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ABSTRACT

Searching for good bids in a utility space basednaritiple,

dependent issues in general is intractable. Trectdorithms do
exist for independent issue sets, so one idea @ittnate the
dependencies by approximating the more complexyusbace
with issue dependencies. It has been shown thapproximation
may give reasonable results when some structuatlifes of the
negotiation domain and preference profile are eatgdo Of

course, there is a risk that approximation resiltsignificantly

different negotiation outcomes. In this paper, wespnt a
checking procedure to mitigate this risk and shbat by tuning
the parameters of this procedure the outcome dewiaan be
controlled. These parameters allow for a tradedoéftween
computational cost and accuracy of negotiation @ute Based
on experimental results we propose specific valtms the

parameters of the checking procedure that provigeoa balance
between computational costs and accuracy. Addilignee show
how different values of these parameters influenite

computational costs of negotiating multiple issu@gth

dependencies.

Categories and Subject Descriptors
1.2.11 [Artificial Intelligence ]: Distributed Atrtificial Intelligence
- intelligent agents, multi-agent systems.

General Terms
Algorithms, Performance, Economics, Experimentatitireory.

Keywords
Efficient multi-issue negotiation, issue dependesgcitunable
algorithm, approximating utility spaces.

1. INTRODUCTION

Negotiation is a process by which a joint decismmade by two
or more parties (cf. [10]). The parties or agertst fexpress
conflicting demands and then move towards agreerbgnt
process of concession making. During the negotiatioth agents
make various offers, callebids to each other that more or less
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match with their own preferences. The negotiatiaicome is
either a failure, or a deal, i.e., a bid acceptgdab parties. If
multiple issues are at stake then these issuesneey to be
negotiated simultaneously and the bids made mayamaeach of
these issues.

One of the complicating factors in a computatioapproach to
negotiation is that the value associated with adliof multiple
issues may not be a simple function of the valsmaated with
individual issues. In [10], Raiffa explains howr@mthematically
model a preference profile of an agent that candeel during the
negotiation to determine the utility of exchangeidisb The
representation of an agent's preferences by matlieaha
functions, calledutility functions which map values of issues to
the utility of bids, i.e. bundles of issue valuesdlows the
development of software support for negotiatiomsnégotiation
domains with issue dependencies which influence dherall
utility of a bid, however, the utility space is nbnear in the
issues (cf. [1]). In [7], Klein et al. show that that case there is
no efficient method to compute alternative bids imtyra
negotiation, even if the agent tries to guess fgooent’s profile.

Some proposals have been made to reduce the cdiopata
complexity of multi-issue negotiation with issuepdadencies.
For example, [7] propose the use of a mediator vy be
more computationally efficient when both agentsinegotiation
reveal their preferences to this mediator. An nléve,
interesting option is to investigate the complexafythe utility
space itself and try to eliminate the dependeriogaeen issues.
In [5], an approximation method is proposed to &late issue
dependencies, see Figure 1. This method exploite structural
features of preference profiles of agents to apprate the
original profile. The resulting approximated utilitftunction
without dependencies can be handled by negotiatigarithms
that can efficiently deal with independent multisues and have
a polynomial time complexity (see e.qg. [6]).

It is clear that the method proposed in [5] removbs
computational intractability of multi-issue negoite with issue
dependencies by transforming the original profiledt to one that
can be linearly decomposed. Tested over numerau®na spaces
of interdependent issues, the negotiation outcorsiaguthis
approximation is reasonably good, see [5]. The tatjon
outcome, however, does not only depend on the nerefe profile
but also on the process of negotiation itselfsitd be expected
that the risk of obtaining a bad outcome due to ube of an
approximation cannot be avoided completely even thé
approximation is quite good.
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Figure 1. Multi-issue negotiation with issue deperehcies
using approximated utility spaces

In this paper, we analyze the risk of a bad netjotiaoutcome

when using an approximation of the agent’s prefezeurofile. It

turns out that in some domains this risk may b#llunreasonably
high. The results show that using the approximaigace a bid
might be proposed that in the original utility spagould have a
too low utility. The risk of such an erroneous lzidn be quite
high and, as a consequence, the risk of obtaintrepanegotiation
outcome is significant. In order to control thisk;i we therefore
also have to look at the process of negotiationteMwecisely, we
investigate a way to incorporate a method to comwrisk of an

erroneous bid in the negotiation algorithm itsélhis paper

presents a checking procedure to control the riskrmneous
bids which can be incorporated in any negotiatigothm.

