
JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. Y, JANUARY Z 1

GAMYGDALA: an Emotion Engine for Games
Alexandru Popescu, Joost Broekens and Maarten van Someren

Abstract—In this article we present GAMYGDALA, an emotional appraisal engine that enables game developers to easily add
emotions to their Non-Player Characters (NPC). Our approach proposes a solution that is positioned between event coding of
affect, where individual events have predetermined annotated emotional consequences for NPCs, and a full blown cognitive
appraisal model. Instead, for an NPC that needs emotions the game developer defines goals, and annotates game events with a
relation to these goals. Based on this input, GAMYGDALA produces an emotion for that NPC according to the well-known OCC
model. In this article we provide evidence for the following: GAMYGDALA provides black-box Game-AI independent emotion
support, is efficient for large numbers of NPCs, and is psychologically grounded.

Index Terms—Computer Games, Affective Computing, Psychological Model

F

1 INTRODUCTION

MANY computer games would be more interest-
ing and entertaining if the Non-Player Charac-

ters would express emotions and behave emotionally.
A Non-Player Character (NPC) in a digital game is
a character of which the behavior is controlled by
a computer program, not by a player. Often, the
player can interact with (e.g., talk to, shoot at, coop-
erate with) the NPCs in the game. For single player
games in particular, NPCs play an important role.
Game developers and designers face an important
challenge when developing NPC behavior: when a
player plays a game for some time, NPC behavior
becomes predictable and boring. Making NPC be-
havior less predictable by introducing ”randomness”
can be perceived as illogical or inconsistent with the
game’s plot and internal environment or with the
player’s assumptions or understanding. Even large
productions in genres that benefit from balanced NPC
behavior, such as Role-Playing Games like Skyrim [1],
struggle with this challenge of balancing between
consistency and variation.

Emotional expression and emotional behavior can
increase the variation of NPC behavior [2], [3], [4].
However, given a particular state of a game, what is
an appropriate emotion to express? In other words,
how to calculate plausible emotional states for an
NPC? This is the question we address in this article.
We propose a computational model (a specialized AI
sub-component, or, emotion engine) that can recog-
nize which emotion fits an NPC at a particular event,
in a way that is compatible with current psycholog-
ical knowledge and with the game’s storyline. It is

• Alexandru Popescu and Maarten van Someren are at the Informatics
Institute of the University of Amsterdam, Science Park 904, 1098 XH
Amsterdam.

• Joost Broekens is at Delft University of Technology, Mekelweg 4, 2628
CD Delft. Contact: joost.broekens@gmail.com.

important to be compatible with psychology because
this helps to generate emotions that are plausible and
understandable. In this article we propose such an
emotion engine. Our engine’s workings are grounded
in the psychology of emotion but the engine has the
simplicity needed to perform efficiently in a game
and has been developed to be easy to use by a game
developer.

Our emotion engine is called GAMYGDALA, with
an eye-wink to the amygdala, the part of the hu-
man brain heavily involved in emotion processing.
It supports basic and social emotions, enabling game
developers to create a wide range of emotional states.
It is based on the model of Ortony, Clore and Collins
(OCC) [5], which is tried and tested in the field
of computational modeling of emotion (e.g. [6], [2],
[7]). The novelty of GAMYGDALA is that it is po-
sitioned between event coding of affect, where the
emotional behavior is coded explicitly for each NPC
for each individual event, and a full blown cognitive
appraisal model that would include reasoning about
events. When using GAMYGDALA, the game devel-
oper defines goals for each NPC that needs simulated
emotion and annotates game events with how they
affect these goals. Based on this input, GAMYGDALA
produces in reaction to a game event an emotion that
is specific to the goals of each (type of) NPC. Different
NPCs can thus react differently to the same situation,
and the same situation can elicit different emotions
in the same NPC depending on its active goals. Emo-
tional reactions can depend on previous events that
changed the goals of an NPC but GAMYGDALA itself
does not include memory.

In essence, GAMYGDALA is a ”black-box ap-
praisal” engine. GAMYGDALA can be used in a
way analogous to physics engines. With little effort
and little knowledge of emotional appraisal on the
game developer’s part, a psychologically plausible
simulation of emotion can be included in a game.
We argue that this black-box approach is easy to use

JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. Y, JANUARY Z 2

and generic, like a physics engine. The game can use
its own AI and does not need special cognitive pro-
cessing to benefit from GAMYGDALA. Defining goals
and annotating events for use by GAMYGDALA is
straightforward, like adding mass and speed proper-
ties is also a straightforward process when using a
physics engine. Of course knowledge of emotion is
still needed if the NPC is to graphcially express it’s
emotional state.

GAMYGDALA’s output, i.e., an NPC’s emotional
state, can be used in two different ways. First it can
be used to express emotions, for example the character
may look stressed or joyful. The emotional state is
visualized by a rendering engine or the voice may
change. Second, the emotional state can be used to
alter the behavior of the character, for example it may
run away when scared or start shooting when angry.
Now, the emotional state is fed back to the game AI
that generates NPC behavior.

GAMYGDALA is designed to be
• psychologically grounded: it is based on a tried

and tested model of emotion, also with respect to
emotion dynamics;

• modular: a modular, black-box, game-AI inde-
pendent appraisal engine, is easy to use and does
not require deep knowledge of appraisal theory
on the part of the developer or designer;

• efficient: able to run in real-time for large num-
bers of agents.

2 RELATED WORK

2.1 Emotion Theories
In psychology, there are three main perspectives on
emotion [8]. The discrete view defines a set of ”basic”
emotions [9] where each emotion is characterized
by feelings, expression and behavior, e.g. fear is as-
sociated with a negative feeling, a particular facial
expression, and fleeing behavior. The dimensional view
defines an emotion as a point in an n-dimensional
space (e.g. [10], [11]). There are several different
possible dimensions, e.g. fear is negative, arousing
and submissive. The componential view defines an
emotion as the result of several evaluative cognitive
components, called cognitive appraisals, [5], [12]. E.g.
fear is the anticipation of something that is incongru-
ent with our goals. As we are interested in simulation
of emotion in NPCs, we need to know when and
how an emotion results from events in a game and
therefore the cognitive appraisal view fits our aim
best. We will describe cognitive appraisal in more
detail in the following section.

2.2 Cognitive Appraisal Theories
Cognitive appraisal theories assume that an emotion
is the result of a cognitive process. A person assesses
at all times what is happening in the world around

him or her. These events are evaluated in terms of how
relevant and conducive these are to that person’s and
other persons’ ”goals”. The emotion emerges from this
process.

Frijda [13] puts at the center of his theory the
”concern”, which is the disposition of a person to
prefer certain states of the world over others. This
is related to the concept of ”goal” in other theories.
This theory does not really deal with if and how
opposing emotions cancel each other (for example joy
and distress) or with how multiple emotions combine
into an emotional state. Further, it does not attempt
to define categories of emotions nor label them using
common language.

Scherer [14], [12] formulates a componential theory
of emotion that defines a step-based appraisal model.
He argues that cognitive appraisal does not happen
all at once and that there are steps that influence each
other. As a first step, the person evaluates relevance,
i.e.: does the event deserve attention? how unexpected
is the event? does it result in pleasure or pain? does
it influence the person’s goals? Second, the potential
implications of the event are evaluated. Third, the per-
son assesses the amount of control over the situation.
Can he change the situation? Finally, how does the
event relate to the person’s standards, social norms
and values? Emotion emerges continuously from this
appraisal of events.

In the theory proposed by Ortony, Clore and Collins
(OCC, [5]) the authors define 22 emotions (later 24)
that are associated with a number of evaluative com-
ponents including desirability for the person self,
desirability for others, likelihood or praiseworthiness.
They define the listed emotions as being emotion
types and reject the idea of basic emotions. According
to OCC, appraisal of an event consists of three parts,
of which only the first is currently used in GAMYG-
DALA:

• the desirability and consequences of the event in
light of the agent’s goals (e.g. candy is bad for
maintaining health);

• approval/disapproval according to norms, in
case the event is an action (e.g. hitting is bad);

• liking/disliking of the event, in case the event
relates to an object that appears in an event (e.g.
I like candy).

