about the domain can
narrow the interval of the m-point.

Choice of Weighting Function

The next step is to define a weighting function �. An agent may
be more or less uncertain, about its estimate of the m-point and
therefore, also of the corresponding interval. The weighting
function � is chosen such that the approximation is most accurate
in the region(s) of the utility space corresponding to that interval.

Computing the Approximation

The third step is to calculate an approximation of the original
utility space based on non-linear issue dependencies using the m-
point and the weighting function as defined in the previous steps.
The result of this step is a utility space that can be defined as a
weighted sum of evaluations of independent issues, i.e., of the
form of equation (1). The WAID-method multiplies each
evaluation value with its corresponding weight and then averages
the resulting space by integration. Additionally the weighting is
normalized over the interval of integration, see equation (3). V
denotes the range of integration and is a volume of n-1
dimensionality build from the issue dimensions {x1,x2,…,xi-

1,xi+1,…,xn}. Of course, not all issues have to depend on all others
and some issue variables may be dropped from the equation in
that case. The approximation technique can be applied

sequentially for each issue variable which involves dependencies
between issues.

()
() ()

�

�
=′

V

n

V

nin

ii

dVxx

dVxxevxxx

xve

),...,(

,..,,..,,

1

121

ψ

ψ
(3)

The WIAD method allows arbitrary utility spaces with issue
dependencies to be approximated by weighted approximation. The
approximation of the utility space modeling an agent’s may be
more or less differ from the original utility space, but always will
introduce errors in the associated utility of a bid. As a result, in a
negotiation, bids selected by using the approximated space may
deviate from the actual utility in the original space. Such bids in
turn may become a final deal. If the deviation is quite big,
however, the outcome may not be acceptable in the end to the
agent. But how big is that risk? To understand the risks,
experimentation is necessary. To be able to experiment,
comparable negotiations must be performed with the original and
with the approximated utility space. To be comparable, a
particular negotiation strategy must be applied in both cases. The
next section discusses such a strategy and presents the results of
its application in a thorough experiment to understand the risks of
using an approximated space. Since the risk is real, we then
investigate in Section 5 and after whether a controlled trade-off
between computational complexity and accuracy of the
negotiation strategy can be incorporated into a negotiation
algorithm.

Negotiation Algorithm Used by Agent B
Initialization: set initial utility to maximum of U’B.

1 Evaluate bid bidA(i) received from opponent A:
Accept and end negotiation if UB(bidA

 (i))>U B(bidB(i))

2
Compute concession and target utility:
Concession � = � *(1-� / UB(bidB

 (i)))*(U B(bidA
 (i))-UB(bidB(i)))

Target Utility � = UB(bidB
 (i))+ �

3 Determine a next bid:
Find a bid bidB(i+1) such that U’B(bidB

 (i+1)) = �

4 Send bid to opponent.

Table 2. ABMP negotiation algorithm for approximations

4. NEGOTIATION ALGORITHM
The negotiation algorithm that is used plays a key role in
obtaining a good negotiation outcome. The approximation of a
preference profile allows an agent to more efficiently compute
good bids during negotiation, but does not in itself provide a
guarantee that against arbitrary opponents a good negotiation
outcome will be reached. More insight is required to assess the
effects of using approximations of real preference profiles.

As a first step, therefore, we analyze the effects of using
approximated utility spaces as substitutes for the original spaces.
To perform such an analysis, we use a negotiation algorithm that
corresponds to the ABMP-strategy of [6], but other strategies
could have been used as well. The algorithm is outlined in Table
1. It is assumed that negotiation proceeds between agents A and
B. In Table 1, the perspective of agent B, that uses the

approximated space U’B, is provided. The original space of agent
B is indicated by UB.