Of course, this checking procedure introduces sanwitional
computational costs. A procedure that completeipiabtes the
risk of erroneous bids, moreover, would make thgotiation
process intractable again. One of the main cortidbe of this
paper is that it shows that a trade-off can be miesveen
computational efficiency and approximation accurashich is
directly related to the negotiation outcome. Theapeeters of the
checking procedure allow the tuning of a negotiatigorithm to
increase either the computational efficiency ordase the risk of
erroneous bids. Derived from experimental resuwits, propose
specific values for these parameters that ensureasonable
balance between computational costs and outcomiatiev (in
terms of utility) in many domains. Finally, we pees
experimental results that show that the approactadsfing a
checking procedure to the negotiation algorithnsdalable and
allows an agent to negotiate about high-dimensiatiétly spaces.

The paper is organized as follows. First, soménefttasic notions
to model preference profiles that characterize approach to
multi-issue negotiation are introduced. In secti8na brief
overview of the approximation method for eliminatinissue
dependencies is presented. Then in section 4 theorme
deviation that results from using an approximateace as input
for a negotiation algorithm is analyzed and thednéar an
additional method to prevent erroneous bids is edgfor. In
section 5, the negotiation algorithm is adaptednisprporating a
checking procedure. Successively, the performahtt@oadapted
negotiation algorithm is investigated. Experimentasults are
presented that confirm that a significant improvemean be
obtained by incorporating the checking procedutes impact of
the checking procedure is analyzed in Section @.ifripact of on
the computational tractability of the negotiatiolgaaithm is
investigated in Section 7. Section 6 shows tha¢dyying certain
parameters of the method a trade-off can be madeebe
outcome deviation, caused by erroneous bids, ampuettional
costs. Furthermore, specific values for these petars of the
checking procedure are proposed to obtain a goddntm
Finally, section 9 concludes the paper.

2. MODELING ISSUE DEPENDENCIES

The overall utility of a set ahdependenissues can be computed
as a weighted sum of the values of each of theegssiy
associating an evaluation function with each isgagable (see
e.g. [6, 10]). The properties of the utility furani are derived
from these evaluation functions which map issuauiemlon a
closed interval [0; 1]. This model, representedduoation (1), can
be used for issue values that are numeric (e.ge ptime) as well
as for issue values that are discrete (e.g. cdioasids).

u(xl,...,xn)=iwie\/i(xa) (1)

Equation (1) cannot be used, however, for modaliggendencies
between issues and equation (1) needs to be geeedraio
equation (2) (cf. also [1]). Of course, the valdean issue does
not need to depend on all other issues and subselspendent
issues will have to be considered to model indialdzxamples.

u(xl,...,xn):zn:wievi(x peeer X)) @)

The representation of a utility space with nondindssue
dependencies as in equation (2) is similar to tbeehproposed
in [7]. The main difference is that instead of ddesing only
binary issue values, we allow multi-valued, disereds well as
continuous issue ranges.

The complexity of a utility function determines tbemputational
complexity of the negotiation process. One of tr@mproblems
in dependent multi-issue negotiation is the contral
complexity associated with searching for appropriaids in the
corresponding utility spaces. In case a utilitydiion of multiple
issues is non-linear in these issues, i.e. there igsue
dependencies, finding a particular bid in the wytilspace is
intractable.

3. APPROXIMATING UTILITY SPACES

To experimentally determine the need for, and Jateassess the
effectiveness of including our checking procedur@égotiations

in which approximated utility spaces are used, weedna

functioning approximation method and an implemented
negotiation strategy.

