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ABSTRACT  
Searching for good bids in a utility space based on multiple, 
dependent issues in general is intractable. Tractable algorithms do 
exist for independent issue sets, so one idea is to eliminate the 
dependencies by approximating the more complex utility space 
with issue dependencies. It has been shown that an approximation 
may give reasonable results when some structural features of the 
negotiation domain and preference profile are exploited. Of 
course, there is a risk that approximation results in significantly 
different negotiation outcomes. In this paper, we present a 
checking procedure to mitigate this risk and show that by tuning 
the parameters of this procedure the outcome deviation can be 
controlled. These parameters allow for a trade-off between 
computational cost and accuracy of negotiation outcome. Based 
on experimental results we propose specific values for the 
parameters of the checking procedure that provide a good balance 
between computational costs and accuracy. Additionally, we show 
how different values of these parameters influence the 
computational costs of negotiating multiple issues with 
dependencies. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence 
--- intelligent agents, multi-agent systems. 

General Terms 
Algorithms, Performance, Economics, Experimentation, Theory. 

Keywords 
Efficient multi-issue negotiation, issue dependencies, tunable 
algorithm, approximating utility spaces. 

1. INTRODUCTION 
Negotiation is a process by which a joint decision is made by two 
or more parties (cf. [10]). The parties or agents first express 
conflicting demands and then move towards agreement by a 
process of concession making. During the negotiation both agents 
make various offers, called bids, to each other that more or less 

match with their own preferences. The negotiation outcome is 
either a failure, or a deal, i.e., a bid accepted by all parties. If 
multiple issues are at stake then these issues may need to be 
negotiated simultaneously and the bids made may vary on each of 
these issues. 

One of the complicating factors in a computational approach to 
negotiation is that the value associated with a bundle of multiple 
issues may not be a simple function of the value associated with 
individual issues. In [10], Raiffa explains how to mathematically 
model a preference profile of an agent that can be used during the 
negotiation to determine the utility of exchanged bids. The 
representation of an agent’s preferences by mathematical 
functions, called utility functions, which map values of issues to 
the utility of bids, i.e. bundles of issue values, allows the 
development of software support for negotiations. In negotiation 
domains with issue dependencies which influence the overall 
utility of a bid, however, the utility space is non-linear in the 
issues (cf. [1]). In [7], Klein et al. show that in that case there is 
no efficient method to compute alternative bids during a 
negotiation, even if the agent tries to guess the opponent’s profile. 

Some proposals have been made to reduce the computational 
complexity of multi-issue negotiation with issue dependencies. 
For example, [7] propose the use of a mediator which may be 
more computationally efficient when both agents in a negotiation 
reveal their preferences to this mediator. An alternative, 
interesting option is to investigate the complexity of the utility 
space itself and try to eliminate the dependencies between issues. 
In [5], an approximation method is proposed to eliminate issue 
dependencies, see Figure 1. This method exploits some structural 
features of preference profiles of agents to approximate the 
original profile. The resulting approximated utility function 
without dependencies can be handled by negotiation algorithms 
that can efficiently deal with independent multiple issues and have 
a polynomial time complexity (see e.g. [6]). 

It is clear that the method proposed in [5] removes the 
computational intractability of multi-issue negotiation with issue 
dependencies by transforming the original profile input to one that 
can be linearly decomposed. Tested over numerous random spaces 
of interdependent issues, the negotiation outcome using this 
approximation is reasonably good, see [5]. The negotiation 
outcome, however, does not only depend on the preference profile 
but also on the process of negotiation itself. It is to be expected 
that the risk of obtaining a bad outcome due to the use of an 
approximation cannot be avoided completely even if the 
approximation is quite good. 
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Figure 1. Multi-issue negotiation with issue dependencies 
using approximated utility spaces 

In this paper, we analyze the risk of a bad negotiation outcome 
when using an approximation of the agent’s preference profile. It 
turns out that in some domains this risk may still be unreasonably 
high. The results show that using the approximated space a bid 
might be proposed that in the original utility space would have a 
too low utility. The risk of such an erroneous bid can be quite 
high and, as a consequence, the risk of obtaining a bad negotiation 
outcome is significant. In order to control this risk, we therefore 
also have to look at the process of negotiation. More precisely, we 
investigate a way to incorporate a method to control the risk of an 
erroneous bid in the negotiation algorithm itself. This paper 
presents a checking procedure to control the risk of erroneous 
bids which can be incorporated in any negotiation algorithm. 