The negotiation strategy can be outlined in the following way. In
step 1, any previous bid of the opponent A is evaluated and
accepted if it exceeds the bid of agent B in the last round. If an
agreement cannot yet be reached, the ABMP-strategy determines
a next bid to offer in two steps: the strategy first (step 2)
determines the target utility for the next bid based on a
computation of a concession step, and then (step 3) determines a
bid that has that target utility. Step 3 of the strategy is very
efficient for utility spaces without issue dependencies. It is in this
step that the approximated utility space U’B has to be used. Note
that the approximated utility space U’ is only used in the
initialization and in step 3 since its purpose is to speed up the
negotiation. In the other steps the computations that involve the
original space are computationally cheap. In step 4, finally, the
computed bid is sent to the opponent for evaluation.

The ABMP negotiation algorithm is used to assess the outcome
deviation that may occur when an approximated space is used
instead of the original space during a negotiation. In the
experiments that were performed agent A also uses a variant of
the ABMP strategy but does not approximate any issue
dependencies in its utility space. Instead it uses exhaustive search
through its utility space in step 3 to determine a next bid given a
suitable discretization of this space (i.e. using small enough
steps).To compare outcomes for utility spaces of medium size, the
same negotiation is performed again with agent B using
exhaustive search in step 3. Of course, exhaustive search can only
be used for utility spaces of medium size due to exponential time
costs and memory limitations. It is, however, imperative to use it
if we want to calculate outcome deviation. In the experiments,
spaces with up to a number of 5 issues and a number of
discretization steps of at most 25 have been used (see also Section
6 and 7). Agent A always begins the negotiation by proposing an
initial bid.

To analyze the impact of the weighted averaging method on the
negotiation outcome a probabilistic experimental setup has been
used. The negotiation outcomes obtained by using the
approximation method are compared with those obtained using
the original utility space. The experimental results are obtained
from utility spaces modeled by multivariate quadratic
polynomials. These polynomials may have multiplicative terms
xixj which represent issues. It is well-known that solving such
quadratic programming problems is NP-hard, see e.g. [3]. In the
experiments utility spaces have been randomly generated. The m-
point parameter that has to be fixed in order to apply the WAID-
method is determined for each utility space by a Monte-Carlo
method.

The main result of the experiments performed shows that the
distribution of negotiation outcome deviations is similar to a
normal distribution with a mean value close to zero. Figure 3
presents the distribution of outcome deviations for a negotiation
about 4 issues. The deviation is a result of using the approximated
space in the negotiation strategy instead of performing an
exhaustive search to find a good bid in the original space. As can
be seen in figure 3, the bell-shaped distribution (average = -0.02;
standard deviation = 0.09) means that the negotiation over the
approximated space tends to produce the same result as the
negotiation over the original space using exhaustive search. This

demonstrates that one may expect to obtain reasonable outcomes
when negotiating with approximated spaces instead of non-
approximated spaces.

Even though this result shows that approximating the original
utility space to remove issue dependencies may result in quite
reasonable outcomes compared to those obtained otherwise, it
also shows that there is quite a high chance of deviating
significantly. In fact, for the 4 issue case figure 3 shows that there
is a quite high probability of obtaining outcomes that are worse by
up to 33%. Additionally, the curve is not really symmetrical and
shows a tendency towards negative deviations. As an illustration,
the probability of obtaining a result that is worse than 10% equals
0.196. It is clear that in many domains such a high risk will be
unacceptable.

The main conclusion thus is that additional measures need to be
taken to reduce this risk. The benefit of using approximated
spaces is clear: issues can be negotiated independently which
makes the negotiation tractable. But a balance has to be found
between the computational costs and the risk of significantly
deviating negotiation outcomes. Ideally, we would like to be able
to make a tradeoff between costs and outcome deviation to obtain
the right balance and control the risk of bad outcomes.