We decided to use OCC as basis for our emotion
engine for the following reasons: it is a well-known
and accepted theory of emotions, it is a componential
model of emotion that fits the needs of a compu-
tational framework, components are generic enough
to allow for a wide set of emotions, it accounts for
both internal emotions and social relationships which
in games are quite important, and most importantly
many computational models have been built on it.

A framework that complements the OCC model
is that of Pleasure, Arousal and Dominance (PAD)
[10], [11], [15]. Pleasure defines positiveness versus

JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. Y, JANUARY Z 3

negativeness, Arousal defines alertness versus calm-
ness and Dominance defines the feeling of control.
For example, Happiness is defined as an emotion
with high pleasure, arousal and dominance (PAD)
while Fear is an emotion with high arousal but low
pleasure and dominance. Based on Mehrabian’s work
[10] GAMYGDALA can derive PAD values from OCC
emotions. The game developer can thus also use
emotion dimensions.

2.3 Computational Models of Emotion
Computational models of emotion are usually based
on psychological emotion theories and attempt to
model the theory such that it is usable by artificial
agents [16], [6], [2], [17], [18], [19], [20]. For a recent
review see [21]. In this section we highlight several
models that have had significant influence. A second
reason to review these models is because they provide
insight to deal with difficult issues in computational
modeling of emotion, such as the relation between
emotion and mood, the integration of different emo-
tions, emotion dynamics, and the influence of emotion
on behavior. These insights have been used for the
development of GAMYGDALA.

ACRES [16] is a computational model based on
Frijda’s theory of appraisal [13]. It has the same com-
ponents as Frijda’s theory, is built around ”concerns”
and has the same steps for appraisal. ACRES contin-
uously checks if received information is relevant to
its concerns. Then, for the relevant parts, it computes
the rest of the components: coping variables, urgency,
seriousness, difficulty, etc. It also has a powerful
action plan generator that combines actions from a
predefined set to form a variety of possible plans.

The ”Affective Reasoner” [6] is a computational
model of emotion based on the OCC appraisal the-
ory [5]. It models all of the twenty-four emotion types
defined in OCC. The appraisal process is based on
goals, standards and preferences and produces one
or more emotions. The system then decides which
actions the agent takes, based on the resulting emo-
tions. The system also maintains for each agent a set
of representations of other agents, that is, what does
agent X think agent Y is feeling right now. This is
a feature used to diversify the response. Emotions
elicited at a certain time are not combined in the
”Affective Reasoner”, as the system is focused on
the output actions instead. The action generation step
eliminates possible behavior that is incongruent with
the emotional state before deciding on an action.

”Em” [2] is a computational model based mostly
on the OCC theory. Emotion generation is based on
a set of predefined rules, such as: ”when an agent
has a goal failure and the goal has importance X,
generate an emotion structure of type distress and
with intensity X”. An emotion has a type and an
intensity. Emotions are stored in a hierarchical struc-
ture based on the specificity of the emotion: a generic

distress emotion will be higher in the hierarchy while
more specific ones, such as grief will be a subtype
of distress. This makes it possible to infer highlevel
emotions from emotions that are subsumed. At this
point each subtree will result in an emotion type with
a certain intensity based on emotions in the subtree.
Emotions are combined using a set of ”Emotion Com-
bination Functions”. The intensities decay over time
as specified by the ”Emotion Decay Functions”. A
”Behavioral Feature Map” maps the resulting emo-
tions to behavioral features and sends them back to
the system. Later [22], Reilly specifies how emotions
are stored, how their intensity is determined and
how emotions are combined. He describes several
interesting features, some of which we borrow in
GAMYGDALA:

• Expectedness: emotions are triggered by changes
in the likelihoods of events and goals. For exam-
ple, if an event has a likelihood of 0.9 and then it
happens, it will trigger a lower intensity emotion
than a totally unexpected event, even if at the
latest step, they both have likelihood 1;

• Bias against failure: since humans have higher
intensity emotions for failure than for success, he
introduces desirability and undesirability as two
separate variables for each goal;

• Different decay per emotion type: this allows for
”hope” and ”fear” to be treated differently, slower
than others when the event is still uncertain and
instantly when the event takes place;

• Combining emotions: Em uses a logarithmic
function to combine and normalize emotions.
This ensures, as opposed to a sigmoidal normal-
izer function, that accumulating emotional inten-
sity is linear for lower values and less additive as
values increase.

EMA is a ”computational model of appraisal and
coping” [7] inspired by the ”Affective Reasoner” [6]
and as a consequence by the ”OCC” [5] appraisal
theory. Appraisal is based on several variables that
are components of the appraisal process:

• Relevance: how significant is an event for the
agent

• Desirability: does the agent want this to happen
or not

• Likelihood: is it a surprise or an expected event
• Causal attribution: who is responsible for the

event
• Controllability: does the agent have any control

over the event
• Changeability: does the agent have any power

to change the outcome (together with Controlla-
bility these two variables refer to the ability of
coping)

EMA also introduces an interesting frame concept that
makes certain emotions shift out of focus with time
and come back into focus if a similar event happens

JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. Y, JANUARY Z 4

or the agent just remembers and thinks about the
event that caused it. A ”mood” structure is used to
aggregate multiple emotions by adding up all current
emotions by type and then passing the results through
a sigmoid function in order to normalize them. The
mood also creates a bias towards certain emotions
rather than others. EMA includes a planning mecha-
nism that works closely together with the appraisal to
identify the best coping strategy and modify resulting
emotions accordingly.

MAMID [23] is a computational model that signifi-
cantly differs from the other models. It is focused not
only on modeling emotions but also on differences
between agents (traits). It represents individual dif-
ferences of three different types: cognitive, affective
and personality. Also, it models several influences of
affect on cognition, which is an interesting basis for
emotional influences on game AI.

We reviewed several influential computational
models of emotions. The ”Affective Reasoner” ap-
pears to be the most complete model built on top of
the OCC theory. It implements all possible emotions,
including social interaction. For this it includes inside
each agent a representation of all the other agents
that supports the social interaction by allowing agents
to speculate about other agents’ feelings and goals.
Other models also assume (or use) particular AI tech-
niques, reasoning techniques or cognitive architec-
tures. As one of our goals is to make GAMYGDALA
independent of game AI, we do not want to make
such assumptions. We are aiming for a standalone
model of appraisal that can function independently
from AI reasoning and expression rendering because
that is the only way we can support pluggability into
different games. As such, GAMYGDALA computes
emotions from goals and beliefs and includes the
decay of emotions but does not include the expression
of emotion or predetermined behavioral influences.
The mechanism used to define goals and beliefs and
to compute an emotional state for an NPC is explained
in Section 3.

2.4 Affective Gaming

Simulations of emotions can be incorporated in
games, which can benefit from that in several ways.
Games could recognize emotions in the human player
and adapt to this to increase satisfaction [24], similar
to how players appreciate human opponents for their
ability to socialize [25]. Here we focus on augmenting
NPC behavior with emotions. There are several games
that simulate a certain level of human-like emotional
behavior [26], such as ”Creatures” by Cyberlife Tech-
nology [27], [28], ”The Sims” series by Electronic Arts
or ”Black & White” by Lionhead Studios [29]. Up to
this date there are no emotion engines that can be
used in a variety of games as a simple pluggable
black-box. Recently, it has been argued that such an

approach would be welcome to ”support the devel-
opment of socially complex and affectively realistic
games” [4], [30], [8]. In the following paragraphs
we critically review earlier computational models of
emotion for NPCs created specifically for games.

Baillie-de Byl [26] creates an example game where
the agents emulate emotions to be more believable.
The model implemented in this game is based on the
work by Smith and Ellsworth [31], which proposes
six appraisal dimensions: pleasantness, responsibility,
certainty, attention, effort, control. For the output the
game uses the basic emotions of Ekman [9]: hap-
piness, sadness, anger, fear, disgust, surprise. The
implementation is based on a neural network with
the value of each appraisal dimension as input and
six emotion flags as output where only one is set to
true. The result is an agent that cannot have complex
emotions and cannot have two emotions at the same
time. This might work for simple games but is not
enough to build a complex NPC.