Of course, this checking procedure introduces some additional 
computational costs. A procedure that completely eliminates the 
risk of erroneous bids, moreover, would make the negotiation 
process intractable again. One of the main contributions of this 
paper is that it shows that a trade-off can be made between 
computational efficiency and approximation accuracy, which is 
directly related to the negotiation outcome. The parameters of the 
checking procedure allow the tuning of a negotiation algorithm to 
increase either the computational efficiency or decrease the risk of 
erroneous bids. Derived from experimental results, we propose 
specific values for these parameters that ensure a reasonable 
balance between computational costs and outcome deviation (in 
terms of utility) in many domains. Finally, we present 
experimental results that show that the approach of adding a 
checking procedure to the negotiation algorithm is scalable and 
allows an agent to negotiate about high-dimensional utility spaces. 

The paper is organized as follows. First, some of the basic notions 
to model preference profiles that characterize our approach to 
multi-issue negotiation are introduced. In section 3 a brief 
overview of the approximation method for eliminating issue 
dependencies is presented. Then in section 4 the outcome 
deviation that results from using an approximated space as input 
for a negotiation algorithm is analyzed and the need for an 
additional method to prevent erroneous bids is argued for. In 
section 5, the negotiation algorithm is adapted by incorporating a 
checking procedure. Successively, the performance of this adapted 
negotiation algorithm is investigated. Experimental results are 
presented that confirm that a significant improvement can be 
obtained by incorporating the checking procedure. The impact of 
the checking procedure is analyzed in Section 6. The impact of on 
the computational tractability of the negotiation algorithm is 
investigated in Section 7. Section 6 shows that by varying certain 
parameters of the method a trade-off can be made between 
outcome deviation, caused by erroneous bids, and computational 
costs. Furthermore, specific values for these parameters of the 
checking procedure are proposed to obtain a good balance. 
Finally, section 9 concludes the paper. 

2. MODELING ISSUE DEPENDENCIES 
The overall utility of a set of independent issues can be computed 
as a weighted sum of the values of each of the issues by 
associating an evaluation function with each issue variable (see 
e.g. [6, 10]). The properties of the utility function are derived 
from these evaluation functions which map issue values on a 
closed interval [0; 1]. This model, represented in equation (1), can 
be used for issue values that are numeric (e.g. price, time) as well 
as for issue values that are discrete (e.g. colors, brands). 
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Equation (1) cannot be used, however, for modeling dependencies 
between issues and equation (1) needs to be generalized to 
equation (2) (cf. also [1]). Of course, the value of an issue does 
not need to depend on all other issues and subsets of dependent 
issues will have to be considered to model individual examples. 
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The representation of a utility space with non-linear issue 
dependencies as in equation (2) is similar to the model proposed 
in [7]. The main difference is that instead of considering only 
binary issue values, we allow multi-valued, discrete, as well as 
continuous issue ranges. 

The complexity of a utility function determines the computational 
complexity of the negotiation process. One of the main problems 
in dependent multi-issue negotiation is the computational 
complexity associated with searching for appropriate bids in the 
corresponding utility spaces. In case a utility function of multiple 
issues is non-linear in these issues, i.e. there are issue 
dependencies, finding a particular bid in the utility space is 
intractable. 

3. APPROXIMATING UTILITY SPACES 
To experimentally determine the need for, and later, to assess the 
effectiveness of including our checking procedure in negotiations 
in which approximated utility spaces are used, we need a 
functioning approximation method and an implemented 
negotiation strategy. 

This section provides a brief overview of the WAID-
approximation technique of [5]. The WAID-method transforms a 
utility space with issue dependencies into a space without such 
dependencies to meet the input requirements of efficient multi-
issue negotiation algorithms, see Figure 1. The WAID-method is 
explained only to the detail necessary to understand the problem 
of approximations and in order to understand that using a checker 
in the negotiation algorithm would diminish the risk of erroneous 
bids. More details can be found in [5]. 