Outcome distribution

0

10

20

30

40

50

60

-0
.20

-0
.16

-0
.11

-0
.07

-0
.02 0.0

2
0.0

7
0.1

1
0.1

5
0.2

0

Difference in outcome

P
er

ce
n

ta
g

e
o

f
ex

p
er

im
en

ts

Figure 3 – Distribution of negotiation outcome deviation for
approximated spaces vs. original spaces for 4 issues (k=15)

5. PROCEDURE FOR CONTROLLING
NEGOTIATION OUTCOME DEVIATION
In this section we propose a parameterized procedure that can be
used to control the probability of large outcome deviations. The
parameters of this procedure can moreover be used to influence
the tradeoff between the accuracy of the negotiation outcome and
the computational efficiency of the negotiation strategy. In the
next sections, experimental results are presented that allow the
tuning of these parameters.

In the negotiation algorithm the bid selection procedure is the
source of the deviation of the negotiation outcome. In particular,
in step 3 of the algorithm in Table 2 the approximated space is
used instead of the original space which gives rise to outcome
deviations. To avoid approximation errors that are too big, we
propose to add a checking procedure in this step which compares

the utility of a bid in the approximated space with the utility in the
original space.

The absolute error as a result of the approximation can be
computed simply by subtracting the utility in the approximated
space from the utility in the original space as in equation (4).

() () ()nnn xxxuxxxuxxx ,...,,,...,,,...,, 212121 ′−=∆ (4)

This equation gives the error associated with the utility of any bid
that is proposed during the negotiation. In order to get as close as
possible to a negotiation outcome that would result if the original
space would have been used, one approach is to minimize this
error for each bid that is offered to the opponent during the
negotiation.

The proposed procedure can be found in Table 4. The step to
determine a next bid is refined and an iterative procedure is
incorporated to check whether the difference in utility stays below
a certain threshold � . As before, in step 3a a bid is computed that
matches a certain target utility. In step 3b, however, now a check
has been incorporated that checks whether ∆(bid)< � , that is,
whether the absolute approximation error stays below a threshold

� . This additional check itself is computationally cheap, since it
involves only a simple calculation using equation (4). If ∆(bid) >

� , a bid bid’, which utility differs minimally from the previously
computed bid, is searched for, until ∆(bid’)< � . This iterative
procedure for finding an appropriate bid is called � -checking.

The additional check is used to avoid the risk of proposing bids
with (very) low utilities in the original space that have (much)
higher utilities in the approximated space. The concessions made
in step 3 thus are controlled by a parameter � to ensure that they
are not too big.

Negotiation Algorithm Used by Agent B
Initialization: set initial utility to maximum of U’B.

1 Evaluate bid bidA(i) received from opponent A:
Accept and end negotiation if UB(bidA

 (i))>U B(bidB(i))

2
Compute concession and target utility:
Concession � = � *(1-� / UB(bidB

 (i)))*(U B(bidA
 (i))-UB(bidB(i)))

Target Utility � = UB(bidB
 (i))+ �

3 Determine a next bid:

3a Find a bid with target utility
Find a bid bidB(i+1) such that U’B(bidB

 (i+1)) ≈ �

3b Compare bid utility in approximated and original space
Check whether |UB(bidB

 (i+1)) – U’B(bidB
 (i+1))|< �

3c
If not, find next candidate for the bid and repeat step (3b):
Find next candidate bid bidB(i+1) such that U’(bidB(i+1)) ≈ �
and utility with previous bid only differs minimally.

4 Else, send bid to opponent.

Table 4. Negotiation algorithm with δδδδ-checking procedure

A few remarks about implementing step 3c are in order. Currently,
we use a simple approach and a discretization of the approximated
evaluation functions is used. Using these discretized evaluation
functions, a distance between the target evaluation value and each
issue value can be calculated as follows:

() ()() () ()iiiii xtevxevxtevxevd −=, (5)

The impact of adding the �-checking procedure to the negotiation
algorithm on the outcome distribution is significant, as is shown
by figure 5. The experimental setup is exactly the same as that for
figure 3 but the negotiation algorithm used by agent B now
includes the checking procedure. It shows the outcome
distribution for a threshold of �=0.01.

Clearly, the outcome distribution curve in figure 5 is more
symmetrical than in figure 3 and more clustered around the mean;
it has a mean=-0.00016 and a standard deviation of 0.045. A more
detailed analysis of the relation between � and the outcome
deviation is presented in the next section.