Carlisle proposed a simple framework [32] used to
create emotional agents for games. This framework
implements personality using the OCEAN model of
personality [33], which has the potential to give each
agent a unique personality that will affect the behav-
ior later. As far as mood goes, this framework uses
a one-dimensional representation along the pleasure-
displeasure axis where positive values represent plea-
sure. The appraisal part is built on a simplified version
of the OCC model, which does not elicit the specific
emotion types defined by OCC. Instead, it focuses
on the types of emotions (related to events, agents
or objects) and defines a single component for each
of them: desirability for events, and attraction for
agents and objects. This offers advantages in com-
putation times but reduces the amount of available
emotional consequences and behavior. The downside
of this approach is that many specific emotions, such
as Gratitude or Pity, cannot be generated at all. For
most of the games this is enough but possibly more
complex social emotions are needed for some games.

Research at the University of Bath [34] aims at
a system to create procedural side-quests for role-
playing games. Even if it is not based on any estab-
lished psychological model, it is an important step
towards specific socially capable agents. Their model
is based on behavior trees that use information from
a set of priorities (goals) and memory (beliefs/events)
to decide on the next quest to be proposed to the
player. The emotional state is not maintained but
inferred from goals and beliefs.

Researchers at the University of California at Santa
Cruz developed a ”social simulation”, called Prom
Week [35], where agents emulate emotions and social
interaction between teenagers during the last week
before the Prom. The main focus of this game are
relationships, including making and breaking friend-
ships that may or may not include the player. The

JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. Y, JANUARY Z 5

scenarios have predefined goals and the player wins
by achieving the goal before the week is over. It is
an interesting project but strongly focused on social
networking, and the large set of rules needed for the
social simulation makes this approach difficult to use
in a generic way for emotion simulation.

All in all there has been great progress in the field
but the game industry still lacks an AI independent,
easily pluggable emotion engine. A fundamental rea-
son for this seems to be that most attempts integrate
the emotional appraisal with the AI reasoning. This
limits generic use of the emotion engine, because
if the game AI is not compatible with the AI used
in the emotion engine, the engine can not be used.
Further, simpler approaches support only basic emo-
tions, while complex ones support personality, mood
and social reasoning. We think a solution in the
middle is needed for game development: support for
a reasonable set of emotions (including, e.g., social
emotions), but a simple straightforward implementa-
tion of appraisal. We aim for a stand-alone emotional
appraisal engine that implements most of the OCC
emotions with low computational cost so that it is
scalable for a large number of agents in real-time.
Our approach, analogous to a physics engine, should
support rapid development of emotions for NPCs.
Further, developers should be able to use it without
knowledge of appraisal theory.

3 GAMYGDALA: AN EMOTION ENGINE
FOR GAMES

In this section we introduce GAMYGDALA, its as-
sumptions, its mechanisms of appraisal, how it com-
putes the emotion, and what input it needs to do
so. GAMYGDALA is based on the OCC model, for
reasons mentioned earlier. OCC (and all other ap-
praisal theories) assume that an agent has some form
of goals, concerns, or a set of preferred states, and
a mechanism to perceive the world and act in that
world. A fundamental assumption for being able to
use GAMYGDALA in a game is therefore that the
game can be viewed as events (see [19] for a discus-
sion), that goals can be defined for the NPCs that need
emotion simulation and that the relevance of events
for the goals is specified.

Here we argue that GAMYGDALA is indeed easy
to use, AI independent and easily pluggable. We
will show that in most games goals exist or can be
easily defined. In general, each NPC in a game has
a purpose, otherwise it would not be in the game or
its behavior would be incomprehensible to the player.
Each NPC in a game can be viewed as an autonomous
agent: within the frame of its purpose and possibility
for action, it perceives the game state (input) and
chooses alternative behaviors (plans, actions) that are
intended to serve its purpose. Its goal is a desired
state. An example is a soldier that wants to kill the

player. Upon killing the player, the end state has
been reached. An NPC can have multiple goals. For
example a soldier that wants to stop the player from
entering a building can have the goals player distance
is large and player is killed. Note that it does not really
matter if the game itself uses goals or reasoning with
these goals to generate behavior. The goals are defined
for the emotion engine. The only thing that is then
needed is to annotate (some) game events with goal
congruence (how good or bad is this event for which
goal). This is the essence of how GAMYGDALA
works and supports game AI independence.

To use GAMYGDALA, a game designer needs to
explicitly define one or more goals for each NPC
(or NPC type, when all NPCs of a type have the
same goals). The game designer can now define which
(type of) events are relevant to each goal, and specify
this in GAMYGDALA. The only essential modifica-
tion to a game is that events delivered to the game
AI controlling the NPC’s behavior are also deliv-
ered to GAMYGDALA. GAMYGDALA emotionally
appraises the event and outputs the most plausible
emotion(s) based on the OCC model. This way of
using an emotion engine is analogous to how physics
engines are used. This approach is AI independent.
Nowhere a link to the AI system is needed for emotion
simulation, even though some AI mechanisms might
interface more naturally with GAMYGDALA includ-
ing BDI-based goal-oriented reasoning and planning.

GAMYGDALA is a richer model for generating
emotions than event coding. In event coding, each
event needs to include an emotional consequence
for each of the NPCs involved. The advantage of
using GAMYGDALA is that the game designer gets
plausible emotions without having to design them
and without having to specify them for each event.
Yet GAMYGDALA avoids the computational costs of
a full-blown emotional AI engine that also includes
reasoning and planning. AI specific functionality such
as decision making and action selection is not in-
cluded in GAMYGDALA. Also, emotion expression
functionality is not included, as this is related to
specifics of the game format, style, story or graphics.
This means that GAMYGDALA keeps track of the
goals of each character as well as their beliefs rep-
resenting events happening in the game. Further, it
appraises the current situation, manages the affective
state and associated dynamics. GAMYGDALA uses
a componential representation of emotion based on
OCC that it can translate to a dimensional represen-
tation based on Pleasure-Arousal-Dominance upon
request. [10], [11], [15]. A game engine can thus obtain
from GAMYGDALA both emotion intensities (e.g. ”
fear level”) and affect (”degree of dominance”).

3.1 Game World
The term ”Game World” refers to the virtual world
where the game takes place and in which the player

JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. Y, JANUARY Z 6

(gamer) is immersed while playing. A game consists
of a sequence of events where a new event is caused
by the user or the game engine. The game world
is usually populated with NPCs. For example, in
the classic game ”Pac-Man” [36], the game world
is a labyrinth, the player is represented by PacMan,
a character that has to survive while collecting all
dots in the labyrinth. The ghosts, running around the
labyrinth and trying to block pacman from finishing
the level are the NPCs of this world. GAMYGDALA
finds emotions for the NPCs, in this case the ghost.
The game developer can use this to add expression
or emotional behavior to the ghost. We now specify
GAMYDALA’s input in detail.

3.2 Goals
Goals in GAMYGDALA can be states of the game
that an NPC wants achieved (active pursuit and pas-
sive goals) or states that an NPC wants maintained
(maintenance goals). The system does not differentiate
between active pursuit and passive goals, as it is a
black-box oblivious to the NPC’s plans and OCC does
not really differentiate between the two goal types
in terms of different emotion outcome. Each goal is
represented using the same structure:

• name: identifier
• owner: the NPC that has this as a goal;
• utility: the value the NPC attributes to this goal

becoming true (∈ [−1, 1] where a negative value
means the NPC does not want this to happen).

Owner Goal Name Utility Explanation
knight kill monster 1 the knight wants to kill

the monster
knight self die −1 the knight wants to pre-

serve his own life (not
die)

knight princess die −1 the knight wants to
keep the princess alive

knight find gold 0.5 the knight wants to find
treasures

TABLE 1
Examples of defined goals

Some examples of goals are shown in Table 1. The
value of the utility is proportional to the level of
desire for that specific goal. Utility values of 1 or −1
should be used for major goals, e.g., the outcome of
the game. Everything in between is less important. For
example, finding gold is not as important as staying
alive, so failure to gather gold will not generate the
same level of distress for the NPC as having his own
life threatened. A goal is achieved if it is true in the
current event of the game.