The main idea of the WAID-method is that structural features of 
the negotiation domain and utility functions with issue 
dependencies can be exploited to approximate a preference profile 
and eliminate issue dependencies. It also seems that humans tend 
to simplify the structure of their preferences and prefer to 
negotiate one issue at a time [13]. 

Formally, the objective of the WAID-method is to transform a 
utility space u(x1,…,xn) based on dependent issues as represented 
by equation (2) to a utility space u’(x1,…,xn) without such 
dependencies that can be represented by equation (1). The 



transformation consists of approximating each of the evaluation 
functions evi(x1,…,xn) by a function ev’i(xi) in which the 
influence of the values of other issues xj, j�i, on the associated 
value evi(x1,…,xn) have been eliminated.  

The heart of the WAID-method is a weighted averaging 
technique. The dedication of WAID to utility spaces for 
negotiation shows in it’s exploitation of some general and, if 
available, additional domain specific insight into negotiation. 
These insights concern the relative importance of bids and what 
utility can reasonably be expected of an outcome of a negotiation. 

The WAID-method consists of 4 steps. The first step is to estimate 
an expected outcome utility, called m-point. The m-point later 
serves as a focus point for the approximation. Secondly, an 
evaluation of the type of approximation that best fits the case at 
hand is made. This second step is not elaborated here. Third, the 
actual approximation is computed. In the last step the difference 
of the original and approximated utility space is determined. 
Depending on this analysis, negotiators can decide to use the 
approximation or not in their negotiation algorithm. 

Estimate an Expected Outcome Utility 

In the first step, the expected utility of the outcome is estimated. 
This estimate is called the m-point and is used to define a region 
in the utility space where the actual outcome is expected to be. 
The m-point is used to feed information about the final goal of 
negotiation, i.e., the utility of the outcome, into the approximation 
technique used to transform the utility space.  

For multi-issue negotiation in general we may assume that the 
expected outcome of the negotiation is located somewhere in the 
open utility interval (0.5; 1), say 0.75. Lower than 0.5 would not 
be accepted by the agent, and 1 is the maximal utility. The 
approximation should be most accurate in that interval, and 
especially around the m-point, because those points are most 
important for getting a good negotiation outcome. An experienced 
agent or one with additional knowledge about the domain can 
narrow the interval of the m-point. 

Choice of Weighting Function 

The next step is to define a weighting function �. An agent may 
be more or less uncertain, about its estimate of the m-point and 
therefore, also of the corresponding interval. The weighting 
function � is chosen such that the approximation is most accurate 
in the region(s) of the utility space corresponding to that interval.  

Computing the Approximation 

The third step is to calculate an approximation of the original 
utility space based on non-linear issue dependencies using the m-
point and the weighting function as defined in the previous steps. 
The result of this step is a utility space that can be defined as a 
weighted sum of evaluations of independent issues, i.e., of the 
form of equation (1). The WAID-method multiplies each 
evaluation value with its corresponding weight and then averages 
the resulting space by integration. Additionally the weighting is 
normalized over the interval of integration, see equation (3). V 
denotes the range of integration and is a volume of n-1 
dimensionality build from the issue dimensions {x1,x2,…,xi-

1,xi+1,…,xn}. Of course, not all issues have to depend on all others 
and some issue variables may be dropped from the equation in 
that case. The approximation technique can be applied 

sequentially for each issue variable which involves dependencies 
between issues. 
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The WIAD method allows arbitrary utility spaces with issue 
dependencies to be approximated by weighted approximation. The 
approximation of the utility space modeling an agent’s may be 
more or less differ from the original utility space, but always will 
introduce errors in the associated utility of a bid. As a result, in a 
negotiation, bids selected by using the approximated space may 
deviate from the actual utility in the original space. Such bids in 
turn may become a final deal. If the deviation is quite big, 
however, the outcome may not be acceptable in the end to the 
agent. But how big is that risk? To understand the risks, 
experimentation is necessary. To be able to experiment, 
comparable negotiations must be performed with the original and 
with the approximated utility space. To be comparable, a 
particular negotiation strategy must be applied in both cases. The 
next section discusses such a strategy and presents the results of 
its application in a thorough experiment to understand the risks of 
using an approximated space. Since the risk is real, we then 
investigate in Section 5 and after whether a controlled trade-off 
between computational complexity and accuracy of the 
negotiation strategy can be incorporated into a negotiation 
algorithm. 