This section provides a brief overview of the WAID-
approximation technique of [5]. The WAID-methodnséorms a
utility space with issue dependencies into a speitieout such
dependencies to meet the input requirements ofieffi multi-
issue negotiation algorithms, see Figure 1. The ¥Aethod is
explained only to the detail necessary to undedgsthe problem
of approximations and in order to understand tlsaigia checker
in the negotiation algorithm would diminish thekrisf erroneous
bids. More details can be found in [5].

The main idea of the WAID-method is that structdesdtures of
the negotiation domain and utility functions withssiie
dependencies can be exploited to approximate anerefe profile
and eliminate issue dependencies. It also seerhéitingans tend
to simplify the structure of their preferences aptefer to
negotiate one issue at a time [13].

Formally, the objective of the WAID-method is tarnsform a

utility space u(x...,x,) based on dependent issues as represented

by equation (2) to a utility space u(x.,x,) without such
dependencies that can be represented by equatipnTlie



transformation consists of approximating each &f ¢valuation

functions evi(x,...,x,) by a function ey(x) in which the

influence of the values of other issugsj#i, on the associated
value ey(Xy,...,X,) have been eliminated.

The heart of the WAID-method is a weighted averggin
technique. The dedication of WAID to utility spacder
negotiation shows in it's exploitation of some geheand, if
available, additional domain specific insight integotiation.
These insights concern the relative importanceid$ land what
utility can reasonably be expected of an outcone régotiation.

The WAID-method consists of 4 steps. The first $¢ejp estimate
an expected outcome utility, called-point The m-point later
serves as a focus point for the approximation. Selgo an

evaluation of the type of approximation that bétst the case at
hand is made. This second step is not elaborated Third, the
actual approximation is computed. In the last stepdifference
of the original and approximated utility space istedmined.

Depending on this analysis, negotiators can detidese the
approximation or not in their negotiation algorithm

Estimate an Expected Outcome Utility

In the first step, the expected utility of the aute is estimated.
This estimate is called tha-pointand is used to define a region
in the utility space where the actual outcome ipeexed to be.
The m-point is used to feed information about timalfgoal of
negotiation, i.e., the utility of the outcome, irite approximation
technique used to transform the utility space.

For multi-issue negotiation in general we may assuhat the
expected outcome of the negotiation is located sdmaee in the
open utility interval (0.5; 1), say 0.75. Lower th@.5 would not
be accepted by the agent, and 1 is the maximaltyutiThe
approximation should be most accurate in that walerand
especially around the m-point, because those pangsmost
important for getting a good negotiation outcoma.experienced
agent or one with additional knowledge about thenaia can
narrow the interval of the m-point.

Choice of Weighting Function

The next step is to define a weighting functisnAn agent may
be more or less uncertain, about its estimate efnthpoint and
therefore, also of the corresponding interval. Theighting
functiony is chosen such that the approximation is mostrateu
in the region(s) of the utility space correspondimghat interval.

Computing the Approximation

The third step is to calculate an approximationth® original
utility space based on non-linear issue dependensimg the m-
point and the weighting function as defined in finevious steps.
The result of this step is a utility space that tandefined as a
weighted sum of evaluations of independent issues, of the
form of equation (1). The WAID-method multiplies cba
evaluation value with its corresponding weight dmeh averages
the resulting space by integration. Additionally thveighting is
normalized over the interval of integration, seeapn (3). V
denotes the range of integration and is a volumendf
dimensionality build from the issue dimensionssXx...,x.
1Xi+1,---, X} OF course, not all issues have to depend onthkrs
and some issue variables may be dropped from thatieg in
that case. The approximation technique can be egpli

sequentially for each issue variable which involdependencies
between issues.