3.3 Beliefs
Beliefs are annotated events. Each emotionally rele-
vant event is annotated with:

• name: identifier used to define and update a
belief

• likelihood: the likelihood that this information
is true (∈ [0, 1]) where 0 means the belief is
disconfirmed and 1 means it is confirmed

• causal agent : the agent responsible for this event
(can be an NPC, the player or empty if it is an
”Act of God” or irrelevant)

• affected goals: a table of goal identifiers with con-
gruences between goals and beliefs. Congruence
is a number ∈ [−1, 1] where negative values mean
this belief is blocking the goal and positive values
mean this belief facilitates the goal.

The event likelihood gives the game developer the
possibility to implement concepts such as rumors
(event was not witnessed but the NPC has heard of
it) or credibility (the NPC does not entirely believe
the information because it was delivered by another
unknown NPC). When a new event occurs it produces
a corresponding belief for the NPC’s involved.

Belief Name princess attacked by
monster

found magic sword

Likelihood 0.5 1
Causal Agent monster knight
Affected Goals princess die kill monster
Congruence 0.8 0.5

TABLE 2
Examples of incoming beliefs

3.4 Emotions
Emotion simulation is based on the OCC model of
appraisal [5]. Currently sixteen of the twenty-four
OCC emotions are supported. GAMYGDALA defines
two types of emotion: internal emotions and social
emotions (emotions that are directed at another NPC).
Each NPC p has one internal emotional state and for
every other NPC it knows a social emotional state
(e.g., angry at q1, happy for q2). Before we detail the
appraisal mechanism, we first explain belief desirabil-
ity and goal likelihood.

3.4.1 Desirability
The desirability of a belief b for a goal g depends on
the utility of g and the congruence between b and g.

desirability(b, g, p)← congruence(b, g)∗utility(g) (1)

In the example above, the desirability for the ”princess
attacked by monster” event, as far as the knight is
concerned, would be 0.8∗(−1) = −0.8 so for this NPC
it is quite an undesirable event. If we also define the
”kill princess” goal for the monster but with a utility
1 then the system would also calculate the desirability
for the monster 0.8∗1 = 0.8 for which the event is very
desirable. This shows how the same belief can have a
very different desirability for two different NPCs due
to different goal utilities.

JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. Y, JANUARY Z 7

3.4.2 Goal Likelihood
The likelihood of the goal is maintained internally
and updated every time when a belief that affects that
specific goal is received. The initial value is Unknown.
The goal likelihood is defined by:

likelihood(g)← (congruence(b, g)∗ likelihood(b)+1)/2
(2)

Here likelihood(g) is the likelihood that the goal g is
realized after observing belief b, with congruence(b, g)
and likelihood(b) as defined above. In the previous
example, the likelihood of the ”princess die” goal will
be (0.8∗0.5+1)/2 = 0.7. Every time the goal likelihood
is updated, the old value is saved into an internal
variable so we are able to also know the change in
goal likelihood for later calculations. This difference
will be referred to as ∆likelihood(g).

3.4.3 Internal Emotions
This contains all emotions that do not relate to other
NPCs. These are:

• hope: a desirable uncertain goal increases in like-
lihood of success or an undesirable uncertain goal
decreases in likelihood of success

• fear: an undesirable uncertain goal increases in
likelihood of success or a desirable uncertain goal
decreases in likelihood of success

• joy: a desirable goal succeeds or an undesirable
goal fails

• distress: an undesirable goal succeeds or a desir-
able goal fails

• satisfaction: a desirable goal was expected to
succeed and it actually does succeed

• fearsConfirmed: an undesirable goal was ex-
pected to succeed and it actually does succeed

• disappointment: a desirable goal was expected
to succeed and it fails

• relief: an undesirable goal was expected to suc-
ceed and it fails

For emotions such as fear we need the notion of uncer-
tainty [5]. We consider a goal or belief to be uncertain
if it has a likelihood between 0 and 1 exclusive. For
example, if the likelihood of an undesirable event
is 0.99 then fear will have a high intensity. If the
likelihood becomes 1, distress and fearsConfirmed are
generated. Additionally, for confirmation-based emo-
tions like disappointment and relief we need to define
when a situation is reversed or not. Currently reversal
is defined as an arbitrary threshold for ∆likelihood(g).
If |∆likelihood(g)| > 0.5 we assume the situation has
reversed.

Table 3 shows the eliciting conditions for each emo-
tion, where L is the likelihood and des is desirability.
When GAMYGDALA’s appraisal process is invoked,
for each emotion meeting it’s eliciting condition the
intensity is computed as:

intensity(e)← |des(b, g, self) ∗∆L(g)| (3)

Emotion Eliciting condition
(des(b, g, self) > 0, L(g) < 1,∆L(g) > 0)∨hope
(des(b, g, self) < 0, L(g) > 0,∆L(g) < 0)
(des(b, g, self) < 0, L(g) < 1,∆L(g) > 0)∨fear
(des(b, g, self) > 0, L(g) > 0,∆L(g) < 0)
(des(b, g, self) > 0, L(g) = 1)∨joy
(des(b, g, self) < 0, L(g) = 0)
(des(b, g, self) < 0, L(g) = 1)∨distress
(des(b, g, self) > 0, L(g) = 0)

satisfaction des(b, g, self) > 0, L(g) = 1, |∆L(g)| < 0.5
fearsConfirmed des(b, g, self) < 0, L(g) = 1, |∆L(g)| < 0.5
disappointment des(b, g, self) > 0, L(g) = 0, |∆L(g)| > 0.5
relief des(b, g, self) < 0, L(b) = 0, |∆L(g)| > 0.5

TABLE 3
Internal emotions appraisal mechanism

3.4.4 Social Emotions

Social emotions have another NPC as target, although
the target can also be the NPC self, the human player
or characters controlled by the player. They relate to
an event in which one NPC influences the other NPC’s
goals. These emotions are:

• anger: an undesirable event is caused by another
NPC

• guilt: this NPC causes an undesirable event for a
liked NPC

• gratitude: a desirable event is caused by another
NPC

• gratification: this NPC causes a desirable event
for a liked NPC

• happyFor: a desirable event happens to a liked
NPC

• pity: an undesirable event happens to a liked
NPC

• gloating: an undesirable event happens to a dis-
liked NPC

• resentment: a desirable event happens to a dis-
liked NPC

• like: this is calculated based on all events caused
by that specific NPC (it is neutral = 0 if unknown)

Importantly, the terms desirable and undesirable al-
ways refer to the desirability calculated from the goal
owner’s point of view. Table 4 shows the eliciting

Emotion Eliciting condition
anger des(b, g, self) < 0, NPC(b) 6= self
guilt des(b, g, q 6= self) < 0, NPC(b) =

self, like(self, q) > 0
gratitude des(b, g, self) > 0, NPC(b) 6= self
gratif. des(b, g, q 6= self) > 0, NPC(b) =

self, like(self, q) > 0
happyFor des(b, g, q 6= self) > 0, like(self, q) > 0
pity des(b, g, q 6= self) < 0, like(self, q) > 0
gloating des(b, g, q 6= self) < 0, like(self, q) < 0
resentm. des(b, g, q 6= self) > 0, like(self, q) < 0

TABLE 4
Social emotions appraisal mechanism

conditions for each emotion. When this condition is

JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. Y, JANUARY Z 8

met, the intensity is computed as:

intensity(e)← |des(b, g, q 6= self)∗∆L(g)∗like(self, q)|
(4)

except for anger and gratitude that follow the intensity
calculation as defined for internal emotions.