 

Negotiation Algorithm Used by Agent B 
Initialization: set initial utility to maximum of U’B. 

1 Evaluate bid bidA(i) received from opponent A: 
Accept and end negotiation if UB(bidA

 (i))>U B(bidB(i)) 

2 
Compute concession and target utility: 
Concession �  = � *(1-� / UB(bidB

 (i)))*( U B(bidA
 (i))-UB(bidB(i))) 

Target Utility �  = UB(bidB
 (i))+ �  

3 Determine a next bid: 
Find a bid bidB(i+1)  such that U’B(bidB

 (i+1)) = �  

4 Send bid to opponent. 

Table 2. ABMP negotiation algorithm for approximations 

 

4. NEGOTIATION ALGORITHM 
The negotiation algorithm that is used plays a key role in 
obtaining a good negotiation outcome. The approximation of a 
preference profile allows an agent to more efficiently compute 
good bids during negotiation, but does not in itself provide a 
guarantee that against arbitrary opponents a good negotiation 
outcome will be reached. More insight is required to assess the 
effects of using approximations of real preference profiles. 

As a first step, therefore, we analyze the effects of using 
approximated utility spaces as substitutes for the original spaces. 
To perform such an analysis, we use a negotiation algorithm that 
corresponds to the ABMP-strategy of [6], but other strategies 
could have been used as well. The algorithm is outlined in Table 
1. It is assumed that negotiation proceeds between agents A and 
B. In Table 1, the perspective of agent B, that uses the 



approximated space U’B, is provided. The original space of agent 
B is indicated by UB. 

The negotiation strategy can be outlined in the following way. In 
step 1, any previous bid of the opponent A is evaluated and 
accepted if it exceeds the bid of agent B in the last round. If an 
agreement cannot yet be reached, the ABMP-strategy determines 
a next bid to offer in two steps: the strategy first (step 2) 
determines the target utility for the next bid based on a 
computation of a concession step, and then (step 3) determines a 
bid that has that target utility. Step 3 of the strategy is very 
efficient for utility spaces without issue dependencies. It is in this 
step that the approximated utility space U’B has to be used. Note 
that the approximated utility space U’ is only used in the 
initialization and in step 3 since its purpose is to speed up the 
negotiation. In the other steps the computations that involve the 
original space are computationally cheap. In step 4, finally, the 
computed bid is sent to the opponent for evaluation. 

The ABMP negotiation algorithm is used to assess the outcome 
deviation that may occur when an approximated space is used 
instead of the original space during a negotiation. In the 
experiments that were performed agent A also uses a variant of 
the ABMP strategy but does not approximate any issue 
dependencies in its utility space. Instead it uses exhaustive search 
through its utility space in step 3 to determine a next bid given a 
suitable discretization of this space (i.e. using small enough 
steps).To compare outcomes for utility spaces of medium size, the 
same negotiation is performed again with agent B using 
exhaustive search in step 3. Of course, exhaustive search can only 
be used for utility spaces of medium size due to exponential time 
costs and memory limitations. It is, however, imperative to use it 
if we want to calculate outcome deviation. In the experiments, 
spaces with up to a number of 5 issues and a number of 
discretization steps of at most 25 have been used (see also Section 
6 and 7). Agent A always begins the negotiation by proposing an 
initial bid. 

To analyze the impact of the weighted averaging method on the 
negotiation outcome a probabilistic experimental setup has been 
used. The negotiation outcomes obtained by using the 
approximation method are compared with those obtained using 
the original utility space. The experimental results are obtained 
from utility spaces modeled by multivariate quadratic 
polynomials. These polynomials may have multiplicative terms 
xixj which represent issues. It is well-known that solving such 
quadratic programming problems is NP-hard, see e.g. [3]. In the 
experiments utility spaces have been randomly generated. The m-
point parameter that has to be fixed in order to apply the WAID-
method is determined for each utility space by a Monte-Carlo 
method. 