The �-checking procedure introduces additional search again into
the computation of a bid. Various heuristics could be applied
again, however, to minimize the amount of search. For example, a
limit on the number of iterations could be introduced for spaces of
high dimensionality to ensure a bid would be found within a
reasonable amount of time. (The probability of finding an
appropriate bid is high in high-dimensional spaces close to the m-
point.) The relation of the value of the �-parameter and the
computational cost is analyzed in more detail using experimental
results in Section 7.

Outcome distribution

0

10

20

30

40

50

60

-0
.32

9

-0
.29

0

-0
.25

2

-0
.21

3

-0
.17

4

-0
.13

5

-0
.09

6

-0
.05

7

-0
.01

8
0.0

21
0.0

60
0.0

99
0.1

37
0.1

76
0.2

15
0.2

54
0.2

93
Mor

e

Difference in outcome

P
er

ce
n

ta
g

e
o

f
ex

p
er

im
en

ts

Figure 5 – Outcome distribution with checking procedure for
approximated spaces vs. original spaces for 4 issues (k=15)

6. IMPACT ON OUTCOME DEVIATION
In this section, we present experimental results that show how the
value of the � -parameter in the checking procedure relates to the
distribution of the outcome deviation. These results show that
there is a direct relation between the size of � and outcome
distribution.

Additionally, we investigated the influence of the discretization
per issue under consideration on the outcome distribution. In the
experiments we performed, the possible values for each issue were
reduced by discretizing the space to 10, 15, 20, and 25 values. In
the results below, the discretization parameter is indicated by k.
Maybe somewhat surprisingly the different values for k used in
the experiments do not have such a big impact on the outcome
distribution.

In order to assess the impact of adding the checking procedure to
the negotiation algorithm, we performed experiments with 3, 4, 5,
and 6 issues. Finally, for the δ-parameter of the checking
procedure we used the values 0.001, 0.005, 0.01, 0.02, 0.03, and
0.05. In total, we performed over 44.000 experiments in which the

outcomes were compared with the original space: 12.000 for 3
issues, 12.000 for 4 issues, 12.000 for 5 issues, and 6.000 for 6
issues. Comparisons of negotiation outcome for spaces of higher
dimensionality were not feasible.

Outcome distribution

0

5

10

15

20

25

30

35

40

45

-0
.20

-0
.16

-0
.11

-0
.07

-0
.02 0.0

2
0.0

7
0.1

1
0.1

5
0.2

0
0.2

4
Mor

e

Difference in outcome

P
er

ce
n

ta
g

e
o

f
ex

p
er

im
en

ts

10-0.01

15-0.01

20-0.01

25-0.01

Figure 6. The distribution of outcome deviations for 5 issues
and δδδδ = 0.01. The various lines relate to different k-values.

Outcome distribution

0

5

10

15

20

25

30

35

40

45

-0
.20

-0
.16

-0
.11

-0
.07

-0
.02 0.

02
0.

07
0.

11
0.

15
0.

20
0.

24
M

or
e

Difference in outcome

P
er

ce
n

ta
ge

 o
f

ex
p

er
im

en
ts

10-0.02

15-0.02

20-0.02

25-0.02

Figure 7. The distribution of outcome deviations for 5 issues
and δδδδ = 0.02. The various lines relate to different k-values.

Outcome distribution

0

5

10

15

20

25

30

35

40

45

-0
.20

-0
.16

-0
.11

-0
.07

-0
.02 0.

02
0.

07
0.

11
0.

15
0.

20
0.

24
M

or
e

Difference in outcome

P
er

ce
n

ta
g

e
o

f
ex

p
er

im
en

ts

10-0.03

15-0.03

20-0.03

25-0.03

Figure 8. The distribution of outcome deviations for 5 issues
and δδδδ = 0.03. The various lines refer to different k-values.