NPC(b) is the NPC that caused belief b and
like(p, q) is how much NPC p likes NPC q. Of course
p and q can also be Player Controlled characters. The
like(p, q) relationship is influenced by the desirability
of events caused by q as seen through the eyes of p. An
event caused by q that facilitates a desirable goal for p,
increases the value of like(p, q). Likewise, if the goal
is blocked then the value of like(p, q) decreases. As
such, relationships grow over time, and do not need to
be symmetrical. Consequently, social emotions (except
anger and gratitude) exist only when a relationship
exists, i.e., |like(p, q)| > 0. This relation is configured,
by setting like(p, q) to a value, or develops over time
as explained above. The benefit of this is that social
emotions are tractable, the downside is that actions
detrimental to q do not trigger empathy in p, unless
there exists a relation between p and q, such that
|like(p, q)| > 0.

3.4.5 Pleasure-Arousal-Dominance
In addition to the OCC model, GAMYGDALA com-
putes the values for Pleasure, Arousal and Dominance
(PAD). These can be derived from the OCC emotions
following [10] and are multiplied by the intensity of
that emotion. All OCC emotions are combined into an
overall PAD value using the formula:

PAD ← 0.1× log2(
∑
e

210×PAD(e)×intensity(e)) (5)

where PAD(e) is the PAD score for each specific
emotion, intensity(e) is the intensity of each emotion
and PAD is the PAD representation of the emotional
state.

Temperament Pleasure Arousal Dominance
Exuberant + + +
Bored - - -
Dependent + + -
Disdainful - - +
Relaxed + - +
Anxious - + -
Docile + - -
Hostile - + +

TABLE 5
The octants of temperament space in PAD [15]

We also implemented four temperamental axes as
defined in [15], see table 6.

Each negative extreme is the opposite of its positive
counterpart, e.g., bored is −(P+A+D) = (−P−A−D).
The weight that is assigned to each axis is

√
3, so

for example exuberance is defined as
√

3 ∗ P+A+D
3 =

0.577 ∗ (P + A + D). The implementation in our case

Axes Extremes Formula
Exuberance Exuberant vs. Bored (P + A + D)
Dependency Dependent vs. Disdainful (P + A−D)
Relaxation Relaxed vs. Anxious (P −A + D)
Docility Docile vs. Hostile (P −A−D)

TABLE 6
The axes of temperament space in PAD [15]

is a property of the NPC that returns the PAD repre-
sentation of the NPC’s emotional state on demand. Of
course one is free to use any combination of P, A and
D from this output should not all three be needed.

3.4.6 Emotion Management and Dynamics

Each NPC is associated with:

• a list of goals the NPC knows about, owned by
anyone

• an array of real values representing the default
emotional state initialized when the NPC is cre-
ated

• an array of real values representing the current
emotional state

• an array of real values representing the default
social stance initialized when the NPC is created

• an array of real values representing the current
social stance to each known NPC

• (optional) an emotional decay function and a
social stance decay function

The default emotional state, the default social stance and
the decay functions are used by the game designer
to create individual differences in emotion dynamics
between NPCs. They represent an NPC’s personality
by defining that NPC’s default (social) emotion (e.g.,
an angry guy) and how the intensity of all emotions
decay. The NPC’s emotional state is initialized to the
default emotional state, it changes due to events that
affect it and decays back towards the default emotional
state. A similar thing happens to the social emotions:
when a new NPC is encountered the social stance is
set to the default social stance. Events change the social
stance as explained previously, and it decays to the
NPC’s default social stance. Appraisals related to inter-
nal emotions are combined into the agent’s current
emotional state using Reilly’s logarithmic function.
Appraisals related to social emotions are combined
into the agent’s current social stance towards particu-
lar other NPCs. For details we refer to equation (5)
from [22]. This has the desirable properties of not
being strictly additive, using all emotions (and not
only the strongest), and being at least as intense as the
most intense component. GAMYGDALA thus closely
follows the OCC and PAD models in computing the
emotional state with as little additional assumptions
as possible.

JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. Y, JANUARY Z 9

4 EXAMPLES AND EVALUATION

In this section we illustrate how GAMYGDALA is
used in combination with games and game AI. The
goal is to illustrate how it can be integrated into
games. The examples are a simple arcade game, a
role playing game (RPG), a real-time strategy game
(RTS), and a first-person shooter (FPS). We selected
these four cases to represent different game genres
with different types of NPC involvement [37], [26],
[38]. For these cases we also explain how emotions
generated by GAMYGDALA could be used to modify
game AI that controls the NPCs. To support our
efficiency and scalability claim, we present a large-
scale multi-NPC simulation.

4.1 Arcade game: Pac-Man (1980)

Pac-Man enjoyed a huge success when it was released.
The game generated endless sequels, spin-offs and
clones and is a representative game for action arcade
games. Pac-Man is the NPC handled by the player
who has to collect all dots in a labyrinth but stay away
from the enemies (ghosts) who try to eat him and thus
hinder achieving the goal. There are also some power
dots that give Pac-Man the ability to ”eat” the enemies
and send them back to their base location. This case
is a basic example of how straightforward it is to in-
strument an arcade game with simple emotions using
GAMYGDALA, analogous to the approach shown in
[19].

The goals of the ghost are modeled as ”get eaten”
with utility −1 and ”catch pacman” with utility 0.6
(we assume that being eaten is of higher importance
than catching Pac-Man). If a state occurs in which
Pac-Man gets close to the ghost then this creates a
corresponding belief that affects the likelihood that
the goal ”catch pacman” will be achieved. Now, if Pac-
Man gets close to the ghost this will increase the
likelihood that this goal will be satisfied and this
causes the emotion hope in the ghost. Proximity of a
powered-up Pac-Man also increases the likelihood of
the goal ”get eaten”, resulting in a second emotion fear.

These emotions can now be used for expression
or they may affect the behavior of the ghost. This
example illustrates that GAMYGDALA can be incor-
porated into Pac-Man by associating goals with the
NPC ”ghost” and adding information on which states
have an effect on achieving the goal or increase the
likelihood. GAMYGDALA will then infer the appro-
priate emotions.

4.2 Role-Playing Game

Classical RPGs involve a storyline with quests in
which the player character can interact with various
friendly characters but also fight or compete against
enemies. RPGs have the potential for an infinite vari-
ety of stories and situations, including NPC character

Fig. 1. Screenshot from the RPG implementation

variation and thus the use of GAMYGDALA as a way
to vary the emotional reactions of NPCs due to game
events. We implemented a simple RPG consisting of
”the village” where people are neutral to our charac-
ter, ”the hero”, and could grow to like him or not, and
”the forest” where the character fights enemies. The
story is that the village is surrounded by monsters
and the people are too scared to go outside. This case
serves to show how complex emotions can evolve
over time, and how social emotions can be modeled.

We give two examples of in-game situations that
produce complex emotions and we will explain the
mechanics behind them.

Example 1 - Relief: A villager is relieved when a
dangerous situation disappears

Relief is a two-step emotion. First an event or belief
causes Fear (in this case that the village is surrounded)
and when the cause of this disappears the new event
or belief will bring Relief with an intensity propor-
tional to that of Fear. Listing 1 shows the trace of the
system.

Listing 1. Output for example ”Relief”
adding goal: village destroyed, utility = -0.9,

owner = self
adding belief: village surrounded, likelihood =

0.6

Decaying...
Updating...
Recalculating...
recalculating belief: village surrounded
affected goal: village destroyed, valence = 1
desirability: -0.9 <- 1 x -0.9
goal likelihood: 0.8 <- (1 x 0.6 + 1) / 2
delta goal likelihood: 0.8 <- 0.8
emotion intensity: 0.72 <- abs(-0.9 x 0.8)
adding FEAR: 0.72

adding belief: village surrounded, likelihood = 0
Decaying...
Updating...
Recalculating...
recalculating belief: village surrounded
affected goal: village destroyed, valence = 1
desirability: -0.9 <- 1 x -0.9
goal likelihood: 0.5 <- (1 x 0 + 1) / 2
delta goal likelihood: -0.3 <- 0.5 - 0.8
emotion intensity: 0.27 <- abs(-0.9 x -0.3)

JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. Y, JANUARY Z 10

adding JOY: 0.27
adding RELIEF: 0.27

Current Internal State: Joy: 0.27; Fear: 0.36;
Relief: 0.27

Example 2 - Pride (Gratification): The blacksmith was
proud of saving the village by providing it with weapons.
This example illustrates events that cause a social
emotion.