The main result of the experiments performed shows that the 
distribution of negotiation outcome deviations is similar to a 
normal distribution with a mean value close to zero. Figure 3 
presents the distribution of outcome deviations for a negotiation 
about 4 issues. The deviation is a result of using the approximated 
space in the negotiation strategy instead of performing an 
exhaustive search to find a good bid in the original space. As can 
be seen in figure 3, the bell-shaped distribution (average = -0.02; 
standard deviation = 0.09) means that the negotiation over the 
approximated space tends to produce the same result as the 
negotiation over the original space using exhaustive search. This 

demonstrates that one may expect to obtain reasonable outcomes 
when negotiating with approximated spaces instead of non-
approximated spaces.  

Even though this result shows that approximating the original 
utility space to remove issue dependencies may result in quite 
reasonable outcomes compared to those obtained otherwise, it 
also shows that there is quite a high chance of deviating 
significantly. In fact, for the 4 issue case figure 3 shows that there 
is a quite high probability of obtaining outcomes that are worse by 
up to 33%. Additionally, the curve is not really symmetrical and 
shows a tendency towards negative deviations. As an illustration, 
the probability of obtaining a result that is worse than 10% equals 
0.196. It is clear that in many domains such a high risk will be 
unacceptable. 

The main conclusion thus is that additional measures need to be 
taken to reduce this risk. The benefit of using approximated 
spaces is clear: issues can be negotiated independently which 
makes the negotiation tractable. But a balance has to be found 
between the computational costs and the risk of significantly 
deviating negotiation outcomes. Ideally, we would like to be able 
to make a tradeoff between costs and outcome deviation to obtain 
the right balance and control the risk of bad outcomes. 
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Figure 3 – Distribution of negotiation outcome deviation for 
approximated spaces vs. original spaces for 4 issues (k=15) 

5. PROCEDURE FOR CONTROLLING 
NEGOTIATION OUTCOME DEVIATION 
In this section we propose a parameterized procedure that can be 
used to control the probability of large outcome deviations. The 
parameters of this procedure can moreover be used to influence 
the tradeoff between the accuracy of the negotiation outcome and 
the computational efficiency of the negotiation strategy. In the 
next sections, experimental results are presented that allow the 
tuning of these parameters. 

In the negotiation algorithm the bid selection procedure is the 
source of the deviation of the negotiation outcome. In particular, 
in step 3 of the algorithm in Table 2 the approximated space is 
used instead of the original space which gives rise to outcome 
deviations. To avoid approximation errors that are too big, we 
propose to add a checking procedure in this step which compares 



the utility of a bid in the approximated space with the utility in the 
original space. 

The absolute error as a result of the approximation can be 
computed simply by subtracting the utility in the approximated 
space from the utility in the original space as in equation (4). 
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This equation gives the error associated with the utility of any bid 
that is proposed during the negotiation. In order to get as close as 
possible to a negotiation outcome that would result if the original 
space would have been used, one approach is to minimize this 
error for each bid that is offered to the opponent during the 
negotiation. 

The proposed procedure can be found in Table 4. The step to 
determine a next bid is refined and an iterative procedure is 
incorporated to check whether the difference in utility stays below 
a certain threshold � . As before, in step 3a a bid is computed that 
matches a certain target utility. In step 3b, however, now a check 
has been incorporated that checks whether ∆(bid)< � , that is, 
whether the absolute approximation error stays below a threshold 

� . This additional check itself is computationally cheap, since it 
involves only a simple calculation using equation (4). If ∆(bid) > 

� , a bid bid’, which utility differs minimally from the previously 
computed bid, is searched for, until ∆(bid’)< � . This iterative 
procedure for finding an appropriate bid is called � -checking. 

The additional check is used to avoid the risk of proposing bids 
with (very) low utilities in the original space that have (much) 
higher utilities in the approximated space. The concessions made 
in step 3 thus are controlled by a parameter �  to ensure that they 
are not too big. 