9050 Yo ., v
e(x)=" (3)
[w(%...x,)dv

The WIAD method allows arbitrary utility spaces hwviissue

dependencies to be approximated by weighted appatidin. The
approximation of the utility space modeling an atgemay be

more or less differ from the original utility spadmit always will

introduce errors in the associated utility of a.lAd a result, in a
negotiation, bids selected by using the approxithaigace may
deviate from the actual utility in the original spa Such bids in
turn may become a final deal. If the deviation isite big,

however, the outcome may not be acceptable in tidete the

agent. But how big is that risk? To understand tieks,

experimentation is necessary. To be able to expgetim
comparable negotiations must be performed withotiiginal and

with the approximated utility space. To be compkramm

particular negotiation strategy must be appliethath cases. The
next section discusses such a strategy and pretsentesults of
its application in a thorough experiment to underdtthe risks of
using an approximated space. Since the risk is rgal then

investigate in Section 5 and after whether a cdiettatrade-off

between computational complexity and accuracy of th
negotiation strategy can be incorporated into aotiaton
algorithm.

Negotiation Algorithm Used by Agent B
Initialization: set initial utility to maximum of (.
1 Evaluate bid bid,(i) received from opponent A:
Accept and end negotiationlifz(bida (i))>U g(bida(i))
Compute concession and target utility:
2 Concession = f+(1-u/ Ug(bids (i)))*( U s(bida (i))-Us(bida(i)))
Target Utilityz = Ug(bidg (i))+7
Determine a next bid:
Find a bidbidg(i+1) such that)’g(bidg (i+1)) = =

4 Send bid to opponent.
Table 2. ABMP negotiation algorithm for approximations

3

4. NEGOTIATION ALGORITHM

The negotiation algorithm that is used plays a kele in

obtaining a good negotiation outcome. The approtionaof a

preference profile allows an agent to more effitiemompute

good bids during negotiation, but does not in ftggbvide a

guarantee that against arbitrary opponents a gagbtiation

outcome will be reached. More insight is requiredassess the
effects of using approximations of real preferepiailes.

As a first step, therefore, we analyze the effeofsusing
approximated utility spaces as substitutes foratiginal spaces.
To perform such an analysis, we use a negotiafigorithm that
corresponds to the ABMP-strategy of [6], but otlstrategies
could have been used as well. The algorithm isredlin Table
1. It is assumed that negotiation proceeds betwagents A and
B. In Table 1, the perspective of agent B, thatsusee



approximated space gJ'is provided. The original space of agent
B is indicated by .

The negotiation strategy can be outlined in thiofaghg way. In
step 1, any previous bid of the opponent A is eat@ld and
accepted if it exceeds the bid of agent B in ttst taund. If an
agreement cannot yet be reached, the ABMP-stratetgrmines
a next bid to offer in two steps: the strategy tfi(step 2)
determines the target utility for the next bid khsen a
computation of a concession step, and then (stefetg@rmines a
bid that has that target utility. Step 3 of theatgy is very
efficient for utility spaces without issue depencies. It is in this
step that the approximated utility space blas to be used. Note
that the approximated utility space U’ is only used the
initialization and in step 3 since its purposeasspeed up the
negotiation. In the other steps the computatiomas ithvolve the
original space are computationally cheap. In stefindlly, the
computed bid is sent to the opponent for evaluation

The ABMP negotiation algorithm is used to assessahtcome
deviation that may occur when an approximated spaagsed
instead of the original space during a negotiatibm. the
experiments that were performed agent A also usesriant of
the ABMP strategy but does not approximate any eissu
dependencies in its utility space. Instead it wsémustive search
through its utility space in step 3 to determineeat bid given a
suitable discretization of this space (i.e. usingals enough
steps).To compare outcomes for utility spaces afiom size, the
same negotiation is performed again with agent Bngus
exhaustive search in step 3. Of course, exhaussigech can only
be used for utility spaces of medium size due fmoeential time
costs and memory limitations. It is, however, ingtige to use it
if we want to calculate outcome deviation. In theeriments,
spaces with up to a number of 5 issues and a nurober
discretization steps of at most 25 have been uslglso Section
6 and 7). Agent A always begins the negotiatiorplposing an
initial bid.