The higher the number of issues n and the higher the
discretization parameter k, the longer it takes to do the exhaustive
search (it takes kn steps). Also, for spaces with more that 5 issues
and high discretization factors, the memory requirements become
unmanageable. As a result, the number of experiments with 6

issues was lower than those with 3, 4 and 5 issues. To investigate
the scalability of the proposed approach, we ran 500 experiments
with 10 issues for δ=0.02 and each k-value, so 2000 experiments
in total. The results for 10 and 50 issues are presented in Section
8.

The experimental results relating the value of δ to the outcome
distribution are depicted in Figures 6 to 8. We do not show all
results but only those for δ-values of 0.01, 0.02, and 0.03 which
most clearly demonstrate the impact of different values on the
distribution and also define the turning points where decreasing
this parameter further does not have a very big impact anymore
(see also Figure 12) and decreasing it results in significantly
worse outcomes. In Figures 6 to 8, on the x-axis the outcome
difference is set out. The outcome deviation may be bigger than
the value of the δ-parameter since errors may accumulate over
multiple rounds in the negotiation. The y-axis refers to the
percentage of experiments having particular outcome differences.
The different lines correspond with different values of the
discretization parameter k. For each combination of a particular
number of issues, δ-value, and k-value, 500 experiments were run.

In general, as is to be expected since δ is supposed to control the
error introduced by the approximation, the experimental findings
show that smaller values for δ result in negotiation outcomes that
are closer to the outcomes in the original space. A positive value
with respect to difference in outcome means that the negotiation
outcome was improved compared to the outcome obtained when
using the original space.

The findings illustrated in Figures 6 to 8 are as follows. For δ =
0.01 (see Figure 6) the standard deviation ranges from 0,0327 to
0,0442, and the average outcome difference ranges from -0,0066
to 0,0015. For δ = 0.02 (see Figure 7) the standard deviation
ranges from 0.0350 to 0.05806 and the average outcome
difference ranges from -0.0142 to 0.0010. Finally, for δ = 0.03
(see Figure 8) the standard deviation ranges from 0,0499 to
0,0717, and the average outcome difference ranges from -0,0199
to -0,0151.

7. IMPACT ON COMPUTATIONAL COST
Including the checking procedure implies that the bid
determination part might need iterations to find an appropriate
bid. The previous section shows that smaller δ–values lead to
better outcome deviations, and it stands to reason that the smaller
the value, the higher the number of iterations needed. To get more
insights into the frequency with which the need for iterations
causes high computational costs, a series of experiments have
been performed. The algorithm was tested for 4, 5, 6, and 10
issues, with the discretization value k varying over {10, 15, 20,
25} and δ varying over {0.005, 0.001, 0.03, 0.02, 0.01}. Each test
was performed 500 times with randomly generated original utility
spaces.

Figures 9, 10, and 11 show the results for 5 issues, the results for
other values are not shown, since they do not provide additional
insights. In these pictures, on the x-axis the logarithmic costs are
set out. The y-axis refers to the frequency with which an
experiment had such a logarithmic cost, with respect to the total
number of experiments. The different lines refer to different k-

values. In Figure 13, Section 8 the same analysis is presented for
10 issues with δ = 0.02.

Computational costs

0

10

20

30

40

50

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

9.
0

10
.0

M
or

e

Logarithmic computational cost

P
er

ce
n

ta
g

e
o

f
ex

p
er

im
en

ts

10-0.01

15-0.01

20-0.01

25-0.01

Figure 9. Computational costs for 5 issues and δδδδ = 0.01. The
different lines refer to different k-values.

Computational costs

0

10

20

30

40

50

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

9.
0

10
.0

M
or

e

Logarithmic computational cost

P
er

ce
n

ta
g

e
o

f
ex

p
er

im
en

ts

10-0.02

15-0.02

20-0.02

25-0.02

Figure 10. Computational costs for 5 issues and δδδδ = 0.02. The
different lines refer to different k-values.