Negotiation Algorithm Used by Agent B 
Initialization: set initial utility to maximum of U’B. 

1 Evaluate bid bidA(i) received from opponent A: 
Accept and end negotiation if UB(bidA

 (i))>U B(bidB(i)) 

2 
Compute concession and target utility: 
Concession �  = � *(1-� / UB(bidB

 (i)))*( U B(bidA
 (i))-UB(bidB(i))) 

Target Utility �  = UB(bidB
 (i))+ �  

3 Determine a next bid: 

3a Find a bid with target utility 
Find a bid bidB(i+1) such that U’B(bidB

 (i+1)) ≈ � 

3b Compare bid utility in approximated and original space 
Check whether |UB(bidB

 (i+1)) – U’B(bidB
 (i+1))|< �  

3c 
If not, find next candidate for the bid and repeat step (3b): 
Find next candidate bid bidB(i+1)  such that U’(bidB(i+1)) ≈ �  
and utility with previous bid only differs minimally. 

4 Else, send bid to opponent. 

Table 4. Negotiation algorithm with δδδδ-checking procedure 

A few remarks about implementing step 3c are in order. Currently, 
we use a simple approach and a discretization of the approximated 
evaluation functions is used. Using these discretized evaluation 
functions, a distance between the target evaluation value and each 
issue value can be calculated as follows: 

( ) ( )( ) ( ) ( )iiiii xtevxevxtevxevd −=,  (5) 

The impact of adding the �-checking procedure to the negotiation 
algorithm on the outcome distribution is significant, as is shown 
by figure 5. The experimental setup is exactly the same as that for 
figure 3 but the negotiation algorithm used by agent B now 
includes the checking procedure. It shows the outcome 
distribution for a threshold of �=0.01.  

Clearly, the outcome distribution curve in figure 5 is more 
symmetrical than in figure 3 and more clustered around the mean; 
it has a mean=-0.00016 and a standard deviation of 0.045. A more 
detailed analysis of the relation between � and the outcome 
deviation is presented in the next section. 

The �-checking procedure introduces additional search again into 
the computation of a bid. Various heuristics could be applied 
again, however, to minimize the amount of search. For example, a 
limit on the number of iterations could be introduced for spaces of 
high dimensionality to ensure a bid would be found within a 
reasonable amount of time. (The probability of finding an 
appropriate bid is high in high-dimensional spaces close to the m-
point.) The relation of the value of the �-parameter and the 
computational cost is analyzed in more detail using experimental 
results in Section 7.  
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Figure 5 – Outcome distribution with checking procedure for 
approximated spaces vs. original spaces for 4 issues (k=15) 

6. IMPACT ON OUTCOME DEVIATION 
In this section, we present experimental results that show how the 
value of the � -parameter in the checking procedure relates to the 
distribution of the outcome deviation. These results show that 
there is a direct relation between the size of �  and outcome 
distribution. 

Additionally, we investigated the influence of the discretization 
per issue under consideration on the outcome distribution. In the 
experiments we performed, the possible values for each issue were 
reduced by discretizing the space to 10, 15, 20, and 25 values. In 
the results below, the discretization parameter is indicated by k. 
Maybe somewhat surprisingly the different values for k used in 
the experiments do not have such a big impact on the outcome 
distribution. 

In order to assess the impact of adding the checking procedure to 
the negotiation algorithm, we performed experiments with 3, 4, 5, 
and 6 issues. Finally, for the δ-parameter of the checking 
procedure we used the values 0.001, 0.005, 0.01, 0.02, 0.03, and 
0.05. In total, we performed over 44.000 experiments in which the 



outcomes were compared with the original space: 12.000 for 3 
issues, 12.000 for 4 issues, 12.000 for 5 issues, and 6.000 for 6 
issues. Comparisons of negotiation outcome for spaces of higher 
dimensionality were not feasible.  
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Figure 6. The distribution of outcome deviations for 5 issues 
and δδδδ = 0.01. The various lines relate to different k-values. 
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Figure 7. The distribution of outcome deviations for 5 issues 
and δδδδ = 0.02. The various lines relate to different k-values. 
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Figure 8. The distribution of outcome deviations for 5 issues 
and δδδδ = 0.03. The various lines refer to different k-values. 