Listing 2. Code for example ”Pride”
EmoBrain brain = new EmoBrain();
brain.Goal("to live", 0.7f);
brain.Belief("provides house", 1f, "village");
brain.AffectsGoal("provides house", "live", 1f);
brain.Update();
brain.Goal("village destroyed", -1f, "village");
brain.Belief("village is unarmed", 0.7f);
brain.AffectsGoal("village is unarmed", "village

destroyed", 1f);
brain.Update();
brain.Belief("provide weapons", 1f, "self");
brain.AffectsGoal("provide weapons", "village

destroyed", -1);
brain.Update();

We first ”create” an initial relationship between the
blacksmith and the village caused by the blacksmith’s
need to live somewhere and the village providing
that place. This makes the blacksmith like the village.
Alternatively, one could simply configure this rela-
tionship, or let it grow in a more natural manner over
time. After the first step, Joy is generated because the
blacksmith is pleased to live in a house and Gratitude
towards the village because it is the responsible agent.
The second step brings the belief that the village is
in grave danger because it is lacking the weapons
needed to defend itself. This step triggers Pity as
something bad is happening to an NPC that the
blacksmith likes, i.e., the village. As a consequence,
when the blacksmith is able to help the village by
providing the necessary weapons, two new emotions
appear: HappyFor as a liked NPC has something good
happening to it and Gratification as the blacksmith
feels proud of helping an NPC that he likes. As an
additional remark, if we were to model the village
with its own emotional brain at the same time, then
after the second step it would generate Fear and at the
end Relief, Joy and Gratitude towards the blacksmith.
This example illustrates the complex emotional rela-
tionships between NPCs that can be achieved with
GAMYGDALA, where an NPC could be a character
or a more abstract agent, such as a village.

Listing 3. Output for example ”Pride”
adding goal: to live, utility = 0.7, owner = self
adding belief: provides house, likelihood = 1,

agent = village

Decaying...
Updating...
Recalculating...
recalculating belief: provides house
affected goal: to live, valence = 1
desirability: 0.7 <- 1 x 0.7
goal likelihood: 1 <- (1 x 1 + 1) / 2

delta goal likelihood: 1 <- 1
emotion intensity: 0.7 <- abs(0.7 x 1)
adding JOY: 0.7
adding GRATITUDE: 0.7 towards village
adding goal: village destroyed, utility = -1,

owner = village
adding belief: village is unarmed, likelihood =

0.7

Decaying...
Updating...
Recalculating...
recalculating belief: village is unarmed
affected goal: village destroyed, valence = 1
desirability: -1 <- 1 x -1
goal likelihood: 0.85 <- (1 x 0.7 + 1) / 2
delta goal likelihood: 0.85 <- 0.85
emotion intensity: 0.85 <- abs(-1 x 0.85)
adding PITY: 0.85 towards village
adding belief: provide weapons, likelihood = 1,

agent = self

Decaying...
Updating...
Recalculating...
recalculating belief: provide weapons
affected goal: village destroyed, valence = -1
desirability: 1 <- -1 x -1
goal likelihood: 0 <- (-1 x 1 + 1) / 2
delta goal likelihood: -0.85 <- 0 - 0.85
emotion intensity: 0.85 <- abs(1 x -0.85)
adding GRATIFICATION: 0.85 towards self
adding HAPPY-FOR: 0.85 towards village

Current Internal State: Joy: 0.18
Relationships:

village -> Gratitude: 0.18; Gratification
: 0.85; HappyFor: 0.85; Pity: 0.43

To illustrate how such an emotional instrumenta-
tion can be integrated in the gameplay of an RPG,
consider the following. Let’s say there is a quest in
which one of the villagers, Clark, tells a story about
a ring he lost outside of the village (NPCs tend to
loose there jewels quite often). Clark has an initial goal
have item with utility 1. When the player accepts the
quest, belief accept quest (congruency have item=0.2;
likelihood=1) is added, giving Clark Hope and Grati-
tude. When the player actually returns the item, belief
receive item (congruency have item=1; likelihood=1) is
added, giving Clark feelings of Joy and Satisfaction.
If Clark has a wife, Alice, and assuming Alice likes
Clark, Alice will now feel Happy for Clark and Grati-
tude towards the player. Concerning emotional influ-
ences on the storyline, the interaction with NPCs can
easily include the emotion in, e.g., the dialog trees, a
special case of behavior trees [39]. Emotions can be
used to select the path through the dialog tree or
even to alter certain sentences. For example, when
Alice feels Gratitude towards the player, this can be
a condition to insert an extra line such as ”I am so
grateful you helped my partner”, or even open up
new storyline options such as ”Now that you helped
us, I trust you, would you do me a favor.....”. Of
course this is all possible using other mechanisms,
but the interesting thing is that the player can now
choose in what way he/she will try to gain enough

JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. Y, JANUARY Z 11

Fig. 2. Screenshot from the RTS implementation

gratitude from Alice, without having to script all these
possibilities explicitly.

4.3 Real-time Strategy game

A real-time strategy game usually contains high level
management of units and resources. The player is the
commander of an army and gives orders to his troops.
We developed a simple RTS in which two factions
(Human and Orc) each have three types of buildings
and two types of units that can be trained using one of
the buildings. When a building is destroyed, it stays
as ruins and becomes non-functional. Ruins can be
rebuilt using a unit but doing so costs gold and takes
a few seconds. This case aims to show how emotions
generated by a simple GAMYGDALA instrumenta-
tion can be used to impact RTS NPC behavior in
a psychologically plausible way. In our example, (a)
individual fleeing units might trigger mass fleeing of
all AI-controlled units through the generation of fear,
and, (b) high arousal produces errors in planning.

The initial setup is easy. All AI-controlled units
(NPC) initially have the following two goals: die with
utility −1 and win with utility 1, assuming winning
and not dying are of equal importance. No initial
beliefs are generated and no differences in the default
emotional state. While playing, beliefs are added to
the NPCs in the game, such as the belief wounded
affecting goal (die) with likelihood 1 − health and
conduciveness 1. This generates Fear when units are
wounded. Furthermore, if NPCs start fleeing, the be-
lief fleeing is added to all NPCs affecting the goal win
negatively with a likelihood proportional to the num-
ber of fleeing units. When a player-controlled building
is destroyed, the win goal is affected positively by
a belief enemy buildings down that has a probability
equal to the proportion of destroyed player-controlled
buildings. All of these beliefs generate emotions such
as Fear, Hope, and even Anger towards the player and
his/her units if they would also be specified as NPCs.

NPC emotions in the RTS example still need to
be used in the game. To influence the NPC behavior
based on the emotions we propose two methods. First,
we modified the Finite State Machine used to control
the unit. Finite State Machines [40], [37] are simple
structures used for controlling behavior and are very
popular in games because of their implementation
simplicity, scalability, and ability to generate complex
behaviors. Our initial implementation has only two
states: Idle and Attack. To show the effects of emotions
we added a third one, Flee. The transition was very
simple: when the amount of Fear would go above a
threshold, the unit would enter the Flee state.

Listing 4. Output for the RTS game example
adding goal: die, utility = -1, owner = self
adding goal: win, utility = 1, owner = self
adding belief: wounded, likelihood = 0.7

Decaying...
Updating...
Recalculating...
recalculating belief: wounded
affected goal: die, valence = 1
desirability: -1 <- 1 x -1
goal likelihood: 0.85 <- (1 x 0.7 + 1) / 2
delta goal likelihood: 0.85 <- 0.85
emotion intensity: 0.85 <- abs(-1 x 0.85)
adding FEAR: 0.85
adding belief: enemy buildings down, likelihood =

0.5

Decaying...
Updating...
Recalculating...
recalculating belief: enemy buildings down
affected goal: win, valence = 1
desirability: 1 <- 1 x 1
goal likelihood: 0.75 <- (1 x 0.5 + 1) / 2
delta goal likelihood: 0.5625 <- 0.75 - 0.1875
emotion intensity: 0.5625 <- abs(1 x 0.5625)
adding HOPE: 0.5625

Current Internal State: Hope: 0.56; Fear: 0.69

The second method is to modify the A* pathfinding
algorithm [41] so that troops would lose precision
when the emotions were running high. For this case
we used the Arousal component of the PAD structure.
In essence we added a random factor to the weight of
each node in the path, so that aroused NPCs will have
more erratic behavior (see next case for more detail).