To analyze the impact of the weighted averaginghogton the
negotiation outcome a probabilistic experimentalgenas been
used. The negotiation outcomes obtained by using th
approximation method are compared with those obthinsing
the original utility space. The experimental resudre obtained
from utility spaces modeled by multivariate quaidrat
polynomials. These polynomials may have multipli@tterms
XX; which represent issues. It is well-known that Bmvsuch
quadratic programming problems is NP-hard, see[8]gin the
experiments utility spaces have been randomly gée@r Them-
point parameter that has to be fixed in order to appéyWAID-
method is determined for each utility space by antdeCarlo
method.

The main result of the experiments performed shtved the
distribution of negotiation outcome deviations isifar to a
normal distribution with a mean value close to zdfgure 3
presents the distribution of outcome deviations&aregotiation
about 4 issues. The deviation is a result of utiegapproximated
space in the negotiation strategy instead of pemiftg an
exhaustive search to find a good bid in the origapace. As can
be seen in figure 3, the bell-shaped distributavefage = -0.02;
standard deviation = 0.09) means that the negotiativer the
approximated space tends to produce the same rasuthe
negotiation over the original space using exhaassiarch. This

demonstrates that one may expect to obtain reakooabcomes
when negotiating with approximated spaces insteacham-
approximated spaces.

Even though this result shows that approximating dhiginal
utility space to remove issue dependencies maytresuuite
reasonable outcomes compared to those obtainedwitke it
also shows that there is quite a high chance ofiatieg
significantly. In fact, for the 4 issue case fig@rehows that there
is a quite high probability of obtaining outcombattare worse by
up to 33%. Additionally, the curve is not reallymayetrical and
shows a tendency towards negative deviations. Afiustration,
the probability of obtaining a result that is wotkan 10% equals
0.196. It is clear that in many domains such a higk will be
unacceptable.

The main conclusion thus is that additional measmeed to be
taken to reduce this risk. The benefit of using ragimated

spaces is clear: issues can be negotiated indepiyndehich

makes the negotiation tractable. But a balancettdse found
between the computational costs and the risk ofifsgntly

deviating negotiation outcomes. Ideally, we wotke lto be able
to make a tradeoff between costs and outcome dmvitd obtain
the right balance and control the risk of bad ontes.
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Figure 3 — Distribution of negotiation outcome de\ation for
approximated spaces vs. original spaces for 4 issugk=15)

5. PROCEDURE FOR CONTROLLING
NEGOTIATION OUTCOME DEVIATION

In this section we propose a parameterized proeethat can be
used to control the probability of large outcomeidiéons. The
parameters of this procedure can moreover be uséufltence
the tradeoff between the accuracy of the negotiatistcome and
the computational efficiency of the negotiationastgy. In the
next sections, experimental results are preseritad allow the
tuning of these parameters.

In the negotiation algorithm the bid selection maare is the
source of the deviation of the negotiation outcomeparticular,
in step 3 of the algorithm in Table 2 the approxedaspace is
used instead of the original space which gives tis®@utcome
deviations. To avoid approximation errors that #re big, we
propose to add a checking procedure in this staphwdompares



the utility of a bid in the approximated space vtk utility in the
original space.

The absolute error as a result of the approximatian be
computed simply by subtracting the utility in thppeaoximated
space from the utility in the original space agduation (4).

A%, Xg e X ) = UKy, X reees X ) = U (X, X 0 X0 )| (4)

This equation gives the error associated with tilgyuof any bid
that is proposed during the negotiation. In ordegét as close as
possible to a negotiation outcome that would restite original
space would have been used, one approach is taniménithis
error for each bid that is offered to the opponduating the
negotiation.