Computational costs

0

10

20

30

40

50

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

9.
0

10
.0

M
or

e

Logarithmic computational cost

P
er

ce
n

ta
g

e
o

f
ex

p
er

im
en

ts

10-0.03

15-0.03

20-0.03

25-0.03

Figure 11. Computational costs for 5 issues and δδδδ = 0.03. The
different lines refer to different k-values.

The results clearly show the expected increase of high
computational costs for higher δ–values: higher percentages for
higher computational values. However, when looking at the areas
underneath the lines, another interesting observation can be made.
In Figure 9, for δ = 0.01, the bulk of the area underneath the lines
ends approximately at ln(x) = 6. In Figure 10, for δ = 0.02 the
bulk ends at ln(x) = 4, and in Figure 11, for δ = 0.03 at ln(x) = 2.
Evidently, the number of iterations needed is bounded.

8. TRADE OFF
Combining the results of the outcome analysis of Section 6 and
the computational cost analysis of Section 7 shows that the need
for a small outcome difference has to be balanced against
computational costs. In this a setting for the k, and δ parameters is
chosen that balances accuracy against efficiency. The approach
with these parameter settings is shown to be still efficient for a
large numbers of issues.

Sections 6 and 7 show that accuracy and computational cost
increase as δ decreases. To find a good balance between accuracy
and cost, an integrated analysis has been performed for the usual
combination of parameters: the number of issues ranging over {4,
5, 6, 10}, k ranging over {10, 15, 20, 25} and δ ranging over
{0.001, 0.005, 0.01, 0.02, 0.03, 0.05, 1}. Note that δ=1
corresponds to a setting in all checks are successful and, therefore,
no iterations are necessary.

Computational costs vs. outcome deviation trade-off

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Computational costs

O
u

tc
o

m
e

d
ev

ia
ti

o
n

δ=0.02δ=0.05 δ=0.03δ=1.00

δ=0.01 δ=0.005 δ=0.001

Figure 12. Computational cost and outcome deviation for 5
issues and k=10

Figure 12 presents the trade-off between negotiation outcome
accuracy and the computational costs. Each point on the solid line
of the chart represents the average of a series of experiments
where δ varies over {0.001, 0.005, 0.01, 0.02, 0.03, 0.05, 1}. The
dashed lines represent the spread of the negotiation outcome
deviation. The top line is an average + standard deviation and
bottom line is the average - standard deviation.

Computational costs

0

10

20

30

40

50

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

9.
0

10
.0

M
or

e

Logarithmic computational cost

P
er

ce
n

ta
g

e
o

f
ex

p
er

im
en

ts

10-0.02

15-0.02

20-0.02

25-0.02

Figure 13. Computational costs for 10 issues and δδδδ = 0.02. The
different lines refer to different k-values

The results show that a good compromise is a δ–value of 0.02: for
δ < 0.02 the costs increase, for δ > 0.02 the outcome
approximation gets worse. Furthermore, the standard deviation
drops off at this value, but does not decrease further for even
smaller δ-values.

To analyse the scalability of the modified negotiation algorithm
we performed a series of negotiations with 10-issues.
Unfortunately, it is no longer possible to use exhaustive search as
a benchmark for the negotiation outcome efficiency due to the
extremely large utility space (1110 to 2610). Figure 13 shows
computational cost for 10-issues negotiation for δ = 0.02 and
various k-values. The figure suggests that the most of the
randomly generated utility spaces remain tractable for the
negotiation algorithm with the δ-checking procedure.

9. CONCLUSION
The paper proposes a δ-checking procedure that handles the short
comings of multi-issue negotiation systems that base their
operations on approximations of utility spaces with issue
dependencies. In case the issues are interdependent, no efficient
method exists to compute bids during a negotiation, even if the
agent tries to guess the profile of the opponent [7]. To mitigate
this problem, either mediators may be used, or the utility space
corresponding to the interdependent issues can be approximated
so that issues are no longer interdependent. The WAID-method
presented in [5] is such an approximation method.