4.4 First-Person Shooter game

First-Person shooters are games where the player ex-
periences action with a first-person camera positioned
at the level of the eyes and that involve shooting
weapons and direct combat. We developed a simple
FPS in which NPCs are controlled in a similar manner
to the RTS example: they have a very simple decision
making system akin to a finite state machine and they
use A* for pathfinding. We have implemented the
same emulation of fear as in the RTS when their life
decreases. The goal for this case is to show in a differ-
ent game genre than RTS how emotions generated by

JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. Y, JANUARY Z 12

a simple GAMYGDALA instrumentation can impact
NPC behavior.

We give the NPCs the goals to avoid ”die” and to
achieve ”win”. By defining the responsibility of the
inflicted wound as belonging to the player the NPC
has a social emotion: Anger towards the player. This
adds to the current Arousal, which can be used to
modify the behavior of the NPC.

Listing 5. Output for the FPS game example
adding goal: die, utility = -1, owner = self
adding goal: kill player, utility = 1, owner =

self
adding belief: wounded, likelihood = 0.7, agent =

player

Decaying...
Updating...
Recalculating...
recalculating belief: wounded
affected goal: die, valence = 1
desirability: -1 <- 1 x -1
goal likelihood: 0.85 <- (1 x 0.7 + 1) / 2
delta goal likelihood: 0.85 <- 0.85
emotion intensity: 0.85 <- abs(-1 x 0.85)
adding FEAR: 0.85
adding ANGER: 0.85 towards player
adding belief: player shot, likelihood = 0.5

Decaying...
Updating...
Recalculating...
recalculating belief: player shot
affected goal: kill player, valence = 1
desirability: 1 <- 1 x 1
goal likelihood: 0.75 <- (1 x 0.5 + 1) / 2
delta goal likelihood: 0.75 <- 0.75
emotion intensity: 0.75 <- abs(1 x 0.75)
adding HOPE: 0.75

Current Internal State: Hope: 0.75; Fear: 0.77
Relationships:

player -> Anger: 0.77

The A* algorithm [41] is a graph search algorithm
that finds the shortest path in a graph. Because in
games, speed is more important than precision, A*
uses a heuristic function that estimates the future
steps approximatively so that there is no need to cal-
culate all possible paths. Arousal taken from GAMYG-
DALA influences A* pathfinding precision by adding
a random factor that is proportional to the Arousal
level of the NPC to the estimation of the distance
to the goal. This will produce erratic behavior by an
aroused NPC, analogous to real-life: tense and ner-
vous individuals make irrational and unpredictable
choices. In addition to this, arousal causes the NPCs to
have less shooting precision. As a consequence, when
they get hurt arousal increases and they automatically
start missing some shots.

5 COMPUTATION SPEED

As GAMYGDALA is targeted at games involving a
potentially large amount of NPCs present, it is impor-
tant that it scales well. We performed two stress tests:
timing populations of emotional NPCs of various

sizes, and, running a 60 FPS (frames per second)
simulation of 5000 NPCs with which the user can
interact by injecting beliefs using mouse clicks.

For the first experiment we run tests varying the
following parameters: a population of size n, a num-
ber of goals g for each NPC in the population, and b
beliefs for each NPC. GAMYGDALA’s emotion cal-
culation was applied to all NPCs after adding all
beliefs. The generated goals and beliefs have random
parameters and the beliefs affect a randomly chosen
goal for that specific NPC . We ran five tests, three
simple ones: with one goal and one belief per NPC,
two goals and two beliefs per NPC and four goals
and four beliefs per NPC, and two stress tests with 5
goals per NPC and 20 or 50 beliefs per NPC . Figure
3 shows a comparison between the three cases.

Fig. 3. Timing various populations of NPC s

Our tests ran on a 3 GHz processor in a single
thread. The y-axis in Figure 3 represents the total
amount of time needed to calculate the corresponding
emotions as well as do the belief updates. GAMYG-
DALA allows simulation of up to 35, 000 NPCs, 2
goals and 2 beliefs per NPC , with a total computing
time of less than one second. This computing time
includes 70, 000 belief additions (2 per NPC), and
a final emotion computation (appraisal). Of course a
second of appraisal is not possible in a real game, but
one can easily use standard load spreading techniques
across frames, so that not all NPCs need updates
every frame. When the number of goals and beliefs
increases to a more realistic amount (5 goals and 20
beliefs per NPC), GAMYGDALA can still compute the
appraisal for 5, 000 NPCs (a total of 25, 000 goals and
100, 000 beliefs) in just 0.816 seconds.

As a second test we built a sandbox environment
(using Microsoft’s R©XNA Framework). The world is a
rectangular area with 5, 000 NPCs present. The user
influences them using the mouse: left clicking an area
would send positive beliefs (beliefs that facilitate their
goals) to the NPCs in that area and right clicking an
area would send negative beliefs (beliefs that block
their goals). As an outcome, the NPCs become agi-

JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. Y, JANUARY Z 13

tated (speed increases) if the Arousal is high, or calm
if it is low and their color would change between
red and green to show the level of Pleasure. In figure
4 a screenshot is shown (red is negative, green is
positive). This simulation is representative of a user
interacting with a local set of NPCs, such as in an
RPG. In this case each emotional wave only hits a part
of the population of 5, 000 NPCs and the simulation
easily keeps up a frame-rate of about 60FPS.

Fig. 4. Performance test on a population of NPCs.
Negative pleasure in red, positive pleasure in green

The experiments show that in these applications
the computational costs are quite acceptable and scale
well with the number of NPCs in the game. When a
new events appears and it is relevant for an emotion
in an NPC then approximately the same computations
take place. The speed of processing a new event
therefore grows linearly with the number of NPCs
times the number of beliefs affected by that event
(see also Figure 3). The example above shows the
effect on speed of increasing the number of agents and
beliefs. This suggests that for many current games our
approach is fast enough.

6 CONCLUSION

We have introduced GAMYGDALA, an emotion en-
gine for games based on OCC [5]. Our approach
proposes a solution that is positioned between event
coding of affect, where each individual event has a
predetermined annotated emotional consequence for
each NPC, and a full blown cognitive appraisal model.
Instead, for each (type of) NPC that needs simulated
emotion the game developer specifies goals, and an-
notates game events with a relation to these goals.
Based on this input, GAMYGDALA finds an emo-
tion for that NPC according to the well-known OCC
model. We have shown that GAMYGDALA is psycho-
logically grounded, provides black-box Game-AI in-
dependent emotion support, and that it is efficient for
large numbers of NPCs. We have done so by (1) spec-
ifying in detail how our computational mechanisms
closely follow the OCC model, (2) presenting four

examples that show that GAMYGDALA is indeed
game AI (and game genre) independent, and (3) pre-
senting results of a large scale simulation of thousands
of NPCs showing acceptable performance. Because
GAMYGDALA is a black-box emotional appraisal
module, the game developer and game programmer
do not need to be emotional appraisal experts to use
it. Of course, a game developer needs to instrument
the game to interface with GAMYGDALA. However,
we have explained that this process is analogous to
using a physics engine: provide the essentials and
the engine will do the hard stuff. We conclude that
the goal-based event annotation approach used in
GAMYGDALA is suitable for the development of
emotional NPCs in games. In this article we have not
shown that emotions generated with GAMYGDALA
actually add to the level of fun of a game. This is
a next step. Another direction for further work is to
refine and test the mechanisms for modeling indi-
vidual differences, for example using more elaborate
dynamics of emotion. Questions such as, how should
possibly conflicting emotions be combined, and, what
are appropriate decay functions for a gaming setting,
should be investigated. A relatively straightforward
extension of GAMYGDALA is to include norms and
object liking (the two other parts of OCC).

REFERENCES
[1] Bethesda, Skyrim. Zenimax, 2011.
[2] W. S. N. Reilly, “Believable social and emotional agents,” Ph.D.

dissertation, School of Computer Science, Carnegie Mellon
University, 1996.