The proposed procedure can be found in Table 4. stae to
determine a next bid is refined and an iterativecpdure is
incorporated to check whether the difference ifitystays below

a certain threshold. As before, in step 3a a bid is computed that

matches a certain target utility. In step 3b, haavenow a check
has been incorporated that checks whetignid)< ¢, that is,
whether the absolute approximation error staysvb@dhreshold
J. This additional check itself is computationallyeap, since it
involves only a simple calculation using equatidh (f 4(bid) >
4, a bid bid’, which utility differs minimally fronthe previously
computed bid, is searched for, unf{(bid’)< ¢. This iterative
procedure for finding an appropriate bid is cabechecking

The additional check is used to avoid the risk mfppsing bids
with (very) low utilities in the original space thhave (much)
higher utilities in the approximated space. Thecessions made
in step 3 thus are controlled by a paramét&s ensure that they
are not too big.

Negotiation Algorithm Used by Agent B
Initialization: set initial utility to maximum of .
1 Evaluate bid bid,(i) received from opponent A:
Accept and end negotiationlfg(bida (i))>U g(bids(i))
Compute concession and target utility:
2 Concession = f*(1-u/ Ug(bids (i)))*( U s(bida (i))-Ur(bida(i)))
Target Utilityz = Ug(bids (i))+7

3 Determine a next bid:

3a  Find a bid with target utility
Find a bid big(i+1) such that Wi(bidg (i+1)) =t

3p Compare bid utility in approximated and original space
Check whethejUg(bids (i+1)) — U’g(bids (i+1))|< &

If not, find next candidate for the bid and repeatstep (3b):
3¢ Find next candidate biBidg(i+1) such thatU’(bidg(i+1)) = =
and utility with previous bid only differs minimall

4 Else, send bid to opponent.
Table 4. Negotiation algorithm with 8-checking procedure

A few remarks about implementing step 3c are irenr@urrently,

we use a simple approach and a discretizationesdfiproximated
evaluation functions is used. Using these disadtievaluation
functions, a distance between the target evaluatdue and each
issue value can be calculated as follows:

d, (ev(x ) tev(x;)) =[ev(x ) -tev(x ) ©)

The impact of adding th&checking procedure to the negotiation
algorithm on the outcome distribution is significaas is shown
by figure 5. The experimental setup is exactlyshme as that for
figure 3 but the negotiation algorithm used by agBnnow
includes the checking procedure. It shows the ounéco
distribution for a threshold @=0.01.

Clearly, the outcome distribution curve in figure i$ more

symmetrical than in figure 3 and more clusterediadothe mean;
it has a mean=-0.00016 and a standard deviatiorDd5. A more

detailed analysis of the relation betwe&nand the outcome
deviation is presented in the next section.

The é-checking procedure introduces additional searcinaigto
the computation of a bid. Various heuristics cobkl applied
again, however, to minimize the amount of search.example, a
limit on the number of iterations could be introdddor spaces of
high dimensionality to ensure a bid would be foumithin a
reasonable amount of time. (The probability of fivgd an
appropriate bid is high in high-dimensional spatdese to the m-
point.) The relation of the value of th&parameter and the
computational cost is analyzed in more detail ugirgerimental
results in Section 7.
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Figure 5 — Outcome distribution with checking procelure for
approximated spaces vs. original spaces for 4 issugk=15)

6. IMPACT ON OUTCOME DEVIATION

In this section, we present experimental resubis show how the
value of thed-parameter in the checking procedure relates to the
distribution of the outcome deviation. These reswhow that
there is a direct relation between the sizedond outcome
distribution.

Additionally, we investigated the influence of tHéscretization
per issue under consideration on the outcome lligion. In the
experiments we performed, the possible valuesdoh éssue were
reduced by discretizing the space to 10, 15, 28,2fvalues. In
the results below, the discretization parametendscated byk.
Maybe somewhat surprisingly the different values Kaised in
the experiments do not have such a big impact enotitcome
distribution.