The higher the number of issues n and the higher the 
discretization parameter k, the longer it takes to do the exhaustive 
search (it takes kn steps). Also, for spaces with more that 5 issues 
and high discretization factors, the memory requirements become 
unmanageable. As a result, the number of experiments with 6 

issues was lower than those with 3, 4 and 5 issues. To investigate 
the scalability of the proposed approach, we ran 500 experiments 
with 10 issues for δ=0.02 and each k-value, so 2000 experiments 
in total. The results for 10 and 50 issues are presented in Section 
8. 

The experimental results relating the value of δ to the outcome 
distribution are depicted in Figures 6 to 8. We do not show all 
results but only those for δ-values of 0.01, 0.02, and 0.03 which 
most clearly demonstrate the impact of different values on the 
distribution and also define the turning points where decreasing 
this parameter further does not have a very big impact anymore 
(see also Figure 12) and decreasing it results in significantly 
worse outcomes. In Figures 6 to 8, on the x-axis the outcome 
difference is set out. The outcome deviation may be bigger than 
the value of the δ-parameter since errors may accumulate over 
multiple rounds in the negotiation. The y-axis refers to the 
percentage of experiments having particular outcome differences. 
The different lines correspond with different values of the 
discretization parameter k. For each combination of a particular 
number of issues, δ-value, and k-value, 500 experiments were run. 

In general, as is to be expected since δ is supposed to control the 
error introduced by the approximation, the experimental findings 
show that smaller values for δ result in negotiation outcomes that 
are closer to the outcomes in the original space. A positive value 
with respect to difference in outcome means that the negotiation 
outcome was improved compared to the outcome obtained when 
using the original space. 

The findings illustrated in Figures 6 to 8 are as follows. For δ = 
0.01 (see Figure 6) the standard deviation ranges from 0,0327 to 
0,0442, and the average outcome difference ranges from -0,0066 
to 0,0015. For δ = 0.02 (see Figure 7) the standard deviation 
ranges from 0.0350 to 0.05806 and the average outcome 
difference ranges from -0.0142 to 0.0010. Finally, for δ = 0.03 
(see Figure 8) the standard deviation ranges from 0,0499 to 
0,0717, and the average outcome difference ranges from -0,0199 
to -0,0151. 

7. IMPACT ON COMPUTATIONAL COST 
Including the checking procedure implies that the bid 
determination part might need iterations to find an appropriate 
bid. The previous section shows that smaller δ–values lead to 
better outcome deviations, and it stands to reason that the smaller 
the value, the higher the number of iterations needed. To get more 
insights into the frequency with which the need for iterations 
causes high computational costs, a series of experiments have 
been performed. The algorithm was tested for 4, 5, 6, and 10 
issues, with the discretization value k varying over {10, 15, 20, 
25} and δ varying over {0.005, 0.001, 0.03, 0.02, 0.01}. Each test 
was performed 500 times with randomly generated original utility 
spaces.  

Figures 9, 10, and 11 show the results for 5 issues, the results for 
other values are not shown, since they do not provide additional 
insights. In these pictures, on the x-axis the logarithmic costs are 
set out. The y-axis refers to the frequency with which an 
experiment had such a logarithmic cost, with respect to the total 
number of experiments. The different lines refer to different k-



values. In Figure 13, Section 8 the same analysis is presented for 
10 issues with δ = 0.02.  
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Figure 9. Computational costs for 5 issues and δδδδ = 0.01. The 
different lines refer to different k-values. 
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Figure 10. Computational costs for 5 issues and δδδδ = 0.02. The 
different lines refer to different k-values. 
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Figure 11. Computational costs for 5 issues and δδδδ = 0.03. The 
different lines refer to different k-values. 