However, using an approximation always comes with a risk. In the
case of multi-issue negotiation, the risk is that a bid is proposed
(and accepted by the other party) that seems to have a good utility,
but in fact, in the original utility space has a much lower utility.
The δ-checking procedure proposed in this paper offers a way to
avoid this risk at the cost of additional computations.
Experimental results show, however, that a tradeoff can be made
between the accuracy of the bids and the computational overhead
this entails. If the δ-parameter in the checking procedure is set to
0.02, the utility of the bids made is at most 0.02 away from the
real utility, on a scale from 0 to 1. Moreover, using this value for
the δ-parameter, the negotiation algorithm including the δ-
checking procedure can handle high-dimensional utility spaces.
As experimental results show, the negotiation outcome obtained
in this manner only slightly deviates from the outcome obtained
without approximation.

To conclude, in this paper an effective balance is found of
accuracy versus efficiency for multi-issue negotiation with issue
dependencies in which the dependencies are removed by
approximation.

10. REFERENCES
[1] Bar-Yam, Y., 1997. Dynamics of complex systems, Addison-

Wesley (Reading).

[2] Davies, R., and Smith, R.G., 1983, Negotiation as a
metaphor for distributed problem solving, in Artificial
Intelligence, 20, 1, pp. 63 – 109.

[3] S. S. Fatima, M. Wooldridge and N. R. Jennings, 2006, On
efficient procedures for multi-issue negotiation”, in: Proc.
8th Int Workshop on Agent-Mediated Electronic Commerce,
Hakodate, Japan, 71-84.

[4] Favati, P., Lotti, G., Romani, F., 1994. Theoretical and
Practical Efficiency Measures for Symmetric Interpolatory
Quadrature Fromulas, in BIT Numerical Mathematics,
Volume 34(4).

[5] Hindriks, K., Jonker, C.M., Tykhonov, D., 2006, Eliminating
Interdependencies between Issues for Multi-Issue
Negotiation, In: Cooperative Information Agents X, Lecture
Notes in Computer Science, Volume 4149, pp. 301-316.

[6] Jonker, C.M., and Treur, J., 2001, An Agent Architecture for
Multi-Attribute Negotiation, in Proceedings of the 17th
International Joint Conference on AI, IJCAI'01, ed-ited by B.
Nebel, pp. 1195 – 1201.

[7] Klein, M., Faratin, P., Sayama, H., and Bar-Yam, Y., 2002,
Negotiating Complex Contracts, in Autonomous Agents and
Multi-Agent Systems, AAAI Press (Bologna).

[8] Lai, G., Li, C., Sycara, K., and Giampapa, J., 2004,
Literature Review on Multi-attribute Negotiations, Technical
Report CMU-RI-TR-04-66, Carnegie Mellon University,
Robotics Institute.

[9] Pardalos, P.M., and Vavasis, S.A, 1991, Quadratic Pro-
gramming with One Negative Eigenvalue Is NP-Hard, in:
Journal of Global Optimization, 1:15 – 22.

[10] Raiffa, H., 1996, Lectures on Negotiation Analysis, PON
Books, Program on Negotiation at Harvard Law School, 513
Pound Hall, Harvard Law School (Cambridge).

[11] Robu, V., Somefun, D.J.A., La Poutre, J.A., 2005, Complex
Multi-Issue Negotiations Using Utility Graphs, in Pro-
ceedings of the Fourth International Joint Conference on
Autonomous Agents and Multi-Agent Systems
(AAMAS’05), Utrecht, pp. 280-287.

[12] Rosenschein, J.S., and Zlotkin, G., 1994, Rules of Encoun-
ter: Designing Conventions for Automated Negotiation
Among Computers, MIT Press.

[13] Thompson, Leigh, 2000, The Mind and Heart of the Nego-
tiator, Prentice-Hall.

[14] Wang, I-J., Chong, E. K. P., and Kulkarni, S. R., 1996,
Weighted Averaging and Stochastic Approximation, in
Proceeding of the 35th Conference on Decision and Control,
Kobe, Japan, December 1996, pp. 1071-1076.