In order to assess the impact of adding the chgqgl@ncedure to
the negotiation algorithm, we performed experimevith 3, 4, 5,
and 6 issues. Finally, for théparameter of the checking
procedure we used the values 0.001, 0.005, 0.02, 0.03, and
0.05. In total, we performed over 44.000 experirmémivhich the



outcomes were compared with the original space0Q® for 3
issues, 12.000 for 4 issues, 12.000 for 5 issues,6a000 for 6
issues. Comparisons of negotiation outcome forespa¢ higher
dimensionality were not feasible.
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The higher the number of issues and the higher the
discretization parametds the longer it takes to do the exhaustive
search (it takek" steps). Also, for spaces with more that 5 issues
and high discretization factors, the memory requéets become
unmanageable. As a result, the number of expersneith 6

issues was lower than those with 3, 4 and 5 isSieivestigate
the scalability of the proposed approach, we rah &periments
with 10 issues fod=0.02 and each k-value, so 2000 experiments
in total. The results for 10 and 50 issues areqmtesl in Section

8.

The experimental results relating the valuedab the outcome
distribution are depicted in Figures 6 to 8. Werdd show all
results but only those faxvalues of 0.01, 0.02, and 0.03 which
most clearly demonstrate the impact of differenfuga on the
distribution and also define the turning points mhdecreasing
this parameter further does not have a very bigachgnymore
(see also Figure 12) and decreasing it resultsignifeantly
worse outcomes. In Figures 6 to 8, on the x-axé dhtcome
difference is set out. The outcome deviation mayigger than
the value of thed-parameter since errors may accumulate over
multiple rounds in the negotiation. The y-axis refdo the
percentage of experiments having particular outcdifierences.
The different lines correspond with different vauef the
discretization parametde For each combination of a particular
number of issuef-value, and k-value, 500 experiments were run.

In general, as is to be expected sidde supposed to control the
error introduced by the approximation, the expenitakfindings
show that smaller values férresult in negotiation outcomes that
are closer to the outcomes in the original spacpogitive value
with respect to difference in outcome means thatrtbgotiation
outcome was improved compared to the outcome adtaivhen
using the original space.

The findings illustrated in Figures 6 to 8 are akbofvs. Ford =
0.01 (see Figure 6) the standard deviation ranges 60,0327 to
0,0442, and the average outcome difference ramges 40,0066

to 0,0015. Ford = 0.02 (see Figure 7) the standard deviation
ranges from 0.0350 to 0.05806 and the average metco
difference ranges from -0.0142 to 0.0010. Finaity,d = 0.03
(see Figure 8) the standard deviation ranges frod49® to
0,0717, and the average outcome difference ranges 40,0199

to -0,0151.

7. IMPACT ON COMPUTATIONAL COST
Including the checking procedure implies that théd b
determination part might need iterations to find appropriate
bid. The previous section shows that smaflevalues lead to
better outcome deviations, and it stands to reésamnthe smaller
the value, the higher the number of iterations ededo get more
insights into the frequency with which the need f@rations
causes high computational costs, a series of erpats have
been performed. The algorithm was tested for 46,5and 10
issues, with the discretization value k varying ro{#0, 15, 20,
25} andd varying over {0.005, 0.001, 0.03, 0.02, 0.01}. Eaest
was performed 500 times with randomly generategiral utility
spaces.

Figures 9, 10, and 11 show the results for 5 isshesresults for
other values are not shown, since they do not geoaidditional
insights. In these pictures, on the x-axis the fidigaic costs are
set out. The y-axis refers to the frequency withicwhan
experiment had such a logarithmic cost, with respeche total
number of experiments. The different lines referdifferent k-



values. In Figure 13, Section 8 the same analgsméasented for
10 issues witkd = 0.02.
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Figure 9. Computational costs for 5 issues andl= 0.01. The
different lines refer to different k-values.
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Figure 10. Computational costs for 5 issues aril= 0.02. The
different lines refer to different k-values.
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Figure 11. Computational costs for 5 issues aril= 0.03. The
different lines refer to different k-values.

The results clearly show the expected increase igh h
computational costs for highérvalues: higher percentages for
higher computational values. However, when lookihghe areas
underneath the lines, another interesting obsenvatn be made.