The results clearly show the expected increase of high 
computational costs for higher δ–values: higher percentages for 
higher computational values. However, when looking at the areas 
underneath the lines, another interesting observation can be made. 
In Figure 9, for δ = 0.01, the bulk of the area underneath the lines 
ends approximately at ln(x) = 6. In Figure 10, for δ = 0.02 the 
bulk ends at ln(x) = 4, and in Figure 11, for δ = 0.03 at ln(x) = 2. 
Evidently, the number of iterations needed is bounded. 

8. TRADE OFF 
Combining the results of the outcome analysis of Section 6 and 
the computational cost analysis of Section 7 shows that the need 
for a small outcome difference has to be balanced against 
computational costs. In this a setting for the k, and δ parameters is 
chosen that balances accuracy against efficiency. The approach 
with these parameter settings is shown to be still efficient for a 
large numbers of issues.  

Sections 6 and 7 show that accuracy and computational cost 
increase as δ decreases. To find a good balance between accuracy 
and cost, an integrated analysis has been performed for the usual 
combination of parameters: the number of issues ranging over {4, 
5, 6, 10}, k ranging over {10, 15, 20, 25} and δ ranging over  
{0.001, 0.005, 0.01, 0.02, 0.03, 0.05, 1}. Note that δ=1 
corresponds to a setting in all checks are successful and, therefore, 
no iterations are necessary. 
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Figure 12. Computational cost and outcome deviation for 5 
issues and k=10 

Figure 12 presents the trade-off between negotiation outcome 
accuracy and the computational costs. Each point on the solid line 
of the chart represents the average of a series of experiments 
where δ varies over {0.001, 0.005, 0.01, 0.02, 0.03, 0.05, 1}. The 
dashed lines represent the spread of the negotiation outcome 
deviation. The top line is an average + standard deviation and 
bottom line is the average - standard deviation. 
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Figure 13. Computational costs for 10 issues and δδδδ = 0.02. The 
different lines refer to different k-values 



The results show that a good compromise is a δ–value of 0.02: for 
δ < 0.02 the costs increase, for δ > 0.02 the outcome 
approximation gets worse. Furthermore, the standard deviation 
drops off at this value, but does not decrease further for even 
smaller δ-values.  

To analyse the scalability of the modified negotiation algorithm 
we performed a series of negotiations with 10-issues. 
Unfortunately, it is no longer possible to use exhaustive search as 
a benchmark for the negotiation outcome efficiency due to the 
extremely large utility space (1110 to 2610). Figure 13 shows 
computational cost for 10-issues negotiation for δ = 0.02 and 
various k-values. The figure suggests that the most of the 
randomly generated utility spaces remain tractable for the 
negotiation algorithm with the δ-checking procedure. 

9. CONCLUSION 
The paper proposes a δ-checking procedure that handles the short 
comings of multi-issue negotiation systems that base their 
operations on approximations of utility spaces with issue 
dependencies. In case the issues are interdependent, no efficient 
method exists to compute bids during a negotiation, even if the 
agent tries to guess the profile of the opponent [7]. To mitigate 
this problem, either mediators may be used, or the utility space 
corresponding to the interdependent issues can be approximated 
so that issues are no longer interdependent. The WAID-method 
presented in [5] is such an approximation method.  

However, using an approximation always comes with a risk. In the 
case of multi-issue negotiation, the risk is that a bid is proposed 
(and accepted by the other party) that seems to have a good utility, 
but in fact, in the original utility space has a much lower utility. 
The δ-checking procedure proposed in this paper offers a way to 
avoid this risk at the cost of additional computations. 
Experimental results show, however, that a tradeoff can be made 
between the accuracy of the bids and the computational overhead 
this entails. If the δ-parameter in the checking procedure is set to 
0.02, the utility of the bids made is at most 0.02 away from the 
real utility, on a scale from 0 to 1. Moreover, using this value for 
the δ-parameter, the negotiation algorithm including the δ-
checking procedure can handle high-dimensional utility spaces. 
As experimental results show, the negotiation outcome obtained 
in this manner only slightly deviates from the outcome obtained 
without approximation. 

To conclude, in this paper an effective balance is found of 
accuracy versus efficiency for multi-issue negotiation with issue 
dependencies in which the dependencies are removed by 
approximation. 
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