[3] C. Bartneck, “Integrating the occ model of emotions in em-
bodied characters,” in Proceedings of the Workshop on Virtual
Conversational Characters: Applications, Methods, and Research
Challenges., 2002.

[4] E. Hudlicka, “Affective game engines: motivation and require-
ments,” in Proceedings of the 4th International Conference on
Foundations of Digital Games. ACM, 2009, pp. 299–306.

[5] A. Ortony, G. L. Clore, and A. Collins, The Cognitive Structure
of Emotions. Cambridge University Press, 7 1988.

[6] C. D. Elliott, “The affective reasoner: A process model of
emotions in a multi-agent system,” Ph.D. dissertation, North-
Western University, 1992.

[7] J. Gratch and S. Marsella, “A domain-independent framework
for modeling emotion,” Journal of Cognitive Systems Research,
vol. 5, pp. 269–306, 2004.

[8] E. Hudlicka, “Guidelines for designing computational models
of emotions,” International Journal of Synthetic Emotions, vol. 2,
no. 1, pp. 26–79, 2011.

[9] P. Ekman, “An argument for basic emotions,” Cognition &
Emotion, vol. 6, no. 3-4, pp. 169–200, May 1992.

[10] A. Mehrabian, Basic Dimensions for a General Psychological
Theory. OGH Publishers, 1980.

[11] ——, “Framework for a comprehensive description and mea-
surement of emotional states.” Genetic, social, and general psy-
chology monographs, vol. 121, no. 3, pp. 339–361, Aug. 1995.

[12] K. R. Scherer, “Appraisal considered as a process of multilevel
sequential checking,” in Appraisal processes in emotion: Theory,
methods, research, K. R. Scherer, A. Schorr, and T. Johnstone,
Eds., 2001, pp. 92–120.

[13] N. H. Frijda, The emotions, ser. Studies in emotion and social
interaction. Cambridge University Press, Editions de la
Maison des sciences de l’homme, 1986.

[14] K. R. Scherer, “Toward a dynamic theory of emotion: The
component process model of affective states,” Geneva Studies
in Emotion and Communication, vol. 1, pp. 1–98, 1987.

JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. Y, JANUARY Z 14

[15] A. Mehrabian, “Pleasure-arousal-dominance: A general frame-
work for describing and measuring individual differences in
Temperament,” Current Psychology, vol. 14, no. 4, pp. 261–292,
Dec. 1996.

[16] N. H. Frijda and J. Swagerman, “Can computers feel? theory
and design of an emotional system,” Cognition & Emotion,
vol. 1, no. 3, pp. 235–257, 1987.

[17] Y. Guoliang, W. Zhiliang, W. Guojiang, and C. Fengjun, “Af-
fective computing model based on emotional psychology,”
in Advances in Natural Computation, LNCS Volume 4221, 2006.
Springer.

[18] K.-L. Liu, Affective Computing for Computer Games: Bots with
Emotions. MSc thesis at the National Taiwan University of
Science and Technology, 2007.

[19] J. Broekens and D. DeGroot, “Scalable and flexibel appraisal
models for virtual agents,” in Proceedings of the Fifth Game-on
International Conference, Q. Mehdi and N. Gough, Eds., 2004,
pp. 208–215.

[20] M. Ochs, D. Sadek, and C. Pelachaud, “A formal model of
emotions for an empathic rational dialog agent,” Autonomous
Agents and Multi-Agent Systems, vol. 24, no. 3, pp. 410–440,
May 2012.

[21] S. Marsella, J. Gratch, and P. Petta, “Computational models of
emotion,” in A blueprint for affective computing: A sourcebook and
manual., K. Scherer, T. B”anziger, and E. Roesch, Eds. Oxford
University Press, 2010.

[22] W. S. N. Reilly, “Modeling what happens between emotional
antecedents and emotional consequents,” R. Trappl, Ed. Aus-
trian Society for Cybernetic Studies, 2006.

[23] E. Hudlicka, “This time with feeling: Integrated model of trait
and state effects on cognition and behavior,” Applied Artificial
Intelligence, vol. 16, no. 7-8, pp. 611–641, 2002.

[24] G. N. Yannakakis and J. Hallam, “Real-Time Game Adapta-
tion for Optimizing Player Satisfaction,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 1, no. 2, pp.
121–133, Jun. 2009.

[25] P. Sweetser, D. Johnson, J. Sweetser, and J. Wiles, “Creating
engaging artificial characters for games,” in Proceedings of
the second international conference on Entertainment computing.
Carnegie Mellon University, 2003, pp. 1–8.

[26] P. Baillie de-Byl, Programming Believable Characters for Computer
Games. Charles River Media, Inc., 2004.

[27] S. Grand, D. Cliff, and A. Malhotra, “Creatures: artificial
life autonomous software agents for home entertainment,” in
Proceedings of the first international conference on Autonomous
agents, W. L. Johnson, Ed.

[28] S. Grand, Creation: Life and How to Make It. Harvard University
Press, 2000.

[29] J. Wexler, Artificial Intelligence in Games: A look at the smarts
behind Lionhead Studio’s ”Black and White” and where it can go
and will go in the future. University of Rochester, 2002.

[30] E. Hudlicka and J. Broekens, “Foundations for modelling
emotions in game characters: Modelling emotion effects on
cognition,” in Affective Computing and Intelligent Interaction
(ACII). IEEE, 2009.

[31] C. A. Smith and P. C. Ellsworth, “Attitudes and social cogni-
tion,” Journal of Personality and Social Psychology, vol. 48, no. 4,
pp. 813–838, 1985.

[32] P. Carlisle, “A framework for emotional digital actors,” in
Game Programming Gems 8, A. Lake, Ed. Cengage Learning,
2010, pp. 312–322.

[33] R. R. McCrae and P. T. Costa, “Toward a new generation of
personality theories: Theoretical contexts for the five-factor
model.” in The five-factor model of personality: Theoretical per-
spectives, J. S. Wiggins, Ed. Guildford, 1996, pp. 51–87.

[34] J. Grey and J. J. Bryson, “Procedural quests: A focus for agent
interaction in role-playing-games,” in Proceedings of the AISB
2011 Symposium: AI & Games, D. Romano and D. Moffat, Eds.
SSAISB, 2009, pp. 3–10.

[35] J. McCoy, M. Treanor, B. Samuel, M. Mateas, and N. Wardrip-
Fruin, “Prom week: social physics as gameplay,” in Proceedings
of the 6th International Conference on Foundations of Digital
Games. ACM, 2011, pp. 319–321.

[36] T. Watani, Pac-Man. Namco, 1980.
[37] B. Schwab, Ai Game Engine Programming. Charles River

Media, Inc., 2004.

[38] D. Mark, Behavioral Mathematics for Game AI. Charles River
Media, Inc., 2009.

[39] A. Champandard, “Behavior trees for next-gen game ai,” in
Game Developers Conference, Audio Lecture, 2007.

[40] D. Fu and R. Houlette, The Ultimate Guide to FSMs in Games.
Charles River Media, 2004, vol. 2, pp. 283–302.

[41] P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for
the Heuristic Determination of Minimum Cost Paths,” IEEE
Transactions on Systems Science and Cybernetics, vol. 4, no. 2,
pp. 100–107, Feb. 1968.

Alexandru Popescu holds a MSc degree
in Artificial Intelligence at the University of
Amsterdam and now works as a software
developer.

Joost Broekens is assistant professor at
Delft University and teaches affective com-
puting. He holds a MSc degree in computer
science from Delft University and a PhD
in computer science from the University of
Leiden on computational modeling of emo-
tion in relation to reinforcement learning. His
interests include reinforcement learning, af-
fective computing, computational models of
affective processes, human-technology inter-
action, and gaming research.

Maarten van Someren teaches Artificial In-
telligence at the University of Amsterdam.
His research interests are mostly in Machine
Learning, in particular applications, semi-
supervised and transfer learning and foun-
dations of induction. When the opportunity
arises, he combines this with models of hu-
man cognition.