In Figure 9, ford = 0.01, the bulk of the area underneath the lines

ends approximately at In(x) = 6. In Figure 10, &or 0.02 the
bulk ends at In(x) = 4, and in Figure 11, &= 0.03 at In(x) = 2.
Evidently, the number of iterations needed is baand

8. TRADE OFF

Combining the results of the outcome analysis aftiSe 6 and
the computational cost analysis of Section 7 shias the need
for a small outcome difference has to be balancgdinat
computational costs. In this a setting for therld & parameters is
chosen that balances accuracy against efficienbg. dpproach
with these parameter settings is shown to be effitient for a
large numbers of issues.

Sections 6 and 7 show that accuracy and compuddtiocost

increase ad decreases. To find a good balance between accuracy

and cost, an integrated analysis has been perfofongtie usual
combination of parameters: the number of issuegimgnover {4,

5, 6, 10}, k ranging over {10, 15, 20, 25} ardranging over
{0.001, 0.005, 0.01, 0.02, 0.03, 0.05, 1}. Note tthx1

corresponds to a setting in all checks are suademsfl, therefore,
no iterations are necessary.

Computational costs vs. outcome deviation trade-off
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Figure 12. Computational cost and outcome deviatiofor 5
issues and k=10

Figure 12 presents the trade-off between negotiatatcome
accuracy and the computational costs. Each poith@solid line
of the chart represents the average of a seriesxpériments
whered varies over {0.001, 0.005, 0.01, 0.02, 0.03, 035The
dashed lines represent the spread of the negatiaigcome
deviation. The top line is an average + standandatien and
bottom line is the average - standard deviation.
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Figure 13. Computational costs for 10 issues ardl= 0.02. The
different lines refer to different k-values



The results show that a good compromiseds\alue of 0.02: for
0 < 0.02 the costs increase, f@&r > 0.02 the outcome
approximation gets worse. Furthermore, the standindation

drops off at this value, but does not decreasendurfor even
smallerd-values.

To analyse the scalability of the modified negadiatalgorithm
we performed a series of negotiations with 10-issue
Unfortunately, it is no longer possible to use exiwe search as
a benchmark for the negotiation outcome efficiedey to the
extremely large utility space (Lto 26°). Figure 13 shows
computational cost for 10-issues negotiation do= 0.02 and
various k-values. The figure suggests that the mafstthe
randomly generated utility spaces remain tractafue the
negotiation algorithm with th&checking procedure.

9. CONCLUSION

The paper proposesdechecking procedure that handles the short

comings of multi-issue negotiation systems that ebdkeir
operations on approximations of utility spaces witsue
dependencies. In case the issues are interdepemesefficient
method exists to compute bids during a negotiatewen if the
agent tries to guess the profile of the opponeht Té mitigate
this problem, either mediators may be used, orutiildy space
corresponding to the interdependent issues carppexdmated
so that issues are no longer interdependent. ThéDvwifethod
presented in [5] is such an approximation method.

However, using an approximation always comes witisla In the
case of multi-issue negotiation, the risk is thdtic is proposed
(and accepted by the other party) that seems te a@ood utility,
but in fact, in the original utility space has aahdower utility.
The &-checking procedure proposed in this paper offensay to
avoid this risk at the cost of additional computas.
Experimental results show, however, that a tradeaff be made
between the accuracy of the bids and the computltimverhead
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this entails. If thed-parameter in the checking procedure is set to [11] Robu, V., Somefun, D.J.A,, La Poutre, J.A., 2006mplex

0.02, the utility of the bids made is at most O@gay from the
real utility, on a scale from 0 to 1. Moreover,ngsihis value for
the &-parameter, the negotiation algorithm including tbe
checking procedure can handle high-dimensionaityutipaces.
As experimental results show, the negotiation autembtained
in this manner only slightly deviates from the aute obtained
without approximation.

To conclude, in this paper an effective balancefoisnd of
accuracy versus efficiency for multi-issue negatiatwith issue
dependencies in which the dependencies are remdued
approximation.
